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HOMEOMORPHISMES DE L’ENSEMBLE DE CANTOR 281

Si ’on retire la condition d’uniformité de la définition d’un homéomor-
phisme simple, la dynamique peut devenir beaucoup plus complexe. Nous
montrerons :

THEOREME 2. Soit v un point de C. Il existe une infinité non dénombrable
d’ homéomorphismes f: C — C, deux a deux non conjugués, tels que

. n T —n _
nlg}—noof (X) n_jllloof (X) v

pour tout x € C.

DEMONSTRATIONS

Rappelons que I’ensemble de Cantor C est caractérisé a homéomorphisme
prés comme étant compact, métrisable, parfait, totalement discontinu (voir par
exemple [5]). En particulier toute partie non vide, ouverte et fermée de C
est homéomorphe a C. Tout point de C possede un systeme fondamental de
voisinages ouverts et fermés. Si X est localement compact mais pas compact,
on notera X = X U {point} son compactifié d’Alexandrov.

Soit f: C — C un homéomorphisme simple. La fonction [ =
lim,_, 1 oo f" existe, et est continue sur C \ F. Elle prend bien siir ses valeurs
dans F. Montrons que f~! est simple. Soit K un compact de C\F. Soit V un
voisinage ouvert de F, disjoint de K. Pour n grand on a f*(C\V) C V, d’ou
C\VCf™V)etf/(C\V)CV.Onen déduit f~(K) Cf™"(C\V)CV.
Donc " converge uniformément sur K, et f~! est simple.

En considérant f° et f~°°, on associe alors a f un graphe I" comme
indiqué dans l’introduction. Il possede évidemment les propriétés (1) et (2)
du théoreme 1. La propriété (3) sera établie un peu plus tard.

DEMONSTRATION DU THEOREME 1

Elle se décompose en deux parties: surjectivité et injectivité.

Surjectivité. FEtant donné un graphe T possédant les trois propriétés
mentionnées dans le théoréme, nous allons construire un homéomorphisme
simple fo tel que I'(fp) soit isomorphe a I'. Nous commengons par trois cas
€lémentaires.

I. Si I' est une boucle (un seul sommet, une seule aréte), considérons
le décalage o: (k,n)— (k,n+1) sur X =K x Z, ou K est un ensemble de
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Cantor. La caractérisation rappelée ci-dessus assure que X est un ensemble
de Cantor. Le prolongement fy de o a X est simple, et I'(fy) =1T.

2. Si1 I' est un segment (une seule aréte, a extrémités distinctes), on
considére encore le décalage sur X = K X Z, mais on compactifie X en
lui ajoutant deux points a l’infini, avec comme systemes fondamentaux de
voisinages K X [n,+oo[ et KX] — 0o, —n] respectivement.

3. Si I' se compose d’'un sommet et de deux boucles attachées a ce
sommet, on considére le compactifié d’Alexandrov de (K \ {point}) x Z muni
du décalage.

Le cas général s’obtient en combinant ces trois modeles. On part d’un
nombre fini de points, identifiés aux sommets de I'". Pour chaque aréte orientée
v1vy, avec vy # vy, on attache un modele de type 2 en identifiant la source
avec v; et le puits avec v,. A chaque sommet v on attache un modele de
type 1 (resp. 3) s’il y a dans I" une (resp. deux) boucles en v, en identifiant
I’unique point fixe avec v. La propriété (3) du théoreme 1 garantit que I’on
obtient un espace de Cantor. Celui-ci est muni d’un homéomorphisme simple
fo vérifiant I'(fp) =1T.

Injectivité. Soit f un homéomorphisme simple. Pour v € F', soit
A)y={x ¢ F |77 =70 =v}.
Pour vy # v;, soit

A, ) ={x & F |70 = v, [7@) =v2}.
Les A(v) et A(vi,v2) qui ne sont pas vides forment une partition de C\ F en

sous-espaces f -invariants ouverts et fermés, dont nous déterminons maintenant
I’adhérence dans C.

LEMME. Si A(v) # @, on a Alw) = A(w) U {v}. De méme, si
A(vy,10) # @, on a A(vi,v2) = A(vy,v2) U{v1,02}.

Démonstration. Soit V un voisinage ouvert et fermé de v tel que
VNF = {v}, et W ={xeV|x¢Ff(V)}. Toute orbite de A(v) non
entierement contenue dans V rencontre W. La convergence de f" vers f=°
étant uniforme sur le compact W, il existe un entier N tel que

Awycvu | rrom).
|n|<N
On en déduit A(v) = A() U {v}. La démonstration pour A(vy,vp) est
analogue, en considérant un voisinage de {v1,v,} ne contenant pas d’autre
point de F. [
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Il résulte de ce lemme que I'(f) posséde la propriété (3) du théoreme 1.
En effet, un w € F n’appartenant a aucune arte n’appartiendrait a aucun
A(w) ou A(vy,v,). Cest impossible puisque I'union des adhérences des A(v)
et des A(vi,vy) est C tout entier.

Nous allons maintenant terminer la preuve du théoréme 1 en montrant que,
étant donné I', tout homéomorphisme simple f tel que I'(f) soit isomorphe
a I' est topologiquement conjugué au f, construit plus haut.

Le lemme permet de supposer que fy est I’'un des trois modeles ci-dessus,
la conjugaison cherchée pouvant étre définie séparément sur chaque A(v) ou
A(vy, 7).

Commencons par le cas ou I' est un segment. Appelons v; la source
de f, et vy le puits. Soit V un voisinage ouvert et fermé de v, ne contenant
pas vy. Nous affirmons que l'ouvert U = |J,,f"(V) est aussi fermé. En
effet, si W ={xef(V)|x¢ V}, on a -

o0
U=vulJrm,
n=0
et cette union est finie car f" converge vers v, uniformément sur W.

Soit alors K le compact U \ f(U). 1l rencontre chaque orbite de C \ F
exactement une fois. Soit p un homéomorphisme de X sur le compact K
utilisé pour construire fy. On le prolonge en un homéomorphisme de C \ F
sur K x Z en posant p(f"(k)) = (k,n) pour k € K, et il s’étend & C en une
conjugaison de f a fj.

Supposons maintenant que I' a un seul sommet. Soit v 1’unique point
fixe de f. Notons que, pour tout voisinage ouvert V de v, les intersections
avec C\'V de (2, f"(V) et (o2, f"(V) sont des ouverts. En effet, si
Y C C\V est un voisinage compact d’un point x # v, on a pour n assez
grand f7"(Y) C V et f"(Y) CV, et donc aussi ¥ C f"(V) et Y C f~(V).

On suppose d’abord que I' est une seule boucle, c’est-a-dire qu’il existe
un voisinage V' de v ne contenant aucune orbite autre que {v} en totalité.
On choisit V' ouvert et fermé, et on considere

O
K=@C\V)n[ ).
n=1
Il est fermé, ouvert, et rencontre toute orbite autre que {v} exactement une
fois. Comme précédemment, tout homéomorphisme de K avec K s’étend en
une conjugaison de f avec le f; du modele 1.
Supposons enfin que f a un unique point fixe v et qu’il existe des orbites
arbitrairement proches de v. Soit Vo D V|, O ... O V, D ... un systtme
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fondamental de voisinages ouverts et fermés de v, avec Vy = C. Posons

oo (o]
Qp — (Vp \ Vp+1> N ﬂfn(vp+1) N ﬂf—n(vp)

n=1 n=1
pour p > 0, et @ = UQ,. Chaque Q, étant ouvert, fermé, et contenu dans
V,, 'ensemble Q est ouvert, et son adhérence est Q U {v}. En particulier,
Q est homéomorphe 2 un ensemble de Cantor privé d’un point. De plus Q
rencontre chaque orbite autre que {v} en exactement un point (si x # v,
son orbite rencontre Q,, ol p est le plus grand entier tel que I’orbite soit
contenue dans V,). Tout homéomorphisme de Q sur K\ {point} s’étend alors
en une conjugaison de f avec le f; du modele 3. [

DEMONSTRATION DU COROLLAIRE

Seule la premiere assertion demande une démonstration. Soit A un
ensemble a4 n éléments. Il y a p, = 32"~V maniéres d’attacher des
arétes orientées aux €léments de A de facon que le graphe obtenu vérifie
les conditions (1) et (2) du théoreme 1. Presque tous ces graphes vérifient
également la condition (3): le nombre de ceux qui ne la vérifient pas est
majoré par np,_1, qui est un o(p,). Pour estimer N(n) nous devons compter les
graphes a isomorphisme pres, c’est a dire en faisant agir le groupe symétrique.
Puisque logp, ~ n*log2 et logn! = o(n?), on a bien logN(n) ~ n*log2. [J

DEMONSTRATION DU THEOREME 2

T —

Soit K un ensemble de Cantor, et L = K X N. Nous distinguons dans L
le point a I’infini, noté oo, et Ly = K x {0}. Soit ¢ le prolongement & L du
décalage (k,n) — (k,n+ 1), et o~! son inverse, défini sur L\ Lg.

Considérons maintenant M = L x {—1,1} x N. Notons M = M U {v} son
compactifié d’Alexandrov, M~ =L x {—1} x {0}, et MT =L x {1} x {0}.
Nous définissons un homéomorphisme ¢ de M\ Mt sur M\ M~ par:

(o, —1,n) = ('), —1,n+1)  pour £ €L\ Ly
wl,—1,n)= U, 1,n) pour £ € Ly
o, 1,n) =(c®),1,n—-1) pour n > 0

L o) =wv.

La dynamique de ¢ est analogue a celle d’un champ de vecteurs du plan dans
un secteur d’une selle. Le point v est fixe. L'orbite positive de (oo, —1,0)
tend vers v, de méme que ’orbite négative de (oo, 1,0). Si ¢ # co, ’orbite
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d’un point (¢,—1,0) € M~ aboutit a M +, aprés un nombre d’itérations qui
tend vers ’infini quand ¢ — oo dans L.

Soit maintenant ¢ > 1 un entier. Soit P 1’union disjoingle\ g exemplaires
My, ... ,Mq de M, et de deux exemplaires L~, LT de L x N. Notons que
les sous-espaces M, Mi+ de M;, ainsi que Lx {0} CL™ et Lx {0} C LT,
sont des exemplaires de L. Il existe donc des homéomorphismes canoniques
entre ces espaces. |

Nous définissons un homéomorphisme 6 sur P de la manicre suivante.
Sur chaque exemplaire M;, il est égal 2 ¢ en dehors de M;". Sur M:", pour
i < g, il coincide avec I’homéomorphisme naturel de M;" sur M, et sur
M} c’est I’'homéomorphisme de M. avec L x {0} C L™. On définit 6 sur
Lt comme le prolongement du décalage (4,n) — ({,n+1) de L X N, sur
L=\ (L x {0}) comme le prolongement de I’inverse du décalage, et enfin sur
L x {0} € L~ comme I’homéomorphisme naturel de L x {0} avec M| .

Les points fixes de 6 sont une source v~ (le point a l'infini de L7 ),
un puits vt (le point a ’infini de L), et g “selles” vy, ... , Vg (une dans
chaque M ;). Toutes les orbites infinies de § vont de v~ a v™, sauf ¢ + 1
orbites “singulieres” qui vont respectivement de v~ a vy, de v; a Vi
(1<i<qg—1),etde v, a v,

Ces ¢ + 1 orbites sont mutuellement contigués, au sens suivant: nous
disons que les orbites de deux points x,y sont contigués s’il existe une suite
x, — x, et des entiers n,, avec ¢"7(x,) — y. Les autres orbites infinies de 6
ne sont contigués qu’a elles-mémes. Les orbites singulieres de € sont en fait
les points de non-séparation de 1’espace des orbites infinies de 6.

Identifiant entre eux les ¢g+2 points fixes de €, nous obtenons pour chaque
g > 1 un homéomorphisme f, d’un ensemble de Cantor, possédant un unique
point fixe v et vérifiant les conditions du théoreme 2. Ces homéomorphismes
ne sont pas conjugués entre eux: ils sont distingués par la contiguité.

Pour obtenir une infinit€ non dénombrable, nous combinons les f,. Soit
O une partie non vide de N, avec 0 ¢ Q. Pour chaque ¢ € Q, soit C, un
ensemble de Cantor muni de ’homé€omorphisme f,. Notons ¢, le point fixe
de f,. Considérons, sur le compactifié d’Alexandrov de ’'union disjointe des
Cy\{cq}, 'homéomorphisme f, qui coincide avec f, sur chaque C,\{c,}. Il
vérifie les conditions du théoreme 2. Sur ’ensemble des orbites infinies de fp,
la contiguité est une relation d’équivalence. Il y a une classe d’équivalence 2
g + 1 €léments pour chaque g € Q, et les autres classes ont un seul élément.
Donc fp n’est pas conjugué a fpr si Q#Q'. [
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