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L'Enseignement Mathématique, t. 44 (1998), p. 23—51

UNE INTRODUCTION À LA MÉCANIQUE SEMI-CLASSIQUE")

par Yves Colin de Verdière

RÉSUMÉ. Ce texte est une introduction à la mécanique semi-classique à l'usage
des non-spécialistes.

Après avoir rappelé les contextes de la mécanique classique (géométrie symplec-
tique) et de la mécanique quantique, on introduit la mécanique semi-classique à partir
d'exemples simples: transformations de Fourier et de Legendre, principe de Huygens.

On décrit ensuite les formules de trace semi-classiques et la problématique du
chaos quantique.

1. Introduction

Le but de ces exposés est de servir de motivation et d'introduction au sujet.
Du point de vue de la physique, il s'agit de techniques qui remontent au début
de la mécanique quantique: le principe de correspondance affirme de façon

vague que la mécanique classique est la limite de la mécanique quantique
lorsque la constante de Planck h peut être considérée comme petite, autrement
dit que les actions S en jeu sont grandes devant h. Bien sûr, dire qu'une
théorie physique est une limite d'une autre théorie physique est un concept
important puisqu'une grande partie du savoir faire du physicien est de prévoir
ce qui est petit et ce qui est grand. La limite quantique-classique est plus
complexe que la limite relativiste-galiléen qui se réduit essentiellement à des

développements limités en où c est la vitesse de la lumière.

Depuis le début de la mécanique quantique, le passage à la limite
semi-classique est traité par des règles plus ou moins empiriques: les

développements BKW (Brillouin-Kramers-Wentzel) et les conditions de
quantification de Bohr-Sommerfeld font ainsi partie de l'outillage de base du

Rédaction d'exposés donnés dans le cadre de rencontres Genève-Grenoble-Lyon (24 et 25
avril 1997)
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physicien quantique. Ces méthodes ont leurs limitations intrinsèques:
difficultés liées aux caustiques, impossibilité de dire quelque chose de précis sur
les spectres dans les cas non complètement intégrables (i.e. génériques).

Du point de vue mathématique, les travaux de Maslov, Leray, Hörmander

en équations aux dérivées partielles linéaires (analyse micro-locale), dans

les années 65-70, ont donné une assise naturelle et solide aux calculs des

physiciens. En particulier, ces méthodes permettent de décrire de façon précise
le passage des caustiques et la nature des déphasages des fonctions d'ondes

en ces points (indice de Maslov).

L'application de ces méthodes aux équations de Schrödinger et à la

limite géométrique de l'optique ondulatoire a connu un grand développement

depuis les années 70. Ces travaux s'appuient sur des résultats de plus
en plus fins de mécanique classique des systèmes hamiltoniens (systèmes

complètement intégrables, théorie KAM, flots d'Anosov) en même temps que

sur des techniques d'analyse variées (intégrales oscillantes, estimations de type
elliptique, développements asymptotiques, méthodes de resommation, passage
dans le complexe). Un des problèmes clés est l'étude semi-classique des

spectres d'opérateurs: asymptotique des grandes valeurs propres des laplaciens
riemanniens, asymptotique du spectre d'un opérateur de Schrödinger lorsque
h -> 0+.

Après avoir brièvement rappelé le formalisme hamiltonien et le formalisme

quantique, je décrirai le problème de la limite semi-classique.

Je parlerai ensuite du spectre: depuis le cas complètement intégrable, en

passant par KAM, j'en viendrai à ce que je considère comme l'un des plus

jolis résultats de la théorie, la formule des traces dite de Gutzwiller dont je
donnerai une preuve heuristique basée sur l'intégrale de Feynman.

Je parlerai enfin de l'analyse fine du spectre semi-classique et du lien avec

la théorie des matrices aléatoires.

Je veux profiter de l'occasion pour introduire deux idées que je trouve

stimulantes et que je vous soumets :

1) La mécanique classique est certes une limite de la mécanique quantique,
mais la mécanique quantique est aussi un système hamiltonien classique

particulier (linéaire) et la dimension infinie n'en est pas le fait le plus important.

2) La limite semi-classique est habituellement présentée comme liée au

caractère linéaire de la mécanique quantique et dépendant essentiellement du

principe de superposition (phase stationnaire) : elle est aussi liée au phénomène

d'oscillations rapides (méthode de moyennisation) qui est un analogue non-

linéaire de la phase stationnaire.
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2. La mécanique classique

Pour cette section, voir [1], [3], [4], [28], [44], [48], [49], [50], [51].

2.1 Géométrie symplectique

L'espace des phases du système est une variété symplectique (Z,w). La

plupart du temps, c'est un cotangent T*X équipé de la structure canonique. Ce

peut être aussi une sous-variété algébrique lisse du projectif complexe équipé
de la structure symplectique partie imaginaire de la structure kaehlérienne ou

une variété obtenue par réduction symplectique à partir des précédentes.

On se donne ensuite une fonction H: Z —> R, l'hamiltonien du système.
On lui associe le champ de vecteurs XH, gradient symplectique de H, qui
donne la dynamique. Il est classique que la dynamique du système décrite par
le flot (fit de XH préserve H et la forme to.

Les exemples de base sont

Exemple 2.1. Z T*Rn et

#(*>£) ^ Il £ if + V(x),

la dynamique étant celle d'une particule dans le potentiel V, et £ étant
l'impulsion.

EXEMPLE 2.2. Z T*X où X est une variété riemannienne de métrique
g et

H(x,0\g\0,où g* est la métrique associée à g sur le cotangent donnée en coordonnées
locales par l'inverse de (gtj) avec g ds1 gtJ dxt dxj.

La dynamique est alors celle du flot géodésique.

EXEMPLE 2.3. Z PnC est muni d'une structure symplectique (à peu
près) canonique, associée à une structure hermitienne sur C/7+1 : on considère
la sphère unité de Cn+1 pour cette métrique hermitienne. La structure
symplectique de Cn+1, partie imaginaire de la forme hermitienne, induit une
2-forme sur cette sphère dont le noyau est constitué par l'action infinitésimale
de U( 1). Le quotient de cette action est Pn C qui est ainsi symplectisé.

L'objet le plus central en géométrie symplectique est sans doute la variété
lagrangienne.
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Une sous-variété lagrangienne L d'une variété symplectique (Z,cj) de

dimension 2n est une sous-variété isotrope pour la forme uj et de dimension n.
Si Z T*X et si L est le graphe d'une section (et s'identifie donc à

la donnée d'une 1-forme sur X), L est lagrangienne si et seulement si la
1-forme correspondante est fermée. Si L — (x,S'(x)), on dit que S est une
fonction génératrice. Si p: L —>• X est la projection, la caustique de L est

le sous-ensemble de L formé des points où la projection est critique. Il est

important pour la suite d'étendre la notion de fonction génératrice au cas des

caustiques: cela remonte à Maslov et Hörmander. On peut déjà en trouver
l'idée dans Huygens et Feynman.

Figure 1

Variétés lagrangiennes et caustiques

La notion de variété lagrangienne permet de généraliser la notion de

solution d'une EDP non linéaire du type:

H(x, S\x)) 0

L'équation de Hamilton-Jacobi

S't + H(x, S'x) 0

et l'équation eiconale de l'optique

m2 i

en sont des cas particuliers.
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Une telle solution généralisée est simplement une variété lagrangienne de

T*X contenue dans H 0.

On voit facilement que le champ Xh es* tangent à une telle variété. Bien

sûr, en général, il y a des caustiques (enveloppe des trajectoires).

Une autre notion importante attachée à une sous-variété lagrangienne L

de T*X est celle de fronts d'ondes: ce sont les feuilles du feuilletage défini

par la restriction à L de la 1-forme de Liouville a £dx. Leurs projections

sur X sont aussi appellées fronts d'ondes.

„ fronts d'onde

trajectoires

caustiques

Figure 2

Variété lagrangienne et fronts d'ondes

2.2 Variétés lagrangiennes et fonctions génératrices

Une variété lagrangienne a en général des caustiques et ne peut donc

pas être représentée par une fonction génératrice naïve. On a recours à une

famille de fonctions ip(x,6), 6 e R^. Si on considère les fronts d'ondes

Fq^ {x | (p(x,9) a}, leur enveloppe est donnée classiquement comme
l'ensemble des solutions de (p a, detp 0. A cette enveloppe est

associée l'ensemble des (x, dxip) qui se trouve être, sous des hypothèses de

non-dégénérescence, une variété lagrangienne. On retrouve une construction

d'Huygens: l'enveloppe d'une famille de fronts d'ondes est un nouveau front
d'onde.

C'est un théorème que toute variété lagrangienne admet une représentation
de ce type. Une telle famille est du reste unique à des opérations élémentaires

près: c'est un théorème dû à Hörmander.



28 Y. COLIN DE VERDIERE

La situation géométrique est celle d'une fibration F: E —> X et d'une
fonction E —> R. Si Lo est le graphe de dp contenu dans T*E, on passe de

Lq à L par la réduction symplectique associée au fibré conormal de la fibration.

En particulier, si C: TX —> R est un lagrangien régulier et Qt l'ensemble
des applications de 7: [0,t] — X fibré sur X x X par 7 —> (7(0), 7(0) et

0(7) fo £(j(s), y'(s))ds, la variété lagrangienne associée est le graphe du

flot hamiltonien pt associé au lagrangien C par la transformée de Legendre.
La fonction génératrice O est bien sûr reliée à l'intégrale de Feynman.

3. La mécanique quantique

Pour cette section, voir [10], [32], [39], [47], [43].
Ici l'espace des phases est un espace de Hilbert (parfois de dimension

finie); pour être plus précis, c'est le projectif complexe de cet espace, mais

on peut négliger ce détail.

La dynamique est donnée au moyen d'un opérateur auto-adjoint H (avec

domaine) sur EL grâce à l'équation de Schrödinger:

dont le flot est le groupe à un paramètre d'opérateurs unitaires donné par:
U(t) e-i,R/h

La constante h n'est pas là uniquement pour faire joli, en général H
est une énergie et donc h a les dimensions d'une action, car on ne peut

exponentier que des quantités sans dimension

EXEMPLE 3.1. EL L2(Rn) et H -yÀ+ y. On a alors l'équation de

Schrödinger.

EXEMPLE 3.2. EL L2(X) et H \ésg, où Ag est le laplacien
riemannien. On a l'équation de Schrödinger associée au flot géodésique.

EXEMPLE 3.3. Si E est le fibré anti-canonique sur PnC, on considère

l'espace de Hilbert des sections holomorphes de E®N qui s'identifie à l'espace
des polynômes homogènes de degré N sur C"+1.

Si H: PnC R, on considère les opérateurs de Toeplitz H^cp

où Fi/y est la projection orthogonale des sections sur les sections holomorphes.

Voir [19].
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La ressemblance entre les exemples de ce paragraphe et du précédent n'est

pas fortuite, comme on va le voir.

Il faut aussi remarquer que la mécanique quantique est un cas particulier
de la mécanique classique, celui où l'hamiltonien est une forme hermitienne

sur un espace de Hilbert. De ce point de vue, il n'est pas très excitant: la

dynamique est quasi-périodique, les fréquences fondamentales étant liées de

façon simple au spectre de H.
Les correspondances entre espace des phases classiques et quantiques

(flèches entre 2 catégories) peuvent être prolongées de façon heuristique, par
exemple correspondance entre volume et dimension, entre variétés lagrangi-
ennes et vecteurs, entre produits et produits tensoriels, entre changement de

signe de uo et passage au dual.

Pour être plus pédant, on pourrait parler de la catégorie symplectique dont
les objets sont les variétés symplectiques et les flèches de Z à Z' les sous-
variétés lagrangiennes de (Z x Z' ,uj' -u) et de la catégorie hilbertienne dont
les objets sont les espaces de Hilbert et les flèches les opérateurs unitaires.

On obtient ainsi le tableau de correspondance suivant qu'il est intéressant
d'essayer de prolonger!!

Classique Quantique

(Z,UJ) 7ï

(T*X,w) L\X)
Llagrangienne tpeH,II^H 1

LC(Zj x Z2, — cji) U: H\ -*H2
1 f .An
ni Jz dim H

XÎN H autoadjoint

1iiéii2 + vm -y/\ + y

^9

ft e-»S

Legendre Fourier

Trajectoires périodiques Fonctions propres

Périodes Spectre
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4. La mécanique semi-classique

Pour cette section, voir [2], [25], [29], [32], [42], [44], [51].

4.1 Introduction

Du point de vue physique, la mécanique quantique est apparue comme
nécessaire pour remplacer la mécanique classique dans certaines situations

(atomes et molécules, physique des étoiles).

De même, l'optique géométrique doit être remplacée par une optique
ondulatoire (Maxwell).

Le point commun est l'étude d'EDP linéaires dépendant d'un petit (ou

grand) paramètre: équation de Schrödinger avec h petit, grandes valeurs

propres du laplacien riemannien, solutions' à grandes fréquences des équations
de Maxwell.

On peut aussi considérer de façon plus générale la dégénérescence de

systèmes hamiltoniens (en dimension finie ou infinie) dépendant d'un petit
paramètre vers d'autres systèmes hamiltoniens de dimension plus petite.
La méthode de moyennisation est un peu le prototype de ces limites : les

oscillations rapides du système (penser à un gyroscope) donnent lieu à un

découplage entre une dynamique rapide et une dynamique lente qui est à

nouveau hamiltonienne sur un espace des phases réduit.

Figure 3

Méthode de moyennisation

Si on considère un hamiltonien

H£ — —Ho -(- H\
£

sur une variété symplectique de dimension 2n et qu'on suppose que les

trajectoires de Ho contenues dans la couche d'énergie Eq sont périodiques
de période Tq, on peut introduire la variété symplectique ZEq de dimension
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2(n — 1) des trajectoires de Ho contenues dans la couche d'énergie Eq et

la munir de l'hamiltonien moyenné K jr J^H\dt décrivant une dynamique

sur les trajectoires de Hq. Cette dynamique décrit bien le comportement des

trajectoires de He dans un intervalle de temps de l'ordre de 1.

4.2 La phase stationnaire

Voir [36].

Dans le cas qui nous préoccupe dans la suite (linéaire), ce découplage

est une conséquence de la phase stationnaire: si on considère une intégrale
oscillante du type:

1(h) elS^x^ha(x)\dx\
JR"

où S: Rn R est C°° et a G C^°(R/Z,C), le comportement asymptotique
de 1(h) quand h tend vers 0 est contrôlé par les points critiques de S situés

dans le support de a. Lorsque ceux-ci sont non dégénérés, on a une formule

explicite pour le développement asymptotique. Les faits remarquables sont les

suivants: le comportement est en h'^2, il y a une phase liée à l'indice de la
hessienne de S aux points critiques.

Plus précisément, si S n'a qu'un point critique supposé non dégénéré xo
dans le support de a de signature cr, on a:

1(h) ~ (2tt hy,/2eiS(x0)/h tan/A*»(*>)

|det(S"(*o))|1/2

Le coefficient principal (amplitude) admet une interprétation géométrique
comme densité relative de 2 mesures en x0 : la mesure a(x)dx et la mesure
associée canoniquement à S" (comme en riemannien). Cette remarque est à

l'origine de la géométrisation du calcul des intégrales oscillantes.
Donnons 3 applications semi-classiques simples de la phase stationnaire :

Exemple 4.1 (Fourier et Legendre).
Soit S: U — R une fonction C°° définie sur un ouvert U C R" et

supposons que x Sfx) est un difféomorphisme C°° de U sur un ouvert
L du dual de R". Soit alors S(fi) : V —» R la transformée de Legendre de S

caractérisée par

{(x,s'(x)) \xe u}={(5'(0,0 lîev},
normalisée par 5(£0) + S(x0) x0£o pour un point £o S'(x0).
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Figure 4

Transformation de Legendre

Soit a G Cq°(U) et

Fh<P(0J e~'xi/h(fi(x)\dhx\,

où \dhx\ est une mesure de Haar sur Rn normalisée pour que J~h soit unitaire
de L2(Rnfdhx\) sur L2(Rn,|4£|).

Alors

Th{a{x) eiS^'h)(0~ A(0 e~iS^h

où S est la transformée de Legendre de S.

On peut donc dire que la transformée de Legendre est la limite semi-

classique de la transformée de Fourier.

Exemple 4.2 (vitesse de phase et vitesse de groupe).
Soit a(k) gkkx-uiQt) une onde plane monochromatique de fréquence u{k)

dans RL Sa vitesse de propagation est v C'est la vitesse de

déplacement des hyperplans d'égale phase

kx — uj{k)t cto

souvent appellée vitesse de phase.

Si on prend une superposition de telles ondes de la forme

F(x, t)J a{k)eikx-u(-k),\dk\,

avec k grand, la fonction F est négligeable en dehors des point (x, t) tels

que x lo'{k)t qui se propagent à la vitesse co'{k) appellée vitesse de groupe
du paquet d'onde.
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Exemple 4.3 (principe de Huygens).
Considérons une onde sphérique de la forme

a(x)e'kr

issue de l'origine. Soit maintenant X une surface et considérons une

superposition d'ondes sphériques émises par les points de X de la forme

Le comportement asymptotique lorsque k est grand est négligeable sauf si M
est sur une normale à IL. La phase est alors donnée à une constante près par

à condition que M ne soit pas un point focal, et où n(M) est l'indice de

Morse de la fonction distance.

On voit donc qu'aux grandes fréquences le front d'onde (phases constantes)
est l'enveloppe des fronts sphériques issus de X, ce qui est le principe de

Huygens en optique géométrique.

kd(A, M) - n(M)f

Figure 5

Principe de Huygens
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4.3 EDP LINÉAIRES AVEC UN PETIT PARAMÈTRE

En général, on étudiera une équation du type :

P(/z,X5~) a aa(x,h)(^dx)a
\&\<N

où les aa(x,h) sont de la forme:

aa(x,h) ^2
j>o

On définit alors

Po(x,o Y,<oC,
qui est appellé symbole principal de P. On supposera dans ce qui suit que
Po ne prend que des valeurs réelles.

Le but est de décrire les (des) solutions de

Phuh 0(h°°).

Exemple 4.4.

P=~~A+V~E, P0

(valeurs propres de Schrödinger).

h du h2
Au + Vu, P0 r-H(x, O,

i dt 2

(Schrödinger dépendant du temps).

A~2a3— 1, Po" g*(x,0 —1,

(grandes valeurs propres du laplacien).

Les solutions BKW

On considère l'action de P sur une fonction oscillante et on développe en

puissances de h :

P{a{x)eiS(x)/h) eiS(x)/h(P0Qc, S'(x))a(x)+ - + P,(x. S'(x))a(x)) 2))

où Af ^2dç.Po(x,S'(x))dXi et P](x. 0, le symbole sous-principal de P, est

une fonction sur T*X.
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Résoudre P(aelS!h) 0(h2) équivaut donc à résoudre l'équation eiconale

Pq(x,S'(x)) 0, puis une équation différentielle le long des trajectoires de

A. Ces deux opérations gardent un sens pour les solutions généralisées, en

particulier, A est la projection sur X de XpQ et donc on peut lire les équations

de transport sur la variété lagrangienne.
Dans le cas de Schrödinger, l'équation de transport s'écrit:

Xa -f -ASa 0.
2

Elle s'interprète géométriquement comme l'invariance par le flot hamiltonien de

la demi-densité a(x)\dx\1/2. Le carré a(x)2\dx\ s'interprète bien en mécanique

quantique comme une mesure: la probabilité de présence de la particule.
Pour mettre tout cela en place, on associe, à la représentation de L à partir

d'une famille de fonctions, des superpositions de fonctions oscillantes

fix) Jei,fi(x'e)/ha0)dd.

Exemple 4.5 (la fonction de Airy). On définit

Aih(x) (2tt/z) ^ f e^~^/hd£ h~l^eAi{xh~2^).
JR

Cette fonction est associée à la variété lagrangienne

qui admet une caustique en (0,0).
La fonction de Airy décrit en fait le comportement universel des intégrales

oscillantes associées aux singularités plis.

L
Figure 6

La fonction de Airy
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Le résultat net est la possibilité d'associer à toute variété lagrangienne L
vérifiant (Po)|l 0 des solutions locales de Pu — 0(h2) et même 0(h°°) si

on réfléchit un peu.
Ces solutions ne se globalisent pas toujours: ce sont les conditions de

quantification.
Dans les cas les plus simples, par exemple dans les exemples 4.6 et 4.7, il

s'agit d'une condition portant uniquement sur L : la classe de cohomologie de

de Rham de la forme de Liouville a £dx satisfait des conditions d'intégralité
du type

[a] G 27rh(Zn + /i),
où p G \fLn est Y indice de Maslov.

En effet, une fois l'existence d'une densité invariante assurée, il reste le

problème des phases qui sont données localement par S dont la différentielle
est la restriction à L de a (on retrouve la définition des fronts d'ondes comme
feuilles de phases constantes). La contribution des caustiques est donnée par
l'indice de Maslov qui a son origine technique dans la phase stationnaire..

Exemple 4.6 (les séries de Fourier). On considère l'opérateur hdx

sur R/27tZ. Son symbole principal est £ et la condition de quantification sur
la variété £ a est

2ixa - 2irhn

soit a — hn. On retrouve comme spectre les hn, n G Z et les séries de Fourier

Exemple 4.7 (l'oscillateur harmonique).

H= ^(-d2x+V).

Le symbole principal est

et les conditions de quantification s'écrivent pour la variété H E :

2itE 2irh{n 4- -).
Elles donnent le spectre exact:

En h(n + -).
Cela n'est pas surprenant, car le changement x — \fhx \ transforme Hh

en hH\.
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Figure 8

L'espace des phases de l'oscillateur harmonique
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4.4 Le cas de Schrödinger et l'intégrale de Feynman

Voir [27], [13].
Dans le cas de Schrödinger dépendant du temps, on obtient une

représentation à la Feynman:

p(t,x,y)= f
Bien sûr, cette intégrale n'a pas de statut mathématique bien solide,

contrairement à la mesure de Wiener. On doit comprendre dj comme une

mesure de Lebesgue.

5. Le spectre semi-classique

5.1 La formule de Weyl

Voir [8], [32].
On considère le spectre de l'opérateur de Schrödinger dans Kn

h2

H=--A + V-E,

où on suppose V C°° et liminf^oo V > 0 Alors le spectre négatif de H
est discret; on l'écrit:

Ex{h)<E2(h) <

Si E < 0, on considère le comportement asymptotique semi-classique de

Nh{E) #{j | E}.

Il se trouve que F asymptotique de Nh(E) est purement classique

Nh(E)~ (^Ly vol({P0(x, 0 <

ce qui signifie que chaque état propre occupe une région de volume (2irh)n^2

de l'espace des phases. C'est une des versions de la correspondance entre

volume et dimension. Cela permet parfois de déterminer le H effectif d'un

problème de type semi-classique.

De nombreux auteurs se sont préoccupés d'obtenir des estimations du reste

du type
Nh(E) Ch~n( 1 + 0(ha))
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La meilleure estimation générale (a 1) dans le cas où E n'est pas valeur

critique de H(x,Q est celle de Hörmander ([35]). Cette estimation a été

améliorée par Duistermaat et Guillemin [23] en un oQi) dans le cas (générique)

où l'ensemble des trajectoires périodiques est de mesure nulle et Bérard ([7])

a montré que, dans le cas riemannien sans points conjugués, on peut améliorer

le reste en 0{h/\\nh\).
Cette asymptotique n'est pas vraie pour un hamiltonien arbitraire, en

particulier elle est incorrecte dans le cas des bouteilles magnétiques : la vraie

asymptotique est donné par le nombre de pavés d'un pavage par des images

de cubes standards par des plongements canoniques (voir [14]).

5.2 Le spectre dans le cas complètement intégrable: coordonnées

ACTIONS-ANGLES SEMI-CLASSIQUES

Voir [16], [17], [18].

Du point de vue classique, un flot hamiltonien est dit complètement

intégrable si l'espace des phases admet (presque partout) un feuilletage

lagrangien en tores invariants par le flot hamiltonien. Cela correspond donc à

un hamiltonien sur le tore Rn/Zn de la forme H(Q.
L'hamiltonien quantique naturellement associé est donc

H H{-dx)
l

dont le spectre est formé des points

Hilnhp), p G Z"

On peut retrouver ce spectre au moyen des conditions de quantification

[a] G 2irhZn

En fait, il faut introduire les corrections des indices de Maslov, ce qui
correspond à remplacer Zn par un translaté p + Zn.

Tout ceci peut se justifier rigoureusement.

L'analyse précise des singularités du système complètement intégrable
nécessite l'introduction de conditions de quantification modifiées que nous

avons traitées avec Bernard Parisse en dimension 1 ([20] et [21]) et que San

Ngoc Vu est en train de traiter en toute généralité. Ces travaux permettent de

décrire pour un système complètement intégrable avec singularités de Morse

l'asymptotique semi-classique de toutes les valeurs propres.
En particulier, dans le cas d'un double puits de potentiel pair en dimension

1, nous avons décrit avec Bernard Parisse la transition du spectre près
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de l'énergie correspondant au maximum local V0 du potentiel: il s'agit d'une
transition (universelle) entre les doublets de parité

^2k-\ < ^2k < ^2k-\ + 0(e c!h),

A2k Vo) et les valeurs propres régulièrement espacées pour Vq

Cette approche est encore valable dans le cadre de la théorie KAM (cf.

[16]) de 2 façons différentes:

- pour décrire le spectre semi-classique d'un sytème hamiltonien proche
d'un système intégrable;

- en considérant le cas où le système est classiquement complètement

intégrable et non quantiquement complètement intégrable comme une perturbation

d'un système complètement intégrable.

Ce dernier cas se rencontre par exemple pour l'étude des grandes valeurs

propres de À+V où À est le laplacien plat sur le tore (intégrable quantiquement

par les séries de Fourier) et V en est une petite perturbation à la limite des

grandes valeurs propres.

V(x)

x

Figure 9

Le spectre du double puits symétrique
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6. Le cas général : LA formule des traces SEMI-CLASSIQUES

Dans le cas non complètement intégrable, la calcul approché du spectre est

impossible, comme cela a été remarqué par Einstein dans [26]. Dans les années

70 sont apparues de nouvelles méthodes que l'on désignera sous le nom de

formules de traces semi-classiques. Il s'agit de formules asymptotiques pour la

densité régularisée de valeurs propres. D'abord apparues chez des physiciens

(Gutzwiller [30], Balaian et Bloch [5], [6]), ces formules ont été justifiées
rigoureusement par les mathématiciens, d'abord dans ma thèse [12], utilisant
une approximation de l'intégrale de Feynman, puis dans les travaux qui s'en

sont inspirés, ceux de Chazarain [11] et de Duistermaat-Guillemin [23] en

utilisant les OIF.

6.1 Densités régularisées

Pour obtenir des renseignements plus fins sur la fonction (discontinue)
Nj7(E), il est agréable de la régulariser (au sens de Schwartz), on pose donc

pour une fonction p lisse, d'intégrale 1 et à décroissance rapide:

Lorsque e tend vers 0, NPe(p,) décrit une densité régularisée correspondant
à un regroupement de paquets de valeurs propres de largeur - e Autrement
dit on observe le spectre avec un grossissement 1 /e.

Np(E) J2p(E-En).
Il

En fait, on utilise souvent une famille

Pe

U
V

Figure 10

La densité spectrale régularisée
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Le lien entre la densité régularisée et l'équation de Schrödinger est

donné par la formule d'inversion de Fourier: si p(t) — f e~ltflp(pJ)dp et

Z(t) Trace^-^/^), on a:

Si on veut une analyse fine p doit être très localisée et cela implique que p est

très étalée et donc une connaissance de Z(t) (et donc de U(t)) pour t grand.
A la limite le spectre exact est lié aux solutions périodiques de l'équation de

Schrödinger qui sont donc connues pour tout t G R.
Deux échelles sont très importantes, s — h qui correspond du point de

vue classique à un intervalle de temps borné et qui prend en compte un
nombre de valeurs propres dans un intervalle de longueur ~ h qui en compte
environ hn~l et l'échelle s hn qui correspond à la séparation des niveaux

(Weyl) (et donc à une analyse fine du spectre analogue à celle donnée par
Bohr-Sommerfeld) et à un temps de l'ordre de 1 /hn~l.

La première échelle est une échelle non universelle donnée par les formules
de traces semi-classique, alors que les échelles plus fines sont (au-delà du semi-

classique) le domaine des classes d'universalités (GOE, GUE, Poisson) (voir
section 7).

L'étude à ces échelles est difficile d'accès par les méthodes semi-classiques

qui décrivent mal les asymptotiques simultanées h —> 0 et t —» oo ; ce

phénomème fondamental (et mystérieux) est appellé par certains auteurs

rupture de l'approximation semi-classique.

La limite semi-classique se décrit bien en termes de l'évolution d'une
fonction d'onde localisée de la forme:

appellé état cohérent. L'évolution semi-classique de O, U(t)0^ est donnée

lorsque t reste borné par une fonction d'onde du même type localisée au

point <Pt(Xo-,Po) °ù (ft est Ie fl°t classique. Lorsque t augmente, cette fonction

gaussienne se délocalise en un temps lié à l'exposant de Liapounov À :

qui est le temps nécessaire pour qu'une région initiale de diamètre h ne soit

plus localisée près de la trajectoire classique. Au delà de ce temps la non

linéarité de la dynamique classique joue pleinement son rôle et U(t)0 reste

localisée sur la variété instable de (x0,p0) qui s'enroule de façon compliquée
dans l'espace des phases Z.

d?XoiPp(x) céH W

r - 21 ln fi. j
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6.2 LA FORMULE DES TRACES DE SELBERG

Pour plus de détails sur cette section, voir par exemple l'excellent papier
de Hejhal [33]. Le flot géodésique sur les surfaces de Riemann à courbure —1

n'est pas intégrable et on ne peut pas espérer non plus de formules explicites

pour le spectre du laplacien. On devra se contenter de formules sommatoires

qui généralisent la formule de Poisson.

Prenons l'hamiltonien quantique

i dx

sur le tore de dimension 1, X R/Z. Son spectre est formé des nombres

27i7z, n G Z (séries de Fourier).
On a alors la formule suivante, pour p G <S(R) :

L -27rw)= »

n£Z mGZ

OÙ

p(0 J dp,

est la transformée de Fourier de p (qui est bien une fonction du temps...).
C'est la classique formule sommatoire de Poisson.

On s'intéresse donc à la densité régularisée

Np(p) ~ L p^p ~
n

où les valeurs propres du laplacien sont \n | + p}n.

Motivé par l'analogie avec la fonction £ de Riemann, A. Selberg a montré
en 1956 que, pour des fonctions p convenables, Np(p) admet une expression
exacte comme somme d'un terme régulier non oscillant NTf(p) dont la partie
principale est donnée par Weyl :

Aire(A)
Ntfkp) ~ — p2tt

et de termes oscillants N7(p) associés aux géodésiques périodiques.
L'expression de iV7 est :

N1{p) p{L1)c{7)é>S
où L7 est la longueur de la géodésique périodique 7 et c(7) est un nombre
complexe non nul calculable en termes de la dynamique linéarisée près de 7
(application de Poincaré linéarisée, indice de Morse).
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6.3 La formule des traces semi-classiques

Cette formule s'étend en une formule asymptotique (appellée formule
de traces de Gutzwiller dans la littérature) valable en toute généralité (en

particulier sans aucune hypothèse de type chaos classique, le cas complètement
intégrable étant une conséquence de la formule sommatoire de Poisson) à

condition de prendre p telle que p soit à support compact, ce qui revient à

ne considérer la dynamique de l'équation de Schrödinger que sur un intervalle
borné en temps et donc une contribution d'un nombre fini de géodésiques

périodiques, en vertu de la formule d'inversion de Fourier:

Donnons un énoncé assez précis pour l'équation de Schrödinger.

THÉORÈME 1. Soit E une énergie non critique pour Vhamiltonien classique

H, x C Cjf(R) égale à 1 près de E et p{E) une fonction dont la transformée
de Fourier est à support dans \t\ < T.

On suppose que les trajectoires périodiques 7 de X# contenues dans

{H E} sont non dégénérées au sens que Vapplication de Poincaré linéaire

P1 n'admet pas 1 comme valeur propre. Soit > 0 la plus petite période
de 7 et m1 l'indice de Morse de 7 comme courbe fermée et e7 O ou 1.

Alors :

(6.1) =Nw(E) + Y^N7(E),
j 7

OÙ

(6.2) NW(E)C(. E)h-(n~l\+ 0(h))

et

(6.3) Nl{E) + 0(A)).

La justification heuristique la plus simple est liée à l'intégrale de Feynman;
donnons-la: le propagateur quantique

p(t,x,y)

noyau intégral de l'opérateur U(t) est cjonng seion Feyn-

man ([27]) comme une superposition d'amplitudes associées aux différents
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chemins 7 e £2x,y,tquiest l'ensemble de chemins (7: [0, —> X tels que

7(0)= a, 7(0 =y):

p(t,x,y)e*'°
jQX,y,t

où C: TX —> R est le lagrangien classique. Dans le cas des géodésiques, le

lagrangien est l'énergie cinétique

Si Çlt désigne maintenant l'espace des lacets fermés parcouru en le temps

t, on obtient la fonction de partition quantique:

Z(() Ve-''^= f p(t,x,x)dx[
JX JQ,

comme une intégrale sur les lacets. L'application de la phase stationnaire,

lorsque h tend vers 0, fait apparaitre les trajectoires fermées comme points

critiques de 0(7) AtC?)? Y (s)) ds sur £2r-

Dans le cas de Selberg, il se trouve que, bien que la surface X puisse

être compliquée, l'espace Çlt se décompose en composantes connexes simples,

une par géodésique périodique et que la décomposition de Z(t) en somme

d'intégrales sur ces composantes connexes permet de prévoir une formule
sommatoire exacte.

La formule de traces semi-classiques donne certes des informations sur
le spectre, mais elle a surtout une application aux problèmes inverses. Par

exemple dans le cas riemannien, elle montre que le spectre du laplacien
détermine le spectre des longueurs des géodésiques périodiques.

La fonction £ de Riemann :

00
1 1

^)=e^7= n (i"E^
n—{ p premier

s'étend en une fonction méromorphe sur C ayant des zéros aux entiers pairs
< 0. Riemann a fait l'hypothèse selon laquelle les autres zéros satisfont
SRC?) 1/2. Cette hypothèse centrale en théorie des nombres est restée

improuvée depuis environ 150 ans.

Il existe des formules sommatoires ayant une analogie formelle avec celle
de Selberg pour ces zéros. A. Connes [22] vient de proposer un hamiltonien
quantique dont le spectre serait donné par ces zéros et ainsi une voie d'attaque
de l'hypothèse de Riemann.
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7. Statistiques spectrales

Pour ceci, voir [9], [25], [41], [45], [46].
Il s'agit d'exprimer des propriétés de nature statistique d'une suite (infinie)

de nombres.

Soit E\ < E2 < < En < • • une suite infinie de nombres réels vérifiant
la condition asymptotique suivante:

(*) lim \.
n—>00 /V

On peut alors introduire plusieurs invariants statistiques, les plus simples
étant :

- la distribution du plus proche voisin p(s),

- l'écart quadratique par rapport à loi uniforme sur un intervalle de test
de longueur /, X2(/) qui mesure la rigidité du spectre.

Par exemple, on peut poser (en supposant que ces limites existent) :

#{p<AM,<E,t,—£„<, + &}
FK 2

N-*00 N
Et de même:

E2(0 lim (#{p \E<Ep<E+l}-l)2
E-^OC

p(s) mesure donc la statistique des écarts de niveaux, alors que Z2(/)

mesure la rigidité: Z2(/) petit signifie que la suite est presque une suite

arithmétique.
Si on a un vrai spectre, la condition (*) n'est pas satisfaite en général,

mais les asymptotiques de type Weyl permettent un reparamétrage du spectre

par une fonction puissance
F' — rFar,N — C&N

de façon à ce que (*) soit satisfaite.

Des exemples : la distribution de Poisson consiste à prendre N points

répartis de façon équiprobable dans un intervalle de longueur N et la limite
quand N tend vers l'infini. Il est bien connu qu'on a alors:

p(s)e~s

De même, on montre que

E\l)l
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S2a(L) /

\GOE GOE

\ •

\ /
\ Poisson

0 0 L

Figure 11

Les statistiques spectrales : Poisson et GOE

Les spectres génériques ne sont pas poissonniens, ne serait-ce qu'à cause de

la répulsion des niveaux. Il est connu depuis Wigner et von Neumann (^1930)
que la condition Xp \p+\ définit un sous-ensemble de codimension 2 de

l'espace des opérateurs symétriques. On s'attend donc à: p(0) 0 pour un
hamiltonien quantique générique. Cette répulsion de niveaux n'est pas satisfaite

dans les cas complètement intégrables; par exemple le tore R2/Z2 a toutes ses

valeurs propres dégénérées Mais le cas complètement intégrable est atypique
comme on le sait depuis Poincaré.

GOE: Décrivons brièvement la théorie GOE. On considère des ensembles

(au sens de la thermodynamique) de matrices symétriques N x N dont les

éléments atj. i < j sont des variables aléatoires normales indépendantes de

même loi. On s'intéresse alors aux statistiques spectrales lorsque N oo. On

montre que le spectre se répartit dans un intervalle (—cy/N, c\/N) avec donc

un écart moyen 2c/y/N. On renormalise en considérant \'n ^ \n et on

peut alors calculer les limites thermodynamiques des statistiques spectrales.
Le livre de Mehta [41] en donne un exposé détaillé.

p(s) est proche d'une courbe ase~s~!b suggérée par Wigner.

GUE: De même si on s'intéresse aux matrices hermitiennes on obtient
les statistiques GUE.

Des expériences numériques :

On s'attend donc, et cela a été explicitement proposé par des physiciens
d'Orsay ([9]) dès 1984, à ce qu'à un flot géodésique chaotique corresponde
une statistique de type GOE pour le spectre.

X2(/) — —— ln/ + o(l), / —> oo
nTl7T
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Les résultats numériques sont curieux: cela marche pour le stade ou le

billard de Sinaï (tore de dimension 2 privé d'un disque), mais les expériences
menées sur certains triangles géodésiques du disque de Poincaré dont la

dynamique classique a les mêmes propriétés que celles décrites plus haut

semblent montrer une dichotomie entre les triangles qui permettent de paver
H, par exemple les angles (7r/2, 7t/3, tt/1) et plus généralement l'infinité de

possibilités

,7T 7T 7T 1 1 1

(— ; —
; ~) *

1 1 < 1
•

p q r p q r

pour lesquels GOE ne marche pas et ceux qui ne pavent pas, par exemple

(7t/2, 7t/3. 2tt/15), pour lesquels GOE était vérifiée.

Cette dichotomie n'était pas la bonne comme l'ont vu il y a quelques
années E. Bogomolny, B. Georgeot et M.-J. Giannoni.

Il se trouve que, parmi les triangles (une infinité) qui pavent //, un certain

nombre fini dont la liste est connue correspondent à des sous-groupes dits

arithmétiques de SL2(R) et que ce sont ceux-là pour lesquels GOE n'est pas

satisfaite. Je ne vais pas me lancer dans une définition précise des groupes
arithmétiques, mais disons que l'arithméticité a comme conséquence une

grande dégénérescence du spectre des longueurs des géodésiques périodiques.
Cette dégénérescence est elle même reliée à une famille de symétries

quantiques particulières, appellées correspondances de Hecke. Ces symétries

supplémentaires, relativement cachées, font que ces hamiltoniens quantiques

ne sont pas génériques Luo et Sarnak ([45]) ont démontré que GOE n'est
effectivement pas satisfaite dans les cas arithmétiques.

Lorsque T — SL^iZ), H/Y est l'espace des réseaux de R2 euclidien et

si on définit, pour tout réseau z, Yn(z) comme l'ensemble des sous-réseaux

d'indice n de z, les opérateurs Tnp(z) YsZ'eY„(z) commutent entre eux

et avec À : ce sont les opérateurs de Hecke

Les statistiques GUE sont utilisées lorsqu'il n'y a pas symétrie par inversion

du temps (champs magnétiques). Montgomery a remarqué en 1973 que ces

statistiques s'appliquent parfaitement aux zéros de la fonction £ de Riemann,

ce qui est cohérent avec l'approche proposée par Connes dans [22], voir aussi

[37], [38].
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