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HOMÉOMORPHISMES DYNAMIQUEMENT SIMPLES

DE L'ENSEMBLE DE CANTOR

par Gilbert Levitt

Abstract. We classify, up to topological conjugacy, self-homeomorphisms / of
a Cantor set C which are simple in the following sense : the fixed point set F of f
is finite, non-empty, and the sequence fn converges uniformly on compact subsets of

C\F. If the uniformity requirement is dropped, uncountably many different dynamics

arise.
We discuss (without proofs) results by Levitt-Lustig about homeomorphisms of C

induced by automorphisms of free groups.

Introduction

Les homéomorphismes d'un ensemble de Cantor C dans lui-même peuvent
avoir une dynamique extrêmement riche et compliquée. Nous considérons

ici les homéomorphismes /: C — C qui sont simples, au sens suivant:

l'ensemble F des points fixes de / est fini, et la suite fn converge
uniformément sur tout compact disjoint de F. On vérifie qu'alors les deux

limites /_3C(a') — lim„_++3C/~%t) et /°°(.t) limn^+00fn(x) existent, et

appartiennent à F.
Tout automorphisme a d'un groupe libre /A de rang fini k > 2 induit

un homéomorphisme da sur l'ensemble de Cantor dF^ des bouts de F^. On

renvoie à [7], et à la deuxième partie du présent texte, pour une discussion
de la dynamique de da. Pour "la plupart" des a £ AutFk, l'homéomor-

phisme da a une dynamique Nord-Sud (il est simple, et F se compose de

deux points : une source et un puits). Notre question d'origine était de savoir
si toutes ces dynamiques sont conjuguées (topologiquement, ou de manière

Holder).
Notre résultat principal est une classification des homéomorphismes

simples, à conjugaison topologique près. Plus généralement, on pourrait classifier
de manière analogue les homéomorphismes dont une puissance est simple.
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THÉORÈME 1. Soit C un ensemble de Cantor: Il existe une bijection entre
les classes de conjugaison d'homéomorphismes simples de C, et les classes

d'isomorphisme de graphes finis orientés T tels que :

(1) Etant donné deux sommets distincts V\,V2, il y a au plus une arête
orientée allant de v\ à V2.

(2) Etant donné un sommet v, il y a au plus deux arêtes dont les deux

extrémités sont égales à v.

(3) Tout sommet de T appartient à au moins une arête.

Les graphes seront toujours supposés non vides, pas forcément connexes.
Deux graphes orientés sont isomorphes si et seulement si il existe entre eux

un isomorphisme préservant l'orientation.
Le graphe T — T(f) associé à un homéomorphisme simple / est construit

comme suit. L'ensemble de ses sommets est F. Si v\ yl V2, on place une arête

orientée allant de v\ à V2 si et seulement si il existe x £ F avec f~°°(x) v\
et f°°(x) v%. Étant donné v G F, on place une arête faisant une boucle en

v si et seulement si il existe x ^ F avec f~GO(x) =f°°(x) v. On place une
seconde boucle en v si tout voisinage de v dans C contient la totalité d'une
orbite {fn(x); « G Z}, avec x ^ F (présence d'un "pétale").

On déduit du théorème 1 :

Corollaire.
(i) Soit N(ri) le nombre de classes de conjugaison d'homéomorphismes

simples de C possédant n points fixes. On a \ogN{ri) ~ n2 log 2 quand
n —» +oo.

(ii) Si f est simple, il est conjugué à fp pour tout p >2.
(iii) Tous les homéomorphismes de C ayant une dynamique Nord-Sud sont

topologiquement conjugués les uns aux autres.

Rappelons que / a une dynamique Nord-Sud (parfois appelée loxo-

dromique) s'il est simple et si F se compose de deux points, une source

v~ et un puits v+ : on a limn^+00f±n(x) v±, uniformément sur tout

compact de C \ {vT}.
On notera qu'il n'y a pas unicité topologique de la dynamique Nord-Sud

sur la sphère Sn (l'orientation peut être préservée ou renversée). Si d'autre

part n > 2 et /: Sn —> Sn est simple avec un seul point fixe v, alors il
existe toujours des orbites arbitrairement proches de v (en effet le quotient
de par l'action de / n'est pas compact, car S/î\{u} n'a qu'un bout).
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Si l'on retire la condition d'uniformité de la définition d'un homéomor-

phisme simple, la dynamique peut devenir beaucoup plus complexe. Nous

montrerons :

THÉORÈME 2. Soit v un point de C .11 existe une infinité non dénombrable

d'homéomorphismes /: C —> C, deux à deux non conjugués, tels que

lim fn(x) lim f~n(x) v
/7—>+oo n—»+00

pour tout x G C.

Démonstrations

Rappelons que l'ensemble de Cantor C est caractérisé à homéomorphisme

près comme étant compact, métrisable, parfait, totalement discontinu (voir par
exemple [5]). En particulier toute partie non vide, ouverte et fermée de C

est homéomorphe à C. Tout point de C possède un système fondamental de

voisinages ouverts et fermés. Si X est localement compact mais pas compact,
on notera X=IU {point} son compactifié d'Alexandrov.

Soit f\C — C un homéomorphisme simple. La fonction f°°
limw_>+00/" existe, et est continue sur C\F. Elle prend bien sûr ses valeurs
dans F. Montrons que/-1 est simple. Soit K un compact de C\F. Soit V un

voisinage ouvert de F, disjoint de K. Pour n grand on a fn{C\V) C V, d'où

C\V C f~n(V) et f~n(C \ V) C y. On en déduit f~n(K) C f~n(C \ V) C V.
Donc f~n converge uniformément sur K, et /-1 est simple.

En considérant f°° et /-°°, on associe alors à / un graphe F comme
indiqué dans l'introduction. Il possède évidemment les propriétés (1) et (2)
du théorème 1. La propriété (3) sera établie un peu plus tard.

Démonstration du théorème 1

Elle se décompose en deux parties : surjectivité et injectivité.

Surjectivité. Étant donné un graphe T possédant les trois propriétés
mentionnées dans le théorème, nous allons construire un homéomorphisme
simple fo tel que T(fo) soit isomorphe à T. Nous commençons par trois cas
élémentaires.

1. Si T est une boucle (un seul sommet, une seule arête), considérons
le décalage a: (k,n) *-> (k,n+1) sur X K x Z, où K est un ensemble de
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