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HOMEOMORPHISMES DYNAMIQUEMENT SIMPLES
DE L’ENSEMBLE DE CANTOR

par Gilbert LEVITT

ABSTRACT. We classify, up to topological conjugacy, self-homeomorphisms f of
a Cantor set C which are simple in the following sense: the fixed point set F of f
is finite, non-empty, and the sequence f" converges uniformly on compact subsets of
C \ F. If the uniformity requirement is dropped, uncountably many different dynamics
arise.

We discuss (without proofs) results by Levitt-Lustig about homeomorphisms of C
induced by automorphisms of free groups.

INTRODUCTION

Les homéomorphismes d’un ensemble de Cantor C dans lui-méme peuvent
avoir une dynamique extrémement riche et compliquée. Nous considérons
ici les homéomorphismes f: C — C qui sont simples, au sens suivant:
Pensemble F des points fixes de f est fini, et la suite f" converge
uniformément sur tout compact disjoint de F. On vérifie qu’alors les deux
limites f~>(x) = lim,— o f () et () = lim,—. o f"(x) existent, et
appartiennent a F.

Tout automorphisme « d’un groupe libre F; de rang fini k& > 2 induit
un homéomorphisme da sur I’ensemble de Cantor OF des bouts de F. On
renvoie a [7], et a la deuxieme partie du présent texte, pour une discussion
de la dynamique de Ja. Pour “la plupart” des o &€ AutF;, ’homéomor-
phisme Oa a une dynamique Nord-Sud (il est simple, et ' se compose de
deux points: une source et un puits). Notre question d’origine était de savoir
si toutes ces dynamiques sont conjuguées (topologiquement, ou de manicre
Holder).

Notre résultat principal est une classification des homéomorphismes sim-
ples, a conjugaison topologique pres. Plus généralement, on pourrait classifier
de maniere analogue les homé€omorphismes dont une puissance est simple.

h
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THEOREME 1. Soitr C un ensemble de Cantor. Il existe une bijection entre
les classes de conjugaison d’ homéomorphismes simples de C, et les classes
d’isomorphisme de graphes finis orientés T tels que :

(1) Etant donné deux sommets distincts vy, vy, il y a au plus une aréte
orientée allant de v, a v,.

(2) Etant donné un sommet v, il y a au plus deux arétes dont les deux
extrémités sont égales a v.

(3) Tout sommet de 1" appartient a au moins une aréte.

Les graphes seront toujours supposés non vides, pas forcément connexes.
Deux graphes orientés sont isomorphes si et seulement si il existe entre eux
un isomorphisme préservant 1’orientation.

Le graphe I' =I'(f) associé a un homéomorphisme simple f est construit
comme suit. [’ensemble de ses sommets est F'. Si v; # v,, on place une aréte
orientée allant de v; a v, si et seulement si il existe x ¢ F avec f~°°(x) = v
et f°x) =v,. Etant donné v € F , on place une aréte faisant une boucle: en
v si et seulement si il existe x ¢ F avec f~°°(x) = f°°(x) = v. On place une
seconde boucle en v si tout voisinage de v dans C contient la totalité d’une
orbite {f"(x); n € Z}, avec x ¢ F (présence d’un “pétale”).

On déduit du théoreme 1:

COROLLAIRE.

(1) Soit N(n) le nombre de classes de conjugaison d homéomorphismes
simples de C possédant n points fixes. On a logN(n) ~ n*log2 quand
n— +00.

(i) Si f est simple, il est conjugué a fP pour tout p > 2.

(ii1) Tous les homéomorphismes de C ayant une dynamique Nord-Sud sont
topologiquement conjugués les uns aux autres.

Rappelons que f a une dynamique Nord-Sud (parfois appelée loxo-
dromique) s’il est simple et si /' se compose de deux points, une source
v~ et un puits vt : on a lim,_ o fT(x) = v*
compact de C \ {vT}.

On notera qu’il n’y a pas unicité topologique de la dynamique Nord-Sud
sur la sphere S” (Dorientation peut €tre préservée ou renversée). Si d’autre
part n > 2 et f: 8" — §" est simple avec un seul point fixe v, alors il
existe toujours des orbites arbitrairement proches de v (en effet le quotient .
de S"\ {v} par I’action de f n’est pas compact, car S”\ {v} n’a qu’un bout).

, uniformément sur tout
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Si ’on retire la condition d’uniformité de la définition d’un homéomor-
phisme simple, la dynamique peut devenir beaucoup plus complexe. Nous
montrerons :

THEOREME 2. Soit v un point de C. Il existe une infinité non dénombrable
d’ homéomorphismes f: C — C, deux a deux non conjugués, tels que

. n T —n _
nlg}—noof (X) n_jllloof (X) v

pour tout x € C.

DEMONSTRATIONS

Rappelons que I’ensemble de Cantor C est caractérisé a homéomorphisme
prés comme étant compact, métrisable, parfait, totalement discontinu (voir par
exemple [5]). En particulier toute partie non vide, ouverte et fermée de C
est homéomorphe a C. Tout point de C possede un systeme fondamental de
voisinages ouverts et fermés. Si X est localement compact mais pas compact,
on notera X = X U {point} son compactifié d’Alexandrov.

Soit f: C — C un homéomorphisme simple. La fonction [ =
lim,_, 1 oo f" existe, et est continue sur C \ F. Elle prend bien siir ses valeurs
dans F. Montrons que f~! est simple. Soit K un compact de C\F. Soit V un
voisinage ouvert de F, disjoint de K. Pour n grand on a f*(C\V) C V, d’ou
C\VCf™V)etf/(C\V)CV.Onen déduit f~(K) Cf™"(C\V)CV.
Donc " converge uniformément sur K, et f~! est simple.

En considérant f° et f~°°, on associe alors a f un graphe I" comme
indiqué dans l’introduction. Il possede évidemment les propriétés (1) et (2)
du théoreme 1. La propriété (3) sera établie un peu plus tard.

DEMONSTRATION DU THEOREME 1

Elle se décompose en deux parties: surjectivité et injectivité.

Surjectivité. FEtant donné un graphe T possédant les trois propriétés
mentionnées dans le théoréme, nous allons construire un homéomorphisme
simple fo tel que I'(fp) soit isomorphe a I'. Nous commengons par trois cas
€lémentaires.

I. Si I' est une boucle (un seul sommet, une seule aréte), considérons
le décalage o: (k,n)— (k,n+1) sur X =K x Z, ou K est un ensemble de
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Cantor. La caractérisation rappelée ci-dessus assure que X est un ensemble
de Cantor. Le prolongement fy de o a X est simple, et I'(fy) =1T.

2. Si1 I' est un segment (une seule aréte, a extrémités distinctes), on
considére encore le décalage sur X = K X Z, mais on compactifie X en
lui ajoutant deux points a l’infini, avec comme systemes fondamentaux de
voisinages K X [n,+oo[ et KX] — 0o, —n] respectivement.

3. Si I' se compose d’'un sommet et de deux boucles attachées a ce
sommet, on considére le compactifié d’Alexandrov de (K \ {point}) x Z muni
du décalage.

Le cas général s’obtient en combinant ces trois modeles. On part d’un
nombre fini de points, identifiés aux sommets de I'". Pour chaque aréte orientée
v1vy, avec vy # vy, on attache un modele de type 2 en identifiant la source
avec v; et le puits avec v,. A chaque sommet v on attache un modele de
type 1 (resp. 3) s’il y a dans I" une (resp. deux) boucles en v, en identifiant
I’unique point fixe avec v. La propriété (3) du théoreme 1 garantit que I’on
obtient un espace de Cantor. Celui-ci est muni d’un homéomorphisme simple
fo vérifiant I'(fp) =1T.

Injectivité. Soit f un homéomorphisme simple. Pour v € F', soit
A)y={x ¢ F |77 =70 =v}.
Pour vy # v;, soit

A, ) ={x & F |70 = v, [7@) =v2}.
Les A(v) et A(vi,v2) qui ne sont pas vides forment une partition de C\ F en

sous-espaces f -invariants ouverts et fermés, dont nous déterminons maintenant
I’adhérence dans C.

LEMME. Si A(v) # @, on a Alw) = A(w) U {v}. De méme, si
A(vy,10) # @, on a A(vi,v2) = A(vy,v2) U{v1,02}.

Démonstration. Soit V un voisinage ouvert et fermé de v tel que
VNF = {v}, et W ={xeV|x¢Ff(V)}. Toute orbite de A(v) non
entierement contenue dans V rencontre W. La convergence de f" vers f=°
étant uniforme sur le compact W, il existe un entier N tel que

Awycvu | rrom).
|n|<N
On en déduit A(v) = A() U {v}. La démonstration pour A(vy,vp) est
analogue, en considérant un voisinage de {v1,v,} ne contenant pas d’autre
point de F. [
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Il résulte de ce lemme que I'(f) posséde la propriété (3) du théoreme 1.
En effet, un w € F n’appartenant a aucune arte n’appartiendrait a aucun
A(w) ou A(vy,v,). Cest impossible puisque I'union des adhérences des A(v)
et des A(vi,vy) est C tout entier.

Nous allons maintenant terminer la preuve du théoréme 1 en montrant que,
étant donné I', tout homéomorphisme simple f tel que I'(f) soit isomorphe
a I' est topologiquement conjugué au f, construit plus haut.

Le lemme permet de supposer que fy est I’'un des trois modeles ci-dessus,
la conjugaison cherchée pouvant étre définie séparément sur chaque A(v) ou
A(vy, 7).

Commencons par le cas ou I' est un segment. Appelons v; la source
de f, et vy le puits. Soit V un voisinage ouvert et fermé de v, ne contenant
pas vy. Nous affirmons que l'ouvert U = |J,,f"(V) est aussi fermé. En
effet, si W ={xef(V)|x¢ V}, on a -

o0
U=vulJrm,
n=0
et cette union est finie car f" converge vers v, uniformément sur W.

Soit alors K le compact U \ f(U). 1l rencontre chaque orbite de C \ F
exactement une fois. Soit p un homéomorphisme de X sur le compact K
utilisé pour construire fy. On le prolonge en un homéomorphisme de C \ F
sur K x Z en posant p(f"(k)) = (k,n) pour k € K, et il s’étend & C en une
conjugaison de f a fj.

Supposons maintenant que I' a un seul sommet. Soit v 1’unique point
fixe de f. Notons que, pour tout voisinage ouvert V de v, les intersections
avec C\'V de (2, f"(V) et (o2, f"(V) sont des ouverts. En effet, si
Y C C\V est un voisinage compact d’un point x # v, on a pour n assez
grand f7"(Y) C V et f"(Y) CV, et donc aussi ¥ C f"(V) et Y C f~(V).

On suppose d’abord que I' est une seule boucle, c’est-a-dire qu’il existe
un voisinage V' de v ne contenant aucune orbite autre que {v} en totalité.
On choisit V' ouvert et fermé, et on considere

O
K=@C\V)n[ ).
n=1
Il est fermé, ouvert, et rencontre toute orbite autre que {v} exactement une
fois. Comme précédemment, tout homéomorphisme de K avec K s’étend en
une conjugaison de f avec le f; du modele 1.
Supposons enfin que f a un unique point fixe v et qu’il existe des orbites
arbitrairement proches de v. Soit Vo D V|, O ... O V, D ... un systtme
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fondamental de voisinages ouverts et fermés de v, avec Vy = C. Posons

oo (o]
Qp — (Vp \ Vp+1> N ﬂfn(vp+1) N ﬂf—n(vp)

n=1 n=1
pour p > 0, et @ = UQ,. Chaque Q, étant ouvert, fermé, et contenu dans
V,, 'ensemble Q est ouvert, et son adhérence est Q U {v}. En particulier,
Q est homéomorphe 2 un ensemble de Cantor privé d’un point. De plus Q
rencontre chaque orbite autre que {v} en exactement un point (si x # v,
son orbite rencontre Q,, ol p est le plus grand entier tel que I’orbite soit
contenue dans V,). Tout homéomorphisme de Q sur K\ {point} s’étend alors
en une conjugaison de f avec le f; du modele 3. [

DEMONSTRATION DU COROLLAIRE

Seule la premiere assertion demande une démonstration. Soit A un
ensemble a4 n éléments. Il y a p, = 32"~V maniéres d’attacher des
arétes orientées aux €léments de A de facon que le graphe obtenu vérifie
les conditions (1) et (2) du théoreme 1. Presque tous ces graphes vérifient
également la condition (3): le nombre de ceux qui ne la vérifient pas est
majoré par np,_1, qui est un o(p,). Pour estimer N(n) nous devons compter les
graphes a isomorphisme pres, c’est a dire en faisant agir le groupe symétrique.
Puisque logp, ~ n*log2 et logn! = o(n?), on a bien logN(n) ~ n*log2. [J

DEMONSTRATION DU THEOREME 2

T —

Soit K un ensemble de Cantor, et L = K X N. Nous distinguons dans L
le point a I’infini, noté oo, et Ly = K x {0}. Soit ¢ le prolongement & L du
décalage (k,n) — (k,n+ 1), et o~! son inverse, défini sur L\ Lg.

Considérons maintenant M = L x {—1,1} x N. Notons M = M U {v} son
compactifié d’Alexandrov, M~ =L x {—1} x {0}, et MT =L x {1} x {0}.
Nous définissons un homéomorphisme ¢ de M\ Mt sur M\ M~ par:

(o, —1,n) = ('), —1,n+1)  pour £ €L\ Ly
wl,—1,n)= U, 1,n) pour £ € Ly
o, 1,n) =(c®),1,n—-1) pour n > 0

L o) =wv.

La dynamique de ¢ est analogue a celle d’un champ de vecteurs du plan dans
un secteur d’une selle. Le point v est fixe. L'orbite positive de (oo, —1,0)
tend vers v, de méme que ’orbite négative de (oo, 1,0). Si ¢ # co, ’orbite
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d’un point (¢,—1,0) € M~ aboutit a M +, aprés un nombre d’itérations qui
tend vers ’infini quand ¢ — oo dans L.

Soit maintenant ¢ > 1 un entier. Soit P 1’union disjoingle\ g exemplaires
My, ... ,Mq de M, et de deux exemplaires L~, LT de L x N. Notons que
les sous-espaces M, Mi+ de M;, ainsi que Lx {0} CL™ et Lx {0} C LT,
sont des exemplaires de L. Il existe donc des homéomorphismes canoniques
entre ces espaces. |

Nous définissons un homéomorphisme 6 sur P de la manicre suivante.
Sur chaque exemplaire M;, il est égal 2 ¢ en dehors de M;". Sur M:", pour
i < g, il coincide avec I’homéomorphisme naturel de M;" sur M, et sur
M} c’est I’'homéomorphisme de M. avec L x {0} C L™. On définit 6 sur
Lt comme le prolongement du décalage (4,n) — ({,n+1) de L X N, sur
L=\ (L x {0}) comme le prolongement de I’inverse du décalage, et enfin sur
L x {0} € L~ comme I’homéomorphisme naturel de L x {0} avec M| .

Les points fixes de 6 sont une source v~ (le point a l'infini de L7 ),
un puits vt (le point a ’infini de L), et g “selles” vy, ... , Vg (une dans
chaque M ;). Toutes les orbites infinies de § vont de v~ a v™, sauf ¢ + 1
orbites “singulieres” qui vont respectivement de v~ a vy, de v; a Vi
(1<i<qg—1),etde v, a v,

Ces ¢ + 1 orbites sont mutuellement contigués, au sens suivant: nous
disons que les orbites de deux points x,y sont contigués s’il existe une suite
x, — x, et des entiers n,, avec ¢"7(x,) — y. Les autres orbites infinies de 6
ne sont contigués qu’a elles-mémes. Les orbites singulieres de € sont en fait
les points de non-séparation de 1’espace des orbites infinies de 6.

Identifiant entre eux les ¢g+2 points fixes de €, nous obtenons pour chaque
g > 1 un homéomorphisme f, d’un ensemble de Cantor, possédant un unique
point fixe v et vérifiant les conditions du théoreme 2. Ces homéomorphismes
ne sont pas conjugués entre eux: ils sont distingués par la contiguité.

Pour obtenir une infinit€ non dénombrable, nous combinons les f,. Soit
O une partie non vide de N, avec 0 ¢ Q. Pour chaque ¢ € Q, soit C, un
ensemble de Cantor muni de ’homé€omorphisme f,. Notons ¢, le point fixe
de f,. Considérons, sur le compactifié d’Alexandrov de ’'union disjointe des
Cy\{cq}, 'homéomorphisme f, qui coincide avec f, sur chaque C,\{c,}. Il
vérifie les conditions du théoreme 2. Sur ’ensemble des orbites infinies de fp,
la contiguité est une relation d’équivalence. Il y a une classe d’équivalence 2
g + 1 €léments pour chaque g € Q, et les autres classes ont un seul élément.
Donc fp n’est pas conjugué a fpr si Q#Q'. [
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AUTOMORPHISMES DES GROUPES LIBRES

Nous exposons ici sans démonstration quelques résultats de [7] sur la
dynamique des homéomorphismes de C provenant des automorphismes de
groupes libres. Certains énoncés s’étendent aux homéomorphismes obtenus
sur le bord d’un groupe hyperbolique arbitraire.

Soit donc F un groupe libre de rang k£ > 2. On lui associe un ensemble
de Cantor C = O0F, que 1’on peut voir comme son espace de bouts, ou son
bord en tant que groupe hyperbolique [1, 3, 4, 10]. Plus concrétement, si 1’on
choisit une base {gy,...,gr}, on considére les mots réduits infinis gl gty
ou chaque ¢; vaut +1. Une suite X,, avec X, € F; U OF;, converge vers
X € OF; si, pour tout p, la p-ieme lettre de X, coincide avec celle de X
pour n assez grand.

Tout automorphisme « de Fj définit un homéomorphisme f = o de C.
Si par exemple « est la conjugaison i, par g € Fy, alors f est simplement
’action naturelle de g sur C par translation a gauche (la translation a droite
par g~ ! est a distance bornée de 1'identité dans F, donc induit 1’identité
sur le bord). On montre facilement dans ce cas que f a une dynamique
Nord-Sud, avec puits ¢g*° = lim, ., g" et source g~ >° = lim,_, g ",
pourvu que g ne soit pas trivial. Nous allons voir une généralisation de
ce phénomene.

Le groupe des automorphismes extérieurs OutFy, est le quotient du groupe
d’automorphismes Aut F; par la relation d’équivalence qui identifie « et ijoor.
Nous voyons @ € OutF; comme un ensemble d’automorphismes et, comme
Nielsen [9], nous disons que «, 3 € @ sont isogrédients s’il existe g € F, tel
que B =ig0a0 (ig)_l. Soit S(®) I'ensemble des classes d’isogrédience de
représentants de @. Si par exemple @ est ’identité, ses représentants sont les
conjugaisons i, et S(®) s’identifie naturellement aux classes de conjugaison
de Fk.

Deux automorphismes isogrédients «, # produisent des homéomorphismes
OJa, 00 topologiquement conjugués. Nous pouvons donc parler de la dy-
namique d’une classe d’isogrédience s € S(®).

THEOREME. Soit ® € OutFy, avec k > 2. L'ensemble S(®) des classes
d’isogrédience de représentants de ®© est infini. Tout s € S(®), sauf au plus
un nombre fini, a une dynamique Nord-Sud sur C.

Intéressons-nous maintenant a la dynamique d’un da quelconque.
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THEORBME. Pour tout o € AutFy, I’homéomorphisme Oo a au moins
deux points périodiques de période < 2k. Les périodes des points périodiques
de Oa sont bornées par un nombre M, ne dépendant que de k, avec
log My ~ v/klogk quand k — oco.

Si « est défini par a(g;)) = giv1 pour 1 <i<k—1 et alge) = gl_'l, tout
point de C est périodique de période 2k. Si « est défini par a(g;) = go(;)» OU
o € X; est une permutation de {1,...,k}, la période d’un point gé€nérique
de C est l’ordre de o. La quantité /klogk est un équivalent du logarithme
de ’ordre maximal d’un élément de torsion dans %, ou GL(k,Z), ou AutF}
(voir [6], [8]).

Cherchons a quelle condition Oa est simple. Une condition nécessaire est
que pour tout n > 1 le sous-groupe fixe Fixa” = {g € Fy | &"(g) = g} soit
trivial ou cyclique, car sinon son bord forme un ensemble de Cantor de points
périodiques.

Nous laissons de coté le cas ou « laisse invariant un sous-groupe cyclique,
mentionnant seulement 1’automorphisme a +— a, b — aba de F,; pour cet
exemple Oa est simple, le graphe associé par le théoréme 1 étant un cercle
avec deux sommets et deux arétes.

Supposons donc Fix " trivial pour tout n. On sait qu’alors les points
périodiques de Oa sont des sources ou des puits, et qu’il y a au plus 2k
points de chaque type [2].

CONJECTURE. Soit o € AutFy. Si le sous-groupe fixe de o est trivial
pour tout n > 1, alors une puissance de Oa est simple.

Le graphe associ€ a une puissance simple de O« est un graphe bipartite,
toute aréte allant d’une source a un puits. Nous ne savons pas si tous les
graphes bipartites finis peuvent étre obtenus de cette facon.

La conclusion de la conjecture revient a dire que tout compact A« -invariant
non vide K C C contient un point périodique. Enoncée sous cette forme, la
conjecture a un sens pour un automorphisme « quelconque.

La conjecture ci-dessus est vraie si « est irréductible a puissances
irréductibles (aucune puissance de « n’envoie un facteur libre de F), sur
un conjugu¢ de lui-méme). D’autre part, tout compact da-invariant K C C

contenant un point de la forme ¢°° contient un point périodique. Cela se
déduit du résultat suivant:
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THEOREME. Soit o € AutFy, et g € Fy non périodique. 1l existe un
entier q < My tel que la suite (a?)"(g) converge vers un point fixe de Oad.

Considérons maintenant la vitesse de convergence vers les points fixes (ou
périodiques) de Oa. On définit une distance sur OF, par d(X,Y) = e~ ¢,
ou X,Y sont deux mots réduits infinis et ¢ est la longueur de leur plus
grand segment initial commun (voir [3]). Lorsque I’on consideére deux bases
différentes de Fy, les distances d, d, ainsi associées sont Holder-équivalentes :
il existe A >0 et #€]0,1] tels que A~'d\/? < dy < Ad”.

On a ainsi défini une structure Holder canonique sur 9F; (voir [3, 1]). Les
homéomorphismes da sont Holder; lorsqu’ils sont topologiquement conjugués
(par exemple si ce sont des homéomorphismes Nord-Sud), on peut se demander
s’ils sont Holder-conjugués.

Remarquons d’abord que, si g et h sont des éléments non triviaux de
Fy, alors les actions de g et h sur OF) sont des homéomorphismes Holder-
conjugués (on notera que, pour un groupe hyperbolique arbitraire, les actions
de deux éléments d’ordre infini ne sont méme pas forcément topologiquement
conjuguées).

Montrons rapidement ce fait. Le résultat est vrai si &7 = afg) avec
a € AutFy, car Oa est une conjugaison Holder. 11 1’est aussi si g et A sont
des mots cycliquement réduits de méme longueur: en effet les translations a
gauche par g et A sont conjuguées en tant qu’isométries de 1’arbre de Cayley
de Fy, et une isométrie de cet arbre induit un homéomorphisme Hélder sur
OF. Notant g;, g» deux éléments d’une base de Fj, on peut ainsi conjuguer
de fagon Holder I’action d’un g quelconque a celle d’un élément cycliquement
réduit, puis a celle d’un élément de la forme g;45, puis a celle de g .

Le théoreme suivant fournira une obstruction a la conjugaison Holder.

THEOREME. Soit oo € AutFy, tel que O posséde un point fixe attractif X .
Il existe un nombre algébriqgue A\ > 1 tel que
Tim llog(—logd(@a”(Y), X)) — Jog A
n—-+oo n
pour Y proche de X dans OF} (et pour toute distance d sur OF définissant
la structure Holder).

Pour A > 1, la conclusion signifie que les orbites s’approchent de X a
peu prés A la méme vitesse que pour I’application x +— x* : [0, 1[— [0, 1[.
Lorsque « est induit par un homéomorphisme pseudo-Anosov ¢ d’une surface -
compacte a bord, le A obtenu est le coefficient de dilatation de .
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Le nombre )\ associé au point fixe X est un invariant de conjugaison
Holder, tout comme en dynamique différentiable les valeurs propres de la
matrice jacobienne sont un invariant de conjugaison C L
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(3]
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[7]
(8]

[9]

[10]

REFERENCES

COORNAERT, M., T. DELZANT et A. PAPADOPOULOS. Géométrie et théorie des
groupes. Lecture Notes 1441. Springer-Verlag, 1990.

GABORIAU, D., A. JAEGER, G. LEVITT et M. LUSTIG. An index for counting
fixed points of automorphisms of free groups. Duke Math. J. 93 (1998),
425-452.

GHYS, E. et P. DE LA HARPE (eds.). Sur les groupes hyperboliques d apreés
Mikhael Gromov. Progress in Mathematics 83. Birkhduser, 1990.

GrRoOMoOV, M. Hyperbolic groups. In: Essays in Group Theory, S. M. Gersten
Ed. M.S.R.1. Publ. 8. Springer Verlag (1987), 75-263.

HOCKING, J.G. et G.S. YOUNG. Topology. Dover Publications, New York,
1961.

LANDAU, E. Uber die Maximalordnung der Permutationen gegebenen Grades.
Archiv der Math. und Phys., Ser. 3, 5 (1903), 92—-103.

LEVITT, G. et M. LUSTIG. Prépublication.

LEVITT, G. et J.-L. NICOLAS. On the maximum order of torsion elements in
GL(n,Z) and Aut(F,). J. Algebra 208 (1998), 630-642.

NIELSEN, J. Untersuchungen zur Topologie der geschlossenen zweiseitigen
Flachen. Acta Math. 50 (1927), 189-358; traduction anglaise dans
Collected Mathematical Papers, Birkhéduser, 1986.

SHORT, H. et al. Notes on word hyperbolic groups. In: Group Theory from a

Geometrical Viewpoint. E. Ghys, A. Haefliger, A. Verjovsky, eds. World
Scientific (1991), 3-63.

(Regu le 3 février 1998)

Gilbert Levitt

Laboratoire Emile Picard

UMR CNRS 5580

Université Paul Sabatier
F-31062 Toulouse Cedex 4
France

e-mail : levitt@picard.ups-tlse.fr







	HOMÉOMORPHISMES DYNAMIQUEMENT SIMPLES DE L'ENSEMBLE DE CANTOR
	...
	Introduction
	DÉMONSTRATIONS
	Automorphismes des groupes libres
	...


