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HOMÉOMORPHISMES DYNAMIQUEMENT SIMPLES

DE L'ENSEMBLE DE CANTOR

par Gilbert Levitt

Abstract. We classify, up to topological conjugacy, self-homeomorphisms / of
a Cantor set C which are simple in the following sense : the fixed point set F of f
is finite, non-empty, and the sequence fn converges uniformly on compact subsets of

C\F. If the uniformity requirement is dropped, uncountably many different dynamics

arise.
We discuss (without proofs) results by Levitt-Lustig about homeomorphisms of C

induced by automorphisms of free groups.

Introduction

Les homéomorphismes d'un ensemble de Cantor C dans lui-même peuvent
avoir une dynamique extrêmement riche et compliquée. Nous considérons

ici les homéomorphismes /: C — C qui sont simples, au sens suivant:

l'ensemble F des points fixes de / est fini, et la suite fn converge
uniformément sur tout compact disjoint de F. On vérifie qu'alors les deux

limites /_3C(a') — lim„_++3C/~%t) et /°°(.t) limn^+00fn(x) existent, et

appartiennent à F.
Tout automorphisme a d'un groupe libre /A de rang fini k > 2 induit

un homéomorphisme da sur l'ensemble de Cantor dF^ des bouts de F^. On

renvoie à [7], et à la deuxième partie du présent texte, pour une discussion
de la dynamique de da. Pour "la plupart" des a £ AutFk, l'homéomor-

phisme da a une dynamique Nord-Sud (il est simple, et F se compose de

deux points : une source et un puits). Notre question d'origine était de savoir
si toutes ces dynamiques sont conjuguées (topologiquement, ou de manière

Holder).
Notre résultat principal est une classification des homéomorphismes

simples, à conjugaison topologique près. Plus généralement, on pourrait classifier
de manière analogue les homéomorphismes dont une puissance est simple.
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THÉORÈME 1. Soit C un ensemble de Cantor: Il existe une bijection entre
les classes de conjugaison d'homéomorphismes simples de C, et les classes

d'isomorphisme de graphes finis orientés T tels que :

(1) Etant donné deux sommets distincts V\,V2, il y a au plus une arête
orientée allant de v\ à V2.

(2) Etant donné un sommet v, il y a au plus deux arêtes dont les deux

extrémités sont égales à v.

(3) Tout sommet de T appartient à au moins une arête.

Les graphes seront toujours supposés non vides, pas forcément connexes.
Deux graphes orientés sont isomorphes si et seulement si il existe entre eux

un isomorphisme préservant l'orientation.
Le graphe T — T(f) associé à un homéomorphisme simple / est construit

comme suit. L'ensemble de ses sommets est F. Si v\ yl V2, on place une arête

orientée allant de v\ à V2 si et seulement si il existe x £ F avec f~°°(x) v\
et f°°(x) v%. Étant donné v G F, on place une arête faisant une boucle en

v si et seulement si il existe x ^ F avec f~GO(x) =f°°(x) v. On place une
seconde boucle en v si tout voisinage de v dans C contient la totalité d'une
orbite {fn(x); « G Z}, avec x ^ F (présence d'un "pétale").

On déduit du théorème 1 :

Corollaire.
(i) Soit N(ri) le nombre de classes de conjugaison d'homéomorphismes

simples de C possédant n points fixes. On a \ogN{ri) ~ n2 log 2 quand
n —» +oo.

(ii) Si f est simple, il est conjugué à fp pour tout p >2.
(iii) Tous les homéomorphismes de C ayant une dynamique Nord-Sud sont

topologiquement conjugués les uns aux autres.

Rappelons que / a une dynamique Nord-Sud (parfois appelée loxo-

dromique) s'il est simple et si F se compose de deux points, une source

v~ et un puits v+ : on a limn^+00f±n(x) v±, uniformément sur tout

compact de C \ {vT}.
On notera qu'il n'y a pas unicité topologique de la dynamique Nord-Sud

sur la sphère Sn (l'orientation peut être préservée ou renversée). Si d'autre

part n > 2 et /: Sn —> Sn est simple avec un seul point fixe v, alors il
existe toujours des orbites arbitrairement proches de v (en effet le quotient
de par l'action de / n'est pas compact, car S/î\{u} n'a qu'un bout).
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Si l'on retire la condition d'uniformité de la définition d'un homéomor-

phisme simple, la dynamique peut devenir beaucoup plus complexe. Nous

montrerons :

THÉORÈME 2. Soit v un point de C .11 existe une infinité non dénombrable

d'homéomorphismes /: C —> C, deux à deux non conjugués, tels que

lim fn(x) lim f~n(x) v
/7—>+oo n—»+00

pour tout x G C.

Démonstrations

Rappelons que l'ensemble de Cantor C est caractérisé à homéomorphisme

près comme étant compact, métrisable, parfait, totalement discontinu (voir par
exemple [5]). En particulier toute partie non vide, ouverte et fermée de C

est homéomorphe à C. Tout point de C possède un système fondamental de

voisinages ouverts et fermés. Si X est localement compact mais pas compact,
on notera X=IU {point} son compactifié d'Alexandrov.

Soit f\C — C un homéomorphisme simple. La fonction f°°
limw_>+00/" existe, et est continue sur C\F. Elle prend bien sûr ses valeurs
dans F. Montrons que/-1 est simple. Soit K un compact de C\F. Soit V un

voisinage ouvert de F, disjoint de K. Pour n grand on a fn{C\V) C V, d'où

C\V C f~n(V) et f~n(C \ V) C y. On en déduit f~n(K) C f~n(C \ V) C V.
Donc f~n converge uniformément sur K, et /-1 est simple.

En considérant f°° et /-°°, on associe alors à / un graphe F comme
indiqué dans l'introduction. Il possède évidemment les propriétés (1) et (2)
du théorème 1. La propriété (3) sera établie un peu plus tard.

Démonstration du théorème 1

Elle se décompose en deux parties : surjectivité et injectivité.

Surjectivité. Étant donné un graphe T possédant les trois propriétés
mentionnées dans le théorème, nous allons construire un homéomorphisme
simple fo tel que T(fo) soit isomorphe à T. Nous commençons par trois cas
élémentaires.

1. Si T est une boucle (un seul sommet, une seule arête), considérons
le décalage a: (k,n) *-> (k,n+1) sur X K x Z, où K est un ensemble de
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Cantor. La caractérisation rappelée ci-dessus assure que X est un ensemble

de Cantor. Le prolongement /o de a à X est simple, et T(fo) T.
2. Si r est un segment (une seule arête, à extrémités distinctes), on

considère encore le décalage sur X K x Z, mais on compactifie X en

lui ajoutant deux points à l'infini, avec comme systèmes fondamentaux de

voisinages K x [yz,+oo[ et Kx] — oo, — n] respectivement.
3. Si r se compose d'un sommet et de deux boucles attachées à ce

sommet, on considère le compactifié d'Alexandrav de (K \ {point}) x Z muni
du décalage.

Le cas général s'obtient en combinant ces trois modèles. On part d'un
nombre fini de points, identifiés aux sommets de T. Pour chaque arête orientée

v\V2, avec v\ ^ V2, on attache un modèle de type 2 en identifiant la source

avec v\ et le puits avec vi. A chaque sommet v on attache un modèle de

type 1 (resp. 3) s'il y a dans T une (resp. deux) boucles en v, en identifiant

l'unique point fixe avec v. La propriété (3) du théorème 1 garantit que l'on
obtient un espace de Cantor. Celui-ci est muni d'un homéomorphisme simple

/o vérifiant T(f0) T.

Injectivité. Soit / un homéomorphisme simple. Pour v G F, soit

Mr) {x$F \rco(x)v}

Pour v\ V2, soit

A(vuv2) {x £F| v2}

Les A(v)etA(v\. ih) qui ne sont pas vides forment une partition de C \F en

sous-espaces /-invariants ouverts et fermés, dont nous déterminons maintenant

l'adhérence dans C.

LEMME. Si A(v) ^ 0, on a A(v) A(v) U {u}. De même, si

Aivuv2)± 0, on a A{v\,v2) -Aiv\,v2)U{ui, }.

Démonstration. Soit V un voisinage ouvert et fermé de v tel que
V fi F {u}, et W {x G V | v ^ f(Y)}. Toute orbite de A(v) non
entièrement contenue dans V rencontre W. La convergence de f±n vers f±0°
étant uniforme sur le compact W, il existe un entier N tel que

A(V)CVU(J /»(HO-
\n\<N

On en déduit A(v) A(v) U {v}. La démonstration pour A(v1,^2) est

analogue, en considérant un voisinage de {v\,v2} ne contenant pas d'autre

point de F.
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Il résulte de ce lemme que T(f) possède la propriété (3) du théorème 1.

En effet, un w G F n'appartenant à aucune arête n'appartiendrait à aucun

A(y) ou C'est impossible puisque l'union des adhérences des A(v)
et des A(vyv?) est C tout entier.

Nous allons maintenant terminer la preuve du théorème 1 en montrant que,
étant donné F, tout homéomorphisme simple / tel que F(f) soit isomorphe
à r est topologiquement conjugué au /o construit plus haut.

Le lemme permet de supposer que /o est l'un des trois modèles ci-dessus,
la conjugaison cherchée pouvant être définie séparément sur chaque A(v) ou

A(vuv2).
Commençons par le cas où F est un segment. Appelons v\ la source

de /, et V2 le puits. Soit V un voisinage ouvert et fermé de V2 ne contenant

pas v\. Nous affirmons que l'ouvert U Un>0f"(V) est aussi fermé. En
effet, si W {x G /(F) | a ^ F}, on a

oo

u vu\Jfn(W),
n=0

et cette union est finie car fn converge vers V2 uniformément sur W.
Soit alors JC le compact U\f(U). Il rencontre chaque orbite de C \ F

exactement une fois. Soit p un homéomorphisme de JC sur le compact K
utilisé pour construire /o. On le prolonge en un homéomorphisme de C \ F
sur K x Z en posant p(fn(k)) (k,ri) pour k e JC, et il s'étend à C en une
conjugaison de / à /o.

Supposons maintenant que T a un seul sommet. Soit v l'unique point
fixe de /. Notons que, pour tout voisinage ouvert V de v, les intersections
avec C \ V de f^Lifn(V) et lX=i/-,?00 sont des ouverts. En effet, si
Y c C \ V est un voisinage compact d'un point i / l on a pour n assez
grand f~n(Y) C F et fn(Y) C F, et donc aussi Y C fn(V) et Y C/~W(F),

On suppose d'abord que F est une seule boucle, c'est-à-dire qu'il existe
un voisinage F de v ne contenant aucune orbite autre que {v} en totalité.
On choisit F ouvert et fermé, et on considère

oo

/c (C \ V) n f] f"(V).
n= 1

Il est fermé, ouvert, et rencontre toute orbite autre que {v} exactement une
fois. Comme précédemment, tout homéomorphisme de K, avec K s'étend en
une conjugaison de / avec le f0dumodèle 1.

Supposons enfin que / a un unique point fixe v et qu'il existe des orbites
arbitrairement proches de v. Soit V0 D Voo o un système
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fondamental de voisinages ouverts et fermés de v, avec V0 C. Posons

oo oo

Qp (vp \ Vp+ù n Ç]fnnn= 1 n= 1

pour p > 0, et Q= U Qp. Chaque Qp étant ouvert, fermé, et contenu dans

Vp, l'ensemble Q est ouvert, et son adhérence est Q U {u}. En particulier,
Q est homéomorphe à un ensemble de Cantor privé d'un point. De plus Q

rencontre chaque orbite autre que {v} en exactement un point (si x ^ y,
son orbite rencontre Qp, où p est le plus grand entier tel que l'orbite soit

contenue dans Vp). Tout homéomorphisme de Q sur K\{point} s'étend alors

en une conjugaison de / avec le /o du modèle 3.

Démonstration du corollaire
Seule la première assertion demande une démonstration. Soit A un

ensemble à n éléments. Il y a pn — 3n2n(n-1) manières d'attacher des

arêtes orientées aux éléments de A de façon que le graphe obtenu vérifie
les conditions (1) et (2) du théorème 1. Presque tous ces graphes vérifient

également la condition (3) : le nombre de ceux qui ne la vérifient pas est

majoré par npn— j, qui est un o{pn). Pour estimer N(ri) nous devons compter les

graphes à isomorphisme près, c'est à dire en faisant agir le groupe symétrique.

Puisque logpn ~ h2 log2 et log72! o(n2), on a bien \ogN{n) ~ n2\ogl.

Démonstration du théorème 2

Soit K un ensemble de Cantor, et L K x N. Nous distinguons dans L
le point à l'infini, noté oc, et Lq K x {0}. Soit a le prolongement à L du

décalage (k,ri) 1—» (&, n + 1), et a~l son inverse, défini sur L\L0.
Considérons maintenant M Lx {—1,1} x N. Notons M — M U {u} son

compactifié d'Alexandrov, M~ L x {—1} x {0}, et M+ L x {1} x {0}.
Nous définissons un homéomorphisme ip de M \ M+ sur M \ M~ par :

'
ip(£. — l.n) (a~l(£). — 1. n + 1) pour £ G L \ Lo

(p(£, — 1 ,«).= {£, 1 ,n) pour £ G L0
<

1, n) — (o(£}, 1, n — 1) pour n > 0

^
(p(u) u

La dynamique de p est analogue à celle d'un champ de vecteurs du plan dans

un secteur d'une selle. Le point v est fixe. L'orbite positive de (00,—1,0)
tend vers v, de même que l'orbite négative de (00,1,0). Si £ ^ 00, l'orbite
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d'un point (£,—1,0) G M~ aboutit à M+, après un nombre d'itérations qui

tend vers l'infini quand i —» oo dans L.
Soit maintenant q > 1 un entier. Soit P l'union disjointejiej^ exemplaires

Mi,... ,Mq de M, et de deux exemplaires L~, L+ de L x N. Notons que

les sous-espaces Mf Mf de M/, ainsi que L x {0} C L et L x {0} C L+,
sont des exemplaires de L. Il existe donc des homéomorphismes canoniques

entre ces espaces.
Nous définissons un homéomorphisme 6 sur P de la manière suivante.

Sur chaque exemplaire M/, il est égal à ^ en dehors de Mf. Sur Mf, pour

i < q, il coïncide avec l'homéomorphisme naturel de Mf sur Mfj_j, et sur

Mf c'est l'homéomorphisme de Mf avec L x {0} C L+. On définit 0 sur

L+ comme le prolongement du décalage (£, n) (£, « + 1) de L x N, sur

L~ \ (L x {0}) comme le prolongement de l'inverse du décalage, et enfin sur

L x {0} C L~ comme l'homéomorphisme naturel de L x {0} avec Mf.
Les points fixes de 0 sont une source v~ (le point à l'infini de L-),

un puits (le point à l'infini de L+), et q "selles" v\,..., vq (une dans

chaque M/). Toutes les orbites infinies de 9 vont de v~ à L, sauf q-\- 1

orbites "singulières" qui vont respectivement de v~ à tq, de Vf à i>/+i
1 < i < q — 1 et de vq à v+.

Ces q + 1 orbites sont mutuellement contiguës, au sens suivant : nous

disons que les orbites de deux points x,y sont contiguës s'il existe une suite

xp x, et des entiers np, avec 6np(xp) —> y. Les autres orbites infinies de 6

ne sont contiguës qu'à elles-mêmes. Les orbites singulières de 0 sont en fait
les points de non-séparation de l'espace des orbites infinies de 0.

Identifiant entre eux les q + 2 points fixes de 0, nous obtenons pour chaque

q > 1 un homéomorphisme fq d'un ensemble de Cantor, possédant un unique
point fixe v et vérifiant les conditions du théorème 2. Ces homéomorphismes
ne sont pas conjugués entre eux : ils sont distingués par la contiguïté.

Pour obtenir une infinité non dénombrable, nous combinons les fq. Soit
Q une partie non vide de N, avec 0 ^ Q. Pour chaque q G <2, soit Cq un
ensemble de Cantor muni de l'homéomorphisme fq. Notons cq le point fixe
de fq. Considérons, sur le compactifié d'Alexandrov de l'union disjointe des

Cf \{C/}, l'homéomorphisme fQ qui coïncide avec fq sur chaque C^\{c^}. Il
vérifie les conditions du théorème 2. Sur l'ensemble des orbites infinies de

la contiguïté est une relation d'équivalence. Il y a une classe d'équivalence à

q + 1 éléments pour chaque q G Q, et les autres classes ont un seul élément.
Donc /q n'est pas conjugué à fQ> si Q ^ Q'.
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Automorphismes DES GROUPES LIBRES

Nous exposons ici sans démonstration quelques résultats de [7] sur la

dynamique des homéomorphismes de C provenant des automorphismes de

groupes libres. Certains énoncés s'étendent aux homéomorphismes obtenus

sur le bord d'un groupe hyperbolique arbitraire.

Soit donc F* un groupe libre de rang k> 2. On lui associe un ensemble
de Cantor C dFk, que l'on peut voir comme son espace de bouts, ou son
bord en tant que groupe hyperbolique [1, 3, 4, 10]. Plus concrètement, si l'on
choisit une base {g^ *.., g^}, on considère les mots réduits infinis gflgf*...
où chaque £; vaut ±1. Une suite Xn, avec Xn G FkUdFk, converge vers
X G dFk si, pour tout p, la p-ième lettre de Xn coïncide avec celle de X

pour n assez grand.

Tout automorphisme a de Fk définit un homéomorphisme f — da de C.
Si par exemple a est la conjugaison ig par g G Fk, alors / est simplement
l'action naturelle de g sur C par translation à gauche (la translation à droite

par g~l est à distance bornée de l'identité dans Fk, donc induit l'identité
sur le bord). On montre facilement dans ce cas que / a une dynamique
Nord-Sud, avec puits g°° limn^00 gn et source g~°° lim^^ g~n,

pourvu que g ne soit pas trivial. Nous allons voir une généralisation de

ce phénomène.

Le groupe des automorphismes extérieurs Out Fk est le quotient du groupe
d'automorphismes AutF* par la relation d'équivalence qui identifie a et igoa.
Nous voyons O G Out F* comme un ensemble d'automorphismes et, comme
Nielsen [9], nous disons que a,ß G O sont isogrédients s'il existe g G Fk tel

que ß ig o ao (ig)~l. Soit S(O) l'ensemble des classes d'isogrédience de

représentants de O. Si par exemple O est l'identité, ses représentants sont les

conjugaisons ig et «S(O) s'identifie naturellement aux classes de conjugaison
de Fk.

Deux automorphismes isogrédients a, ß produisent des homéomorphismes

da,dß topologiquement conjugués. Nous pouvons donc parler de la

dynamique d'une classe d'isogrédience 5 G <S(O).

THÉORÈME. Soit O G OutF*, avec k > 2. L'ensemble <S(d>) des classes

d'isogrédience de représentants de O est infini. Tout s G <S(0), sauf au plus
un nombre fini, a une dynamique Nord-Sud sur C.

Intéressons-nous maintenant à la dynamique d'un da quelconque.
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THÉORÈME. Pour tout a G AutF*, V homéomorphisme da a au moins

deux points périodiques de période < 2k. Les périodes des points périodiques

de da sont bornées par un nombre Mk ne dépendant que de h, avec

log M* yjk logk quand k —> oo.

Si a est défini par a{gi) gz+1 pour 1 < i < k — l et a(gk) gx 1, tout

point de C est périodique de période 2k. Si a est défini par a{gi) gcr(/), où

a est une permutation de {1,. la période d'un point générique
de C est l'ordre de cr. La quantité yjk log k est un équivalent du logarithme
de l'ordre maximal d'un élément de torsion dans ou GL(£, Z), ou AutF^
(voir [6], [8]).

Cherchons à quelle condition da est simple. Une condition nécessaire est

que pour tout n > 1 le sous-groupe fixe Fixa77 {g G Fk \ an{g) g} soit

trivial ou cyclique, car sinon son bord forme un ensemble de Cantor de points
périodiques.

Nous laissons de côté le cas où a laisse invariant un sous-groupe cyclique,
mentionnant seulement l'automorphisme a i—» a, b f—» aba de F2 ; pour cet

exemple da est simple, le graphe associé par le théorème 1 étant un cercle

avec deux sommets et deux arêtes.

Supposons donc Fixa77 trivial pour tout n. On sait qu'alors les points
périodiques de da sont des sources ou des puits, et qu'il y a au plus 2k

points de chaque type [2].

Conjecture. Soit a G AutF^. Si le sous-groupe fixe de a77 est trivial
pour tout n > 1, alors une puissance de da est simple.

Le graphe associé à une puissance simple de da est un graphe bipartite,
toute arête allant d'une source à un puits. Nous ne savons pas si tous les

graphes bipartites finis peuvent être obtenus de cette façon.

La conclusion de la conjecture revient à dire que tout compact da -invariant
non vide K C. C contient un point périodique. Énoncée sous cette forme, la
conjecture a un sens pour un automorphisme a quelconque.

La conjecture ci-dessus est vraie si a est irréductible à puissances
irréductibles (aucune puissance de a n'envoie un facteur libre de Fk sur
un conjugué de lui-même). D'autre part, tout compact da -invariant K C C
contenant un point de la forme g°° contient un point périodique. Cela se
déduit du résultat suivant:
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THÉORÈME. Soit a G AutF^, et g G Fk non périodique. Il existe un
entier q < Mk tel que la suite (aq)n(g) converge vers un point fixe de daq.

Considérons maintenant la vitesse de convergence vers les points fixes (ou

périodiques) de da. On définit une distance sur dFk par d(X,Y) e~c,
où X, Y sont deux mots réduits infinis et c est la longueur de leur plus
grand segment initial commun (voir [3]). Lorsque l'on considère deux bases

différentes de F*, les distances d\, d2 ainsi associées sont Hôlder-équivalentes :

il existe A > 0 et ß G ]0,1] tels que A~]dl/ß < d2 < Adß.

On a ainsi défini une structure Holder canonique sur dFk (voir [3, 1]). Les

homéomorphismes da sont Holder; lorsqu'ils sont topologiquement conjugués
(par exemple si ce sont des homéomorphismes Nord-Sud), on peut se demander
s'ils sont Hôlder-conjugués.

Remarquons d'abord que, si g et h sont des éléments non triviaux de

Fk, alors les actions de g et h sur dFk sont des homéomorphismes Hôlder-
conjugués (on notera que, pour un groupe hyperbolique arbitraire, les actions
de deux éléments d'ordre infini ne sont même pas forcément topologiquement
conjuguées).

Montrons rapidement ce fait. Le résultat est vrai si h a(g) avec

a G AutF^, car da est une conjugaison Holder. Il l'est aussi si g et h sont
des mots cycliquement réduits de même longueur: en effet les translations à

gauche par g et h sont conjuguées en tant qu'isométries de l'arbre de Cayley
de Fk, et une isométrie de cet arbre induit un homéomorphisme Holder sur

dFk. Notant g\, g>i deux éléments d'une base de Fk, on peut ainsi conjuguer
de façon Holder l'action d'un g quelconque à celle d'un élément cycliquement
réduit, puis à celle d'un élément de la forme giçfc, puis à celle de g\.

Le théorème suivant fournira une obstruction à la conjugaison Holder.

THÉORÈME. Soit a G Aut Fk tel que da possède un point fixe attractif X.
Il existe un nombre algébrique À > 1 tel que

lim - log f— log d(dan(Y), X)) log À
n-++oo n V /

pour Y proche de X dans dFk (et pour toute distance d sur dFk définissant
la structure Holder).

Pour À > 1, la conclusion signifie que les orbites s'approchent de X à

peu près à la même vitesse que pour l'application ihia : [0,1[—» [0,1[.
Lorsque a est induit par un homéomorphisme pseudo-Anosov ip d'une surface

compacte à bord, le À obtenu est le coefficient de dilatation de p.
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Le nombre À associé au point fixe X est un invariant de conjugaison

Holder, tout comme en dynamique différentiable les valeurs propres de la

matrice jacobienne sont un invariant de conjugaison C1.
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