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Si l'on retire la condition d'uniformité de la définition d'un homéomor-

phisme simple, la dynamique peut devenir beaucoup plus complexe. Nous

montrerons :

THÉORÈME 2. Soit v un point de C .11 existe une infinité non dénombrable

d'homéomorphismes /: C —> C, deux à deux non conjugués, tels que

lim fn(x) lim f~n(x) v
/7—>+oo n—»+00

pour tout x G C.

Démonstrations

Rappelons que l'ensemble de Cantor C est caractérisé à homéomorphisme

près comme étant compact, métrisable, parfait, totalement discontinu (voir par
exemple [5]). En particulier toute partie non vide, ouverte et fermée de C

est homéomorphe à C. Tout point de C possède un système fondamental de

voisinages ouverts et fermés. Si X est localement compact mais pas compact,
on notera X=IU {point} son compactifié d'Alexandrov.

Soit f\C — C un homéomorphisme simple. La fonction f°°
limw_>+00/" existe, et est continue sur C\F. Elle prend bien sûr ses valeurs
dans F. Montrons que/-1 est simple. Soit K un compact de C\F. Soit V un

voisinage ouvert de F, disjoint de K. Pour n grand on a fn{C\V) C V, d'où

C\V C f~n(V) et f~n(C \ V) C y. On en déduit f~n(K) C f~n(C \ V) C V.
Donc f~n converge uniformément sur K, et /-1 est simple.

En considérant f°° et /-°°, on associe alors à / un graphe F comme
indiqué dans l'introduction. Il possède évidemment les propriétés (1) et (2)
du théorème 1. La propriété (3) sera établie un peu plus tard.

Démonstration du théorème 1

Elle se décompose en deux parties : surjectivité et injectivité.

Surjectivité. Étant donné un graphe T possédant les trois propriétés
mentionnées dans le théorème, nous allons construire un homéomorphisme
simple fo tel que T(fo) soit isomorphe à T. Nous commençons par trois cas
élémentaires.

1. Si T est une boucle (un seul sommet, une seule arête), considérons
le décalage a: (k,n) *-> (k,n+1) sur X K x Z, où K est un ensemble de
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Cantor. La caractérisation rappelée ci-dessus assure que X est un ensemble

de Cantor. Le prolongement /o de a à X est simple, et T(fo) T.
2. Si r est un segment (une seule arête, à extrémités distinctes), on

considère encore le décalage sur X K x Z, mais on compactifie X en

lui ajoutant deux points à l'infini, avec comme systèmes fondamentaux de

voisinages K x [yz,+oo[ et Kx] — oo, — n] respectivement.
3. Si r se compose d'un sommet et de deux boucles attachées à ce

sommet, on considère le compactifié d'Alexandrav de (K \ {point}) x Z muni
du décalage.

Le cas général s'obtient en combinant ces trois modèles. On part d'un
nombre fini de points, identifiés aux sommets de T. Pour chaque arête orientée

v\V2, avec v\ ^ V2, on attache un modèle de type 2 en identifiant la source

avec v\ et le puits avec vi. A chaque sommet v on attache un modèle de

type 1 (resp. 3) s'il y a dans T une (resp. deux) boucles en v, en identifiant

l'unique point fixe avec v. La propriété (3) du théorème 1 garantit que l'on
obtient un espace de Cantor. Celui-ci est muni d'un homéomorphisme simple

/o vérifiant T(f0) T.

Injectivité. Soit / un homéomorphisme simple. Pour v G F, soit

Mr) {x$F \rco(x)v}

Pour v\ V2, soit

A(vuv2) {x £F| v2}

Les A(v)etA(v\. ih) qui ne sont pas vides forment une partition de C \F en

sous-espaces /-invariants ouverts et fermés, dont nous déterminons maintenant

l'adhérence dans C.

LEMME. Si A(v) ^ 0, on a A(v) A(v) U {u}. De même, si

Aivuv2)± 0, on a A{v\,v2) -Aiv\,v2)U{ui, }.

Démonstration. Soit V un voisinage ouvert et fermé de v tel que
V fi F {u}, et W {x G V | v ^ f(Y)}. Toute orbite de A(v) non
entièrement contenue dans V rencontre W. La convergence de f±n vers f±0°
étant uniforme sur le compact W, il existe un entier N tel que

A(V)CVU(J /»(HO-
\n\<N

On en déduit A(v) A(v) U {v}. La démonstration pour A(v1,^2) est

analogue, en considérant un voisinage de {v\,v2} ne contenant pas d'autre

point de F.
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Il résulte de ce lemme que T(f) possède la propriété (3) du théorème 1.

En effet, un w G F n'appartenant à aucune arête n'appartiendrait à aucun

A(y) ou C'est impossible puisque l'union des adhérences des A(v)
et des A(vyv?) est C tout entier.

Nous allons maintenant terminer la preuve du théorème 1 en montrant que,
étant donné F, tout homéomorphisme simple / tel que F(f) soit isomorphe
à r est topologiquement conjugué au /o construit plus haut.

Le lemme permet de supposer que /o est l'un des trois modèles ci-dessus,
la conjugaison cherchée pouvant être définie séparément sur chaque A(v) ou

A(vuv2).
Commençons par le cas où F est un segment. Appelons v\ la source

de /, et V2 le puits. Soit V un voisinage ouvert et fermé de V2 ne contenant

pas v\. Nous affirmons que l'ouvert U Un>0f"(V) est aussi fermé. En
effet, si W {x G /(F) | a ^ F}, on a

oo

u vu\Jfn(W),
n=0

et cette union est finie car fn converge vers V2 uniformément sur W.
Soit alors JC le compact U\f(U). Il rencontre chaque orbite de C \ F

exactement une fois. Soit p un homéomorphisme de JC sur le compact K
utilisé pour construire /o. On le prolonge en un homéomorphisme de C \ F
sur K x Z en posant p(fn(k)) (k,ri) pour k e JC, et il s'étend à C en une
conjugaison de / à /o.

Supposons maintenant que T a un seul sommet. Soit v l'unique point
fixe de /. Notons que, pour tout voisinage ouvert V de v, les intersections
avec C \ V de f^Lifn(V) et lX=i/-,?00 sont des ouverts. En effet, si
Y c C \ V est un voisinage compact d'un point i / l on a pour n assez
grand f~n(Y) C F et fn(Y) C F, et donc aussi Y C fn(V) et Y C/~W(F),

On suppose d'abord que F est une seule boucle, c'est-à-dire qu'il existe
un voisinage F de v ne contenant aucune orbite autre que {v} en totalité.
On choisit F ouvert et fermé, et on considère

oo

/c (C \ V) n f] f"(V).
n= 1

Il est fermé, ouvert, et rencontre toute orbite autre que {v} exactement une
fois. Comme précédemment, tout homéomorphisme de K, avec K s'étend en
une conjugaison de / avec le f0dumodèle 1.

Supposons enfin que / a un unique point fixe v et qu'il existe des orbites
arbitrairement proches de v. Soit V0 D Voo o un système
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fondamental de voisinages ouverts et fermés de v, avec V0 C. Posons

oo oo

Qp (vp \ Vp+ù n Ç]fnnn= 1 n= 1

pour p > 0, et Q= U Qp. Chaque Qp étant ouvert, fermé, et contenu dans

Vp, l'ensemble Q est ouvert, et son adhérence est Q U {u}. En particulier,
Q est homéomorphe à un ensemble de Cantor privé d'un point. De plus Q

rencontre chaque orbite autre que {v} en exactement un point (si x ^ y,
son orbite rencontre Qp, où p est le plus grand entier tel que l'orbite soit

contenue dans Vp). Tout homéomorphisme de Q sur K\{point} s'étend alors

en une conjugaison de / avec le /o du modèle 3.

Démonstration du corollaire
Seule la première assertion demande une démonstration. Soit A un

ensemble à n éléments. Il y a pn — 3n2n(n-1) manières d'attacher des

arêtes orientées aux éléments de A de façon que le graphe obtenu vérifie
les conditions (1) et (2) du théorème 1. Presque tous ces graphes vérifient

également la condition (3) : le nombre de ceux qui ne la vérifient pas est

majoré par npn— j, qui est un o{pn). Pour estimer N(ri) nous devons compter les

graphes à isomorphisme près, c'est à dire en faisant agir le groupe symétrique.

Puisque logpn ~ h2 log2 et log72! o(n2), on a bien \ogN{n) ~ n2\ogl.

Démonstration du théorème 2

Soit K un ensemble de Cantor, et L K x N. Nous distinguons dans L
le point à l'infini, noté oc, et Lq K x {0}. Soit a le prolongement à L du

décalage (k,ri) 1—» (&, n + 1), et a~l son inverse, défini sur L\L0.
Considérons maintenant M Lx {—1,1} x N. Notons M — M U {u} son

compactifié d'Alexandrov, M~ L x {—1} x {0}, et M+ L x {1} x {0}.
Nous définissons un homéomorphisme ip de M \ M+ sur M \ M~ par :

'
ip(£. — l.n) (a~l(£). — 1. n + 1) pour £ G L \ Lo

(p(£, — 1 ,«).= {£, 1 ,n) pour £ G L0
<

1, n) — (o(£}, 1, n — 1) pour n > 0

^
(p(u) u

La dynamique de p est analogue à celle d'un champ de vecteurs du plan dans

un secteur d'une selle. Le point v est fixe. L'orbite positive de (00,—1,0)
tend vers v, de même que l'orbite négative de (00,1,0). Si £ ^ 00, l'orbite
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d'un point (£,—1,0) G M~ aboutit à M+, après un nombre d'itérations qui

tend vers l'infini quand i —» oo dans L.
Soit maintenant q > 1 un entier. Soit P l'union disjointejiej^ exemplaires

Mi,... ,Mq de M, et de deux exemplaires L~, L+ de L x N. Notons que

les sous-espaces Mf Mf de M/, ainsi que L x {0} C L et L x {0} C L+,
sont des exemplaires de L. Il existe donc des homéomorphismes canoniques

entre ces espaces.
Nous définissons un homéomorphisme 6 sur P de la manière suivante.

Sur chaque exemplaire M/, il est égal à ^ en dehors de Mf. Sur Mf, pour

i < q, il coïncide avec l'homéomorphisme naturel de Mf sur Mfj_j, et sur

Mf c'est l'homéomorphisme de Mf avec L x {0} C L+. On définit 0 sur

L+ comme le prolongement du décalage (£, n) (£, « + 1) de L x N, sur

L~ \ (L x {0}) comme le prolongement de l'inverse du décalage, et enfin sur

L x {0} C L~ comme l'homéomorphisme naturel de L x {0} avec Mf.
Les points fixes de 0 sont une source v~ (le point à l'infini de L-),

un puits (le point à l'infini de L+), et q "selles" v\,..., vq (une dans

chaque M/). Toutes les orbites infinies de 9 vont de v~ à L, sauf q-\- 1

orbites "singulières" qui vont respectivement de v~ à tq, de Vf à i>/+i
1 < i < q — 1 et de vq à v+.

Ces q + 1 orbites sont mutuellement contiguës, au sens suivant : nous

disons que les orbites de deux points x,y sont contiguës s'il existe une suite

xp x, et des entiers np, avec 6np(xp) —> y. Les autres orbites infinies de 6

ne sont contiguës qu'à elles-mêmes. Les orbites singulières de 0 sont en fait
les points de non-séparation de l'espace des orbites infinies de 0.

Identifiant entre eux les q + 2 points fixes de 0, nous obtenons pour chaque

q > 1 un homéomorphisme fq d'un ensemble de Cantor, possédant un unique
point fixe v et vérifiant les conditions du théorème 2. Ces homéomorphismes
ne sont pas conjugués entre eux : ils sont distingués par la contiguïté.

Pour obtenir une infinité non dénombrable, nous combinons les fq. Soit
Q une partie non vide de N, avec 0 ^ Q. Pour chaque q G <2, soit Cq un
ensemble de Cantor muni de l'homéomorphisme fq. Notons cq le point fixe
de fq. Considérons, sur le compactifié d'Alexandrov de l'union disjointe des

Cf \{C/}, l'homéomorphisme fQ qui coïncide avec fq sur chaque C^\{c^}. Il
vérifie les conditions du théorème 2. Sur l'ensemble des orbites infinies de

la contiguïté est une relation d'équivalence. Il y a une classe d'équivalence à

q + 1 éléments pour chaque q G Q, et les autres classes ont un seul élément.
Donc /q n'est pas conjugué à fQ> si Q ^ Q'.
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