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UNE INTRODUCTION A LA MECANIQUE SEMI-CLASSIQUE ")

par Yves COLIN DE VERDIERE

RESUME. Ce texte est une introduction a la mécanique semi-classique a 1’usage
des non-spécialistes.

Apres avoir rappelé les contextes de la mécanique classique (géométrie symplec-
tique) et de la mécanique quantique, on introduit la mécanique semi-classique a partir
d’exemples simples: transformations de Fourier et de Legendre, principe de Huygens.

On décrit ensuite les formules de trace semi-classiques et la problématique du
chaos quantique.

1. INTRODUCTION

Le but de ces exposés est de servir de motivation et d’introduction au sujet.
Du point de vue de la physique, il s’agit de techniques qui remontent au début
de la mécanique quantique: le principe de correspondance affirme de facon
vague que la mécanique classique est la limite de la mécanique quantique
lorsque la constante de Planck h peut étre considérée comme petite, autrement
dit que les actions S en jeu sont grandes devant h. Bien sir, dire qu’une
théorie physique est une limite d’une autre théorie physique est un concept
important puisqu’une grande partie du savoir faire du physicien est de prévoir
ce qui est petit et ce qui est grand. La limite quantique-classique est plus
complexe que la limite relativiste-galiléen qui se réduit essentiellement 2 des

développements limités en %, ou c est la vitesse de la lumiere.

Depuis le début de la mécanique quantique, le passage a la limite
semi-classique est trait€ par des régles plus ou moins empiriques: les
développements BKW (Brillouin-Kramers-Wentzel) et les conditions de quan-
tification de Bohr-Sommerfeld font ainsi partie de D’outillage de base du

") Rédaction d’exposés donnés dans le cadre de rencontres Geneéve-Grenoble-Lyon (24 et 25
avril 1997)
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physicien quantique. Ces méthodes ont leurs limitations intrinseques: diffi-
cultés liées aux caustiques, impossibilité de dire quelque chose de précis sur
les spectres dans les cas non completement intégrables (i.e. génériques).

Du point de vue mathématique, les travaux de Maslov, Leray, Hormander
en équations aux dérivées partielles linéaires (analyse micro-locale), dans
les années 65-70, ont donné une assise naturelle et solide aux calculs des
physiciens. En particulier, ces méthodes permettent de décrire de fagon précise
le passage des caustiques et la nature des déphasages des fonctions d’ondes
en ces points (indice de Maslov).

L’application de ces méthodes aux équations de Schrodinger et a la
limite géométrique de 1’optique ondulatoire a connu un grand développement
depuis les années 70. Ces travaux s’appuient sur des résultats de plus
en plus fins de mécanique classique des systemes hamiltoniens (systemes
completement intégrables, théorie KAM, flots d’Anosov) en mé€me temps que
sur des techniques d’analyse variées (intégrales oscillantes, estimations de type
elliptique, développements asymptotiques, méthodes de resommation, passage
dans le complexe). Un des problemes clés est 1’étude semi-classique des
spectres d’opérateurs : asymptotique des grandes valeurs propres des laplaciens
riemanniens, asymptotique du spectre d’un opérateur de Schrodinger lorsque
h— 0t.

Apres avoir brievement rappelé le formalisme hamiltonien et le formalisme
quantique, je décrirai le probleme de la limite semi-classique.

Je parlerai ensuite du spectre: depuis le cas completement intégrable, en
passant par KAM, j’en viendrai a ce que je considere comme 'un des plus
jolis résultats de la théorie, la formule des traces dite de Gutzwiller dont je
donnerai une preuve heuristique basée sur 'intégrale de Feynman.

Je parlerai enfin de I’analyse fine du spectre semi-classique et du lien avec
la théorie des matrices aléatoires. ,

Je veux profiter de ’occasion pour introduire deux idées que je trouve
stimulantes et que je vous soumets :

1) La mécanique classique est certes une limite de la mécanique quantique,
mais la mécanique quantique est aussi un systéme hamiltonien classique
particulier (linéaire) et la dimension infinie n’en est pas le fait le plus important.

2) La limite semi-classique est habituellement présentée comme liée au
caractére linéaire de la mécanique quantique et dépendant essentiellement du
principe de superposition (phase stationnaire) : elle est aussi li€e au phénomene
d’oscillations rapides (méthode de moyennisation) qui est un analogue non-
linéaire de la phase stationnaire.
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2. LA MECANIQUE CLASSIQUE
Pour cette section, voir [1], [3], [4], [28], [44], [48], [49], [50], [S1].

2.1 GEOMETRIE SYMPLECTIQUE

[’espace des phases du systeme est une variété symplectique (Z,w). La
plupart du temps, c’est un cotangent 7*X équipé de la structure canonique. Ce
peut é&tre aussi une sous-variété algébrique lisse du projectif complexe équipé
de la structure symplectique partie imaginaire de la structure kaehlérienne ou
une variété obtenue par réduction symplectique a partir des précédentes.

On se donne ensuite une fonction H: Z — R, I’hamiltonien du systeme.
On lui associe le champ de vecteurs Xy, gradient symplectique de H, qui
donne la dynamique. Il est classique que la dynamique du systeme décrite par
le flot ¢, de Xy préserve H et la forme w.

Les exemples de base sont

EXEMPLE 2.1. Z =T*R" et
1
H(x, &) = Z[I€]° + V),

la dynamique étant celle d’une particule dans le potentiel V, et & étant
['impulsion.

EXEMPLE 2.2. Z =T*X ou X est une variété riemannienne de métrique
g et

1
H(x,§) = EQ*(f),

ou g* est la métrigue associée a g sur le cotangent donnée en coordonnées
3. )
locales par inverse de (g;;) avec g = ds* = > gijdx; dx;.
La dynamique est alors celle du flot géodésique.

EXEMPLE 2.3. Z = P"C est muni d’une structure symplectique ( peu
pres) canonique, associée a une structure hermitienne sur C"" : on considere
la sphére unité de C'T' pour cette métrique hermitienne. La structure
symplectique de C"V!, partie imaginaire de la forme hermitienne, induit une
2-forme sur ceite sphere dont le noyau est constitué par I’action infinitésimale
de U(l). Le quotient de cette action est P'"C qui est ainsi symplectisé.

L'objet le plus central en géométrie symplectique est sans doute la variété
lagrangienne.
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Une sous-variété lagrangienne L d’une variété symplectique (Z,w) de
dimension 2n est une sous-variété isotrope pour la forme w et de dimension 7.
S1 Z = T*X et si L est le graphe d’une section (et s’identifie donc a
la donnée d’une 1-forme sur X), L est lagrangienne si et seulement si la
I-forme correspondante est fermée. Si L = (x,S'(x)), on dit que S est une
fonction génératrice. Si p: L — X est la projection, la caustique de L est
le sous-ensemble de L formé des points ol la projection est critique. Il est
important pour la suite d’étendre la notion de fonction génératrice au cas des
caustiques: cela remonte a Maslov et Hormander. On peut déja en trouver
I’'1dée dans Huygens et Feynman.

T*X

FIGURE 1

Variétés lagrangiennes et caustiques

La notion de variété lagrangienne permet de généraliser la notion de
solution d’une EDP non linéaire du type:

H(x,S'(x)) =0.
L’équation de Hamilton-Jacobi
S!+ H(x,S) =0
et I’équation eiconale de I’optique
181" =1

en sont des cas particuliers.
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Une telle solution généralisée est simplement une variété lagrangienne de
T*X contenue dans H = 0.

On voit facilement que le champ X est tangent a une telle variété. Bien
sir, en général, il y a des caustiques (enveloppe des trajectoires).

Une autre notion importante attachée & une sous-variété lagrangienne L
de T*X est celle de fronts d’ondes: ce sont les feuilles du feuilletage défini
par la restriction & L de la 1-forme de Liouville a = £dx. Leurs projections
sur X sont aussi appellées fronts d’ondes.

Nan
A

_. fronts d’onde

trajectoires

/\ caustiques

FIGURE 2

Variété lagrangienne et fronts d’ondes

2.2  VARIETES LAGRANGIENNES ET FONCTIONS GENERATRICES

Une variété lagrangienne a en général des caustiques et ne peut donc
pas étre représentée par une fonction génératrice naive. On a recours a une
famille de fonctions ¢(x,8), & € RY. Si on considére les fronts d’ondes
Fp, = {x | ¢(x,0) = a}, leur enveloppe est donnée classiquement comme
I’ensemble des solutions de ¢ = a, Ogp = 0. A cette enveloppe est as-
sociée 1’ensemble des (x,0yp) qui se trouve étre, sous des hypotheses de
non-dégénérescence, une variété lagrangienne. On retrouve une construction
d’Huygens: I’enveloppe d’une famille de fronts d’ondes est un nouveau front
d’onde.

C’est un théoreme que toute variété lagrangienne admet une représentation
de ce type. Une telle famille est du reste unique a des opérations élémentaires
pres: c’est un théoreme dii a Hormander.
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La situation géométrique est celle d’une fibration F: E — X et d’une
fonction ¢: E — R. Si Lj est le graphe de dy contenu dans 7*E, on passe de
Ly a L par la réduction symplectique associée au fibré conormal de la fibration.

En particulier, si £: 7X — R est un lagrangien régulier et £, 1’ensemble
des applications de ~: [0,7] — X fibré sur X x X par v — (v(0),~(¢)) et
O(y) = foz L(y(s), 7 (s))ds, la variété lagrangienne associée est le graphe du
flot hamiltonien ¢, associé au lagrangien £ par la transformée de Legendre.
La fonction génératrice @ est bien sir reliée a 1’intégrale de Feynman.

3. LA MECANIQUE QUANTIQUE

Pour cette section, voir [10], [32], [39], [47], [43].

Ici 'espace des phases est un espace de Hilbert (parfois de dimension
finie); pour €tre plus précis, c’est le projectif complexe de cet espace, mais
on peut négliger ce détail. '

La dynamique est donnée au moyen d’un opérateur auto-adjoint H (avec
domaine) sur A grace a I’équation de Schrodinger :

hdu -~
“ra
dont le flot est le groupe a un parametre d’opérateurs unitaires donné par:
U(t) = e—itH/ﬁ.
La constante /A n’est pas la uniquement pour faire joli, en général H
est une énergie et donc A a les dimensions d’une action, car on ne peut

exponentier que des quantités sans dimension !!

A~

EXEMPLE 3.1. H = L*(R") et H= —E’;A—{- V. On a alors ’équation de
Schrodinger. '

EXEMPLE 3.2. H = L*(X) et H = %Ag, ou Ay est le laplacien
riemannien. On a [’équation de Schrodinger associée au flot géodésique.

EXEMPLE 3.3. Si E est le fibré anti-canonique sur P"C, on considere
’espace de Hilbert des sections holomorphes de E®Y qui s’identifie a I’espace
des polynomes homogénes de degré N sur C''.

Si H: P"C — R, on considere les opérateurs de Toeplitz I?Nc,o = IIy(Hyp),
ou Iy est la projection orthogonale des sections sur les sections holomorphes.
Voir [19].
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La ressemblance entre les exemples de ce paragraphe et du précédent n’est
pas fortuite, comme on va le voir.

I1 faut aussi remarquer que la mécanique quantique est un cas particulier
de la mécanique classique, celui ou I’hamiltonien est une forme hermitienne
sur un espace de Hilbert. De ce point de vue, il n’est pas trés excitant: la
dynamique est quasi-périodique, les fréquences fondamentales étant li€es de
fagon simple au spectre de H.

Les correspondances entre espace des phases classiques et quantiques
(fleches entre 2 catégories) peuvent étre prolongées de facon heuristique, par
exemple correspondance entre volume et dimension, entre variétés lagrangi-
ennes et vecteurs, entre produits et produits tensoriels, entre changement de
signe de w et passage au dual.

Pour €tre plus pédant, on pourrait parler de la catégorie symplectigue dont
les objets sont les variétés symplectiques et les fleches de Z a4 Z’ les sous-
vari€tés lagrangiennes de (Z x Z',w’ — w) et de la catégorie hilbertienne dont
les objets sont les espaces de Hilbert et les fleches les opérateurs unitaires.

On obtient ainsi le tableau de correspondance suivant qu’il est intéressant
d’essayer de prolonger !!

CLASSIQUE QUANTIQUE
(Z,w) H
(T*X, w) L*(X)

L lagrangienne

peH, |lell=1

LC(ZIXZQ,LUQ—wl) UIH1*>H2
L W™ dim
H:7Z—R H autoadjoint
2 2
HIEN + vix) —LA+V
% > g g & Ag
A
(,Ot 6—”5
Legendre Fourier

Trajectoires périodiques

Périodes

Fonctions propres

Spectre
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4. LA MECANIQUE SEMI-CLASSIQUE
Pour cette section, voir [2], [25], [29], [32], [42], [44], [51].

4.1 INTRODUCTION

Du point de vue physique, la mécanique quantique est apparue comme
nécessaire pour remplacer la mécanique classique dans certaines situations
(atomes et molécules, physique des étoiles).

De méme, l'optique géométrique doit €tre remplacée par une optique
ondulatoire (Maxwell).

Le point commun est I’étude d’EDP linéaires dépendant d’un petit (ou
grand) parametre: équation de Schrodinger avec h petit, grandes valeurs
propres du laplacien riemannien, solutions a grandes fréquences des équations
de Maxwell.

On peut aussi considérer de facon plus générale la dégénérescence de
systemes hamiltoniens (en dimension finie ou infinie) dépendant d’un petit
parametre vers d’autres systemes hamiltoniens de dimension plus petite.
La méthode de moyennisation est un peu le prototype de ces limites: les
oscillations rapides du systeme (penser a un gyroscope) donnent lieu a un
découplage entre une dynamique rapide et une dynamique lente qui est a
nouveau hamiltonienne sur un espace des phases réduit.

FIGURE 3

M¢éthode de moyennisation

Si on considére un hamiltonien

1
H. = —Hy+ Hi,

sur une variété symplectique de dimension 2n et qu’on suppose que les
trajectoires de Hp contenues dans la couche d’énergie E; sont périodiques
de période Ty, on peut introduire la variété symplectique Zg, de dimension




UNE INTRODUCTION A LA MECANIQUE SEMI-CLASSIQUE 3]

2(n — 1) des trajectoires de Hy contenues dans la couche d’énergie Eo et
la munir de ’hamiltonien moyenné K = Tio f7 Hidt décrivant une dynamique
sur les trajectoires de Hgy. Cette dynamique décrit bien le comportement des
trajectoires de H. dans un intervalle de temps de I’ordre de 1.

4.2 LA PHASE STATIONNAIRE

Voir [36].

Dans le cas qui nous préoccupe dans la suite (linéaire), ce découplage
est une conséquence de la phase stationnaire: si on consideére une intégrale
oscillante du type:

I(h) :/ eis(x)/ha(x)ldxl,

ol S:R" — R est C* et a € Cg°(R",C), le comportement asymptotique
de I(h) quand A tend vers O est controlé par les points critiques de S situés
dans le support de a. Lorsque ceux-ci sont non dégénérés, on a une formule
explicite pour le développement asymptotique. Les faits remarquables sont les
suivants : le comportement est en /#*/?, il y a une phase liée 4 I’indice de la
hessienne de S aux points critiques.

Plus précisément, si S n’a qu'un point critique supposé non dégénéré x
dans le support de a de signature o, on a:

I(h) ~ (271-]/1)”/2eiS(x())/heiO'ﬂ'/él» a(xo) ‘
| |det(S" (xo))[!/2

Le coefficient principal (amplitude) admet une interprétation géométrique
comme densité relative de 2 mesures en xy: la mesure a(x)dx et la mesure
associ€e canoniquement a S (comme en riemannien). Cette remarque est
Porigine de la géométrisation du calcul des intégrales oscillantes.

Donnons 3 applications semi-classiques simples de la phase stationnaire :

EXEMPLE 4.1 (FOURIER ET LEGENDRE).

Soit §: U — R une fonction C*>° définie sur un ouvert U C R" et
supposons que x — S'(x) est un difféomorphisme C™ de U sur un ouvert

V du dual de R". Soit alors §(§): V — R la transformée de Legendre de S
caractérisée par

{0, S'0)) [ x € U ={5'€),6) | £ € VY,

normalisée par §(§0) + S(x0) = xp€o pour un point &, = S'(xp).
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0 T

FIGURE 4

Transformation de Legendre

Soit a € C°(U) et

TFa(€) = / e /M (x) x|

ou |dyx| est une mesure de Haar sur R" normalisée pour que Fj, soit unitaire
de L*(R",|dyx|) sur L*(R",|dx€]).
Alors
Fila(x) 5"y (€) ~ AE) e PO/,

oi S est la transformée de Legendre de S.
On peut donc dire que la transformée de Legendre est la limite semi-
classique de la transformée de Fourier.

EXEMPLE 4.2 (VITESSE DE PHASE ET VITESSE DE GROUPE).
Soit a(k) e®=“®" yne onde plane monochromatique de fréquence w(k)

dans R". Sa vitesse de propagation est v = kll(zl(llg) C’est la vitesse de

déplacement des hyperplans d’égale phase
kx — w(k)t = ay ,

souvent appellée vitesse de phase.
Si on prend une superposition de telles ondes de la forme

F(x,1) = / a(k) e —®\dk| |
avec k grand, la fonction F est négligeable en dehors des point (x,t) tels

que x = w'(k)t qui se propagent & la vitesse w'(k) appellée vitesse de groupe
du paquet d’onde.
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EXEMPLE 4.3 (PRINCIPE DE HUYGENS).
Considérons une onde sphérique de la forme

a(x) ezkr
issue de l’origine. Soit maintenant ¥ une surface et considérons une super-
position d’ondes sphériques émises par les points de X de la forme

F(M) = / M) q(PY |dP| .
>

Le comportement asymptotique lorsque k est grand est négligeable sauf si M
est sur une normale a . La phase est alors donnée a une constante pres par

kd(A, M) — n(M)g ,

a condition que M ne soit pas un point focal, et ou n(M) est l’indice de
Morse de la fonction distance.

On voit donc qu’aux grandes fréquences le front d’onde (phases constantes)
est [’enveloppe des fronts sphériques issus de X, ce qui est le principe de
Huygens en optique géométrigue.

FIGURE 5
Principe de Huygens
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43 EDP LINEAIRES AVEC UN PETIT PARAMETRE

En général, on étudiera une équation du type:

h o h. o
Plhx, =)= ) | aali,h) (5007,

|| <N
ou les a,(x,h) sont de la forme:
aa(e,h) = b j@H .
j=0
On définit alors

Po(x, ) = > b 0",

qui est appellé symbole principal de P. On supposera dans ce qui suit que
Py ne prend que des valeurs réelles.
Le but est de décrire les (des) solutions de

Phuh = O(hoo)

EXEMPLE 4.4.

2

1
P=—ZA+V—E Py=z]¢|’+ V() - E,

(valeurs propres de Schrodinger).

h du h?
72{ __——Z—Au—f—Vl/t, Po——T_H(xaf))

(Schrodinger dépendant du temps).
ATy =1, Po=g"(x, &) — 1,

(grandes valeurs propres du laplacien).

LES SOLUTIONS BKW

On considere ’action de P sur une fonction oscillante et on développe en
puissances de & :

P(a(x)eS@/my = SO/ (Po(x, S (x))a(x) + ?(Afam + Py (x, S’ (x)a(x)) +O(h*))

ot X = 0gPolx,S' ()0, et Pi(x,&), le symbole sous-principal de P, est
une fonction sur 7*X.
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Résoudre P(ae™/") = O(h?) équivaut donc a résoudre I’équation eiconale
Po(x,S'(x)) = 0, puis une équation différentielle le long des trajectoires de
X . Ces deux opérations gardent un sens pour les solutions généralisées, en
particulier, X est la projection sur X de Xp, et donc on peut lire les équations
de transport sur la variété lagrangienne.

Dans le cas de Schrodinger, 1’équation de transport s’écrit:

1
/Ya+§ASa:O.

Elle s’interprete géométriquement comme 1’invariance par le flot hamiltonien de
la demi-densité a(x)|dx|'/?. Le carré a(x)?|dx| s’interpréte bien en mécanique
quantique comme une mesure: la probabilité de présence de la particule.

Pour mettre tout cela en place, on associe, a la représentation de L a partir
d’une famille de fonctions, des superpositions de fonctions oscillantes

fx) = /eiw(“"g)/l’a(x, 0)deo .

EXEMPLE 4.5 (LA FONCTION DE AIRY). On définit

Aip(x) = (27rh)"% / ei(ﬂ‘f—%i)/hdg — h=VoAi(xh=2/3)
R

Cette fonction est associée a la variété lagrangienne
x = &2
qui admet une caustique en (0,0).

La fonction de Airy décrit en fait le comportement universel des intégrales
oscillantes associées aux singularités plis.

Ai(z)
- F\v/\\//\\/\/\vﬂ\ N

FIGURE 6

La fonction de Airy
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Le résultat net est la possibilité d’associer a toute variété lagrangienne L
vérifiant (Po)[; = 0 des solutions locales de Pu = O(h?) et méme O(h*°) si
on réfléchit un peu.

Ces solutions ne se globalisent pas toujours: ce sont les conditions de
quantification.

Dans les cas les plus simples, par exemple dans les exemples 4.6 et 4.7, il
s’agit d’une condition portant uniquement sur L : la classe de cohomologie de
de Rham de la forme de Liouville o = £dx satisfait des conditions d’intégralité
du type

la] € 272" + 1),

ol p € $Z" est Iindice de Maslov.
En effet, une fois 1’existence d’une densité invariante assurée, il reste le
probleme des phases qui sont données localement par S dont la différentielle
est la restriction a L de « (on retrouve la définition des fronts d’ondes comme
feuilles de phases constantes). La contribution des caustiques est donnée par
I’indice de Maslov qui a son origine technique dans la phase stationnaire..

EXEMPLE 4.6 (LES SERIES DE FOURIER). On considere [’opérateur N

i
sur R/2nwZ. Son symbole principal est & et la condition de quantification sur
la variété & = a est

2ma = 2mhn

soit a = hn. On retrouve comme spectre les hn, n € 7. et les séries de Fourier.

EXEMPLE 4.7 (L’OSCILLATEUR HARMONIQUE).

~ 1
Le symbole principal est
1 5 0
E(X + &%)
et les conditions de quantification s’écrivent pour la variété H = F :
1
27E = 2mh(n + 5) :
Elles donnent le spectre exact:
1
E,=nh =).
(n+ 2)

Cela n’est pas surprenant, car le changement x = ~/hx, transforme H,
éen ]’ZHl
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cellule de Planck
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FIGURE 7

L’espace de phase des séries de Fourier
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L’espace des phases de 1’oscillateur harmonique

37



38 Y. COLIN DE VERDIERE

44 LE CAS DE SCHRODINGER ET L’ INTEGRALE DE FEYNMAN

Voir [27], [13].
Dans le cas de Schrodinger dépendant du temps, on obtient une
représentation a la Feynman:

p(t, X, y) o / ei [(]t £('7(5):'7,(5)) dS/hd/y .
Q

1,X,y

Bien sir, cette intégrale n’a pas de statut mathématique bien solide,
contrairement a la mesure de Wiener. On doit comprendre dvy comme une
mesure de Lebesgue.

5. LE SPECTRE SEMI-CLASSIQUE

5.1 LA FORMULE DE WEYL

Voir [8], [32].
On considere le spectre de I’opérateur de Schrodinger dans R”

s h?
H=-ZA+V-E,

ol on suppose V C* et liminf, ..o V > 0 . Alors le spectre négatif de H
- est discret; on 1’écrit:
Ei(h) < Ex(h) < --- .

Si E < 0, on considere le comportement asymptotique semi-classique de
Nu(E) =#{j | E(h) < E}.

Il se trouve que I’asymptotique de N,(E) est purement classique

1
N(E) ~ (%)n vol({Po(x,§) < E}),

ce qui signifie que chaque état propre occupe une région de volume (2mh)"/?
de I’espace des phases. C’est une des versions de la correspondance entre
volume et dimension. Cela permet parfois de déterminer le i effectif d’un
probleme de type semi-classique.
De nombreux auteurs se sont préoccupés d’obtenir des estimations du reste
du type
Ny(E) = Ch™"(1 + O(h®)) .
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La meilleure estimation générale (o« = 1) dans le cas ou E n’est pas valeur
critique de H(x,&) est celle de Hormander ([35]). Cette estimation a été
améliorée par Duistermaat et Guillemin [23] en un o(h) dans le cas (générique)
ot I’ensemble des trajectoires périodiques est de mesure nulle et Bérard ([7])
a montré que, dans le cas riemannien sans points conjugués, on peut améliorer
le reste en O(h/|1nhl). |

Cette asymptotique n’est pas vraie pour un hamiltonien arbitraire, en
particulier elle est incorrecte dans le cas des bouteilles magnétiques : la vraie
asymptotique est donné par le nombre de pavés d’un pavage par des images
de cubes standards par des plongements canoniques (voir [14]).

5.2 LE SPECTRE DANS LE CAS COMPLETEMENT INTEGRABLE : COORDONNEES
ACTIONS-ANGLES SEMI-CLASSIQUES

Voir [16], [17], [18].

Du point de vue classique, un flot hamiltonien est dit completement
intégrable si I’espace des phases admet (presque partout) un feuilletage
lagrangien en tores invariants par le flot hamiltonien. Cela correspond donc a
un hamiltonien sur le tore R"/Z" de la forme H(§).

L hamiltonien quantique naturellement associé est donc

ﬁ:H§&>
dont le spectre est formé des points
HQ2nhp), p e Z".
On peut retrouver ce spectre au moyen des conditions de quantification

[a] € 2hZ" .

En fait, il faut introduire les corrections des indices de Maslov, ce qui
correspond a remplacer Z" par un translaté p + Z".

Tout ceci peut se justifier rigoureusement.

L’analyse précise des singularités du systeme completement intégrable
nécessite l'introduction de conditions de quantification modifiées que nous
avons traitées avec Bernard Parisse en dimension 1 ([20] et [21]) et que San
Ngoc Vu est en train de traiter en toute généralité. Ces travaux permettent de
décrire pour un systeme completement intégrable avec singularités de Morse
I’asymptotique semi-classique de routes les valeurs propres.

En particulier, dans le cas d’un double puits de potentiel pair en dimen-
sion 1, nous avons décrit avec Bernard Parisse la transition du spectre pres

~
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de I’énergie correspondant au maximum local V,, du potentiel: il s’agit d’une
transition (universelle) entre les doublets de parité

Aak—1 < Agr < Agey + O(e= /My

(Max < V) et les valeurs propres régulierement espacées pour M, > V.

Ak

FIGURE 9

Le spectre du double puits symétrique

Cette approche est encore valable dans le cadre de la théorie KAM (cf.
[16]) de 2 facons différentes:

— pour décrire le spectre semi-classique d’un syteme hamiltonien proche
d’un systeme intégrable;

— en considérant le cas ou le systtme est classiquement complétement
intégrable et non quantiquement compleétement intégrable comme une pertur-
bation d’un systeme complétement intégrable.

Ce dernier cas se rencontre par exemple pour 1’étude des grandes valeurs
propres de A+V ol A est le laplacien plat sur le tore (intégrable quantiquement
par les séries de Fourier) et V en est une petite perturbation a la limite des
grandes valeurs propres.




UNE INTRODUCTION A LA MECANIQUE SEMI-CLASSIQUE 41

6. LE CAS GENERAL: LA FORMULE DES TRACES SEMI-CLASSIQUES

Dans le cas non complétement intégrable, la calcul approché du spectre est
impossible, comme cela a été remarqué par Einstein dans [26]. Dans les années
70 sont apparues de nouvelles méthodes que I’on désignera sous le nom de
formules de traces semi-classiques. Il s’agit de formules asymptotiques.pour la
densité régularisée de valeurs propres. D’abord apparues chez des physiciens
(Gutzwiller [30], Balaian et Bloch [5], [6]), ces formules ont été justifiées
rigoureusement par les mathématiciens, d’abord dans ma these [12], utilisant
une approximation de I’intégrale de Feynman, puis dans les travaux qui s’en
sont inspirés, ceux de Chazarain [11] et de Duistermaat-Guillemin [23] en
utilisant les OIF.

6.1 DENSITES REGULARISEES

Pour obtenir des renseignements plus fins sur la fonction (discontinue)
Ny(E), il est agréable de la régulariser (au sens de Schwartz), on pose donc
pour une fonction p lisse, d’intégrale 1 et a décroissance rapide :

Ny(E)= > p(E—E,).
En fait, on utilise souvent une famille

1 u
pe(u) = -é:p(-g—)-

Lorsque ¢ tend vers 0, N,_(u) décrit une densité régularisée correspondant
a un regroupement de paquets de valeurs propres de largeur ~ e. Autrement
dit on observe le spectre avec un grossissement 1 /.

FIGURE 10

La densité spectrale régularisée
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Le lien entre la densité régularisée et 1’équation de Schrodinger est
donné par la formule d’inversion de Fourier: si p(t) = [e ™ p(u)du et
Z(t) = Trace(e="™ /"y on a:

1 )
Mo = o /R Zuh) € 50 du.

Si on veut une analyse fine p doit étre treés localisée et cela implique que j est
tres étalée et donc une connaissance de Z(f) (et donc de U(¢)) pour ¢ grand.
A la limite le spectre exact est lié aux solutions périodiques de 1’équation de
Schrodinger qui sont donc connues pour tout 7 € R.

Deux échelles sont tres importantes, € = k& qui correspond du point de
vue classique a un intervalle de temps borné et qui prend en compte un
nombre de valeurs propres dans un intervalle de longueur ~ A qui en compte
environ A"~ et I’échelle € = A" qui correspond & la séparation des niveaux
(Weyl) (et donc a une analyse fine du spectre analogue a celle donnée par
Bohr-Sommerfeld) et & un temps de ’ordre de 1/A"!.

La premiere échelle est une échelle non universelle donnée par les formules
de traces semi-classique, alors que les échelles plus fines sont (au-dela du semi-
classique) le domaine des classes d’universalités (GOE, GUE, Poisson) (voir
section 7).

[’étude a ces échelles est difficile d’acces par les méthodes semi-classiques
qui décrivent mal les asymptotiques simultanées A — 0 et t — o0; ce
phénomeme fondamental (et mystérieux) est appellé par certains auteurs
rupture de [’approximation semi-classique.

La limite semi-classique se décrit bien en termes de 1’évolution d’une
fonction d’onde localisée de la forme:

N N | P 2 i
D, () = ce” Tl gripex

appellé état cohérent. L’évolution semi-classique de @, U(r)P, est donnée
lorsque ¢ reste borné par une fonction d’onde du méme type localisée au
point ©,(x,,p,) ou ¢, est le flot classique. Lorsque ¢ augmente, cette fonction
gaussienne se délocalise en un temps lié a I’exposant de Liapounov A :

1
T ~ X“nh!,

qui est le temps nécessaire pour qu'une région initiale de diametre i ne soit
plus localisée pres de la trajectoire classique. Au dela de ce temps la non
linéarité de la dynamique classique joue pleinement son role et U(f)® reste
localisée sur la variété instable de (x,,p,) qui s’enroule de facon compliquée
dans I’espace des phases Z.
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6.2 LA FORMULE DES TRACES DE SELBERG

Pour plus de détails sur cette section, voir par exemple 1’excellent papier
de Hejhal [33]. Le flot géodésique sur les surfaces de Riemann a courbure —1
n’est pas intégrable et on ne peut pas espérer non plus de formules explicites
pour le spectre du laplacien. On devra se contenter de formules sommatoires
qui généralisent la formule de Poisson.
Prenons 1’hamiltonien quantique
i 1d
T idx
sur le tore de dimension 1, X = R/Z. Son spectre est formé des nombres
2mn, n € 1, (séries de Fourier).
On a alors la formule suivante, pour p € S(R):

S ot~ 2w = o 3 my e,

nez mez

At = / e o) d

est la transformée de Fourier de p (qui est bien une fonction du temps...).
C’est la classique formule sommatoire de Poisson.
On s’intéresse donc a la densité régularisée

No() =D plpn — ).

ou les valeurs propres du laplacien sont A\, = 3—1 + .

Motive par I’analogie avec la fonction ¢ de Riemann, A. Selberg a montré
en 1956 que, pour des fonctions p convenables, N,(1) admet une expression
exacte comme somme d’un terme régulier non oscillant Nrz(u) dont la partie
principale est donnée par Weyl:

Nyr(p) ~ __—Alre(X)u
27

et de termes oscillants N, (i) associés aux géodésiques périodiques.
L’expression de N, est:

Ny(p) = (L) c(y) el |

ou L. est la longueur de la géodésique périodique vy et c(y) est un nombre
complexe non nul calculable en termes de la dynamique linéarisée pres de v
(application de Poincaré linéarisée, indice de Morse).
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6.3 LA FORMULE DES TRACES SEMI-CLASSIQUES

Cette formule s’étend en une formule asymptotique (appellée formule
de traces de Gutzwiller dans la littérature) valable en toute généralité (en
particulier sans aucune hypothese de type chaos classique, le cas complétement
intégrable étant une conséquence de la formule sommatoire de Poisson) a
condition de prendre p telle que p soit a support compact, ce qui revient a
ne considérer la dynamique de 1’équation de Schrodinger que sur un intervalle
borné en temps et donc une contribution d’un nombre fini de géodésiques
périodiques, en vertu de la formule d’inversion de Fourier:

1 E—H 1 T
EIO( 7 ):27rh/RelZE/he tH/hp(Z)df.

Donnons un énoncé assez précis pour 1I’équation de Schrodinger.

THEOREME 1. Soit E une énergie non critique pour I’hamiltonien classique
H, x € C;°(R) égale a I pres de E et p(E) une fonction dont la transformée
de Fourier est a support dans |t| < T.

On suppose que les trajectoires périodiques v de Xy contenues dans
{H = E} sont non dégénérées au sens que l’application de Poincaré linéaire
P, n’admet pas 1 comme valeur propre. Soit Tiy > 0 la plus petite période
de v et m, ['indice de Morse de v comme courbe fermée et e, = O ou 1.

Alors :

1 E—E;
(6.1) 2 XE)p(=—) = Nw(E) + )  Ny(B),

J ¥
ou
(6.2) Nw(E) = C(E)Yh~""D(1 4+ O(h))
et

1 T L[ edu—i(meyte) T

6.3) Ny(E)= e’ YT (1 4+ O(h)).

27h (det(1 — P))!/?

La justification heuristique la plus simple est liée a I’'intégrale de Feynman;
donnons-la: le propagateur quantique

p(t,x,y)

noyau intégral de l'opérateur U(f) = e /% est donné selon Feyn-

man ([27]) comme une superposition d’amplitudes associées aux différents
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chemins v € Q,,; qui est U'ensemble de chemins (v: [0,7] — X tels que
Y(0) =x, () =y):

p(t,x,y) = / er [o FOOY Db gy
Qy v 1
ot £:TX — R est le lagrangien classique. Dans le cas des gé€odésiques, le
lagrangien est 1’énergie cinétique %+ 1%
Si Q, désigne maintenant 1’espace des lacets fermés parcouru en le temps
t, on obtient la fonction de partition quantique:

20 =Y e B/ = /p(z,x,x)dx :/ ot 1 LW ©)ds | o
X

t

comme une intégrale sur les lacets. L’application de la phase stationnaire,
lorsque A tend vers 0, fait apparaitre les trajectoires fermées comme points
critiques de ®(vy) = fof L(v(s),v'(s)) ds sur ;.

Dans le cas de Selberg, il se trouve que, bien que la surface X puisse
étre compliquée, I’espace €2, se décompose en composantes connexes simples,
une par géodésique périodique et que la décomposition de Z(f) en somme
d’intégrales sur ces composantes connexes permet de prévoir une formule
sommatoire exacte.

La formule de traces semi-classiques donne certes des informations sur
le spectre, mais elle a surtout une application aux problemes inverses. Par
exemple dans le cas riemannien, elle montre que le spectre du laplacien
détermine le spectre des longueurs des géodésiques périodiques.

La fonction ¢ de Riemann:

(e ]
=Y z= Il a-" »w>1

n=1 p premier
s’étend en une fonction méromorphe sur C ayant des zéros aux entiers pairs
< 0. Riemann a fait ’hypothese selon laquelle les autres zéros satisfont
R(s) = 1/2. Cette hypothése centrale en théorie des nombres est restée
improuvée depuis environ 150 ans.

Il existe des formules sommatoires ayant une analogie formelle avec celle

de Selberg pour ces zéros. A. Connes [22] vient de proposer un hamiltonien

quantique dont le spectre serait donné par ces zéros et ainsi une voie d’attaque
de I’hypothése de Riemann.




46 Y. COLIN DE VERDIERE
7.  STATISTIQUES SPECTRALES

Pour ceci, voir [9], [25], [41], [45], [46].

Il s’agit d’exprimer des propriétés de nature statistique d’une suite (infinie)
de nombres.

Soit £y < E, <--- < Ey < --- une suite infinie de nombres réels vérifiant
la condition asymptotique suivante :

(%) lim =~ =1.

On peut alors introduire plusieurs invariants statistiques, les plus simples
étant :

— la distribution du plus proche voisin p(s),

— I’écart quadratique par rapport a loi uniforme sur un intervalle de test
de longueur [/, Z*(/) qui mesure la rigidité du spectre.

Par exemple, on peut poser (en supposant que ces limites existent):

#{p<N|s<E, —E,<s-+ds}
N .

p(s)ds = NIEEO

Et de méme:

22 = lim (#H{p | E<E, <E+1} =D’

p(s) mesure donc la statistique des écarts de niveaux, alors que X%())
mesure la rigidité: Z?(I) petit signifie que la suite est presque une suite
arithmétique.

Si on a un vrai spectre, la condition (%) n’est pas satisfaite en général,
mais les asymptotiques de type Weyl permettent un reparamétrage du spectre
par une fonction puissance

Ey = cEy

de facon a ce que (x) soit satisfaite.

Des exemples: la distribution de Poisson consiste a prendre N points
répartis de fagon équiprobable dans un intervalle de longueur N et la limite
quand N tend vers I'infini. II est bien connu qu’on a alors:

s

p(s) =e”
De méme, on montre que

2 =1.
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p(s) »2(L) v
: Poisson.
.GOE . '/-/- ........... GOE
\ 3 it s
7
\ /
\ 7/
\ - P
A 7
~ _Poisson L7
~ O 3 <,
-~ H
T T s =~ ',/
0 S 0 L
FIGURE 11

Les statistiques spectrales: Poisson et GOE

Les spectres génériques ne sont pas poissonniens, ne serait-ce qu’a cause de
la répulsion des niveaux. Il est connu depuis Wigner et von Neumann (~ 1930)
que la condition )\, = A,41 définit un sous-ensemble de codimension 2 de
I’espace des opérateurs symétriques. On s’attend donc a: p(0) = 0 pour un
hamiltonien quantique générique. Cette répulsion de niveaux n’est pas satisfaite
dans les cas complétement intégrables; par exemple le tore R?/Z? a toutes ses
valeurs propres dégénérées ! Mais le cas completement intégrable est atypique
comme on le sait depuis Poincaré.

GOE: Décrivons brievement la théorie GOE. On considere des ensembles
(au sens de la thermodynamique) de matrices symétriques N X N dont les
€léments a;;, i < j sont des variables aléatoires normales indépendantes de
méme loi. On s’intéresse alors aux statistiques spectrales lorsque N — co. On
montre que le spectre se répartit dans un intervalle (—cv/N, cv/N) avec donc
un écart moyen 2¢/+/N. On renormalise en considérant )\, = %”/\,7 et on
peut alors calculer les limites thermodynamiques des statistiques_ spectrales.
Le livre de Mehta [41] en donne un exposé détaillé.

p(s) est proche d’une courbe ase=S /P suggérée par Wigner.

2
() = P1nz+o(1), [ — 00.

GUE: De méme si on s’intéresse aux matrices hermitiennes on obtient
les statistiques GUE.
Des expériences numériques :

On s’attend donc, et cela a €té explicitement proposé par des physiciens

d’Orsay ([9]) des 1984, a ce qu’a un flot géodésique chaotique corresponde
une statistique de type GOE pour le spectre.
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Les résultats numériques sont curieux: cela marche pour le stade ou le
billard de Sinai (tore de dimension 2 privé d’un disque), mais les expériences
menées sur certains triangles géodésiques du disque de Poincaré dont la
dynamique classique a les mémes propriétés que celles décrites plus haut
semblent montrer une dichotomie entre les triangles qui permettent de paver
H, par exemple les angles (7w/2,7/3,7/7) et plus généralement I’infinité de
possibilités

11
—+-+-<1,

T 1
r'’ p g r

T

P q
pour lesquels GOE ne marche pas et ceux qui ne pavent pas, par exemple
(w/2,7/3,27/15), pour lesquels GOE était vérifiée.

Cette dichotomie n’était pas la bonne comme l'ont vu il y a quelques
années E. Bogomolny, B. Georgeot et M.-J. Giannoni.

Il se trouve que, parmi les triangles (une infinité) qui pavent H, un certain
nombre fini dont la liste est connue correspondent a des sous-groupes dits
arithmétiques de SLy(R) et que ce sont ceux-la pour lesquels GOE n’est pas
satisfaite. Je ne vais pas me lancer dans une définition précise des groupes
arithmétiques, mais disons que D'arithméticité a comme conséquence une
grande dégénérescence du spectre des longueurs des gé€odésiques périodiques.
Cette dégénérescence est elle méme reliée a une famille de symétries
quantiques particulieres, appellées correspondances de Hecke. Ces symétries
supplémentaires, relativement cachées, font que ces hamiltoniens quantiques
ne sont pas génériques! Luo et Sarnak ([45]) ont démontré que GOE n’est
effectivement pas satisfaite dans les cas arithmétiques.

Lorsque T = SL,(Z), H/T est 'espace des réseaux de R? euclidien et
si on définit, pour tout réseau z, Y,(z) comme ’ensemble des sous-réseaux
d’indice n de z, les opérateurs T,p(z) = ) ey,

,@(z') commutent entre eux
et avec A: ce sont les opérateurs de Hecke ! ’

Les statistiques GUE sont utilisées lorsqu’il n’y a pas symétrie par inversion
du temps (champs magnétiques). Montgomery a remarqué en 1973 que ces
statistiques s’appliquent parfaitement aux zéros de la fonction ¢ de Riemann,
ce qui est cohérent avec 1’approche proposée par Connes dans [22], voir aussi
(371, [38].
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