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Il achéve la remarque 5 de son article Sur les suites récurrentes... par ce
paragraphe prémonitoire, treize ans avant son premier mémoire sur la variation
des constantes appliquées au systeme des planétes:

«Il est visible au reste que cette méthode, que je ne fais qu’exposer ici en
passant, peut s’appliquer également au cas ol l’on aurait plusieurs €quations
différentielles entre plusieurs variables dont on connaitrait les intégrales com-
pletes approchées, c’est-a-dire en y négligeant des quantités supposées tres
petites. Elle sera par conséquent fort utile pour calculer les mouvements des
planétes en tant qu’ils sont altérés par leur action mutuelle, puisqu’en faisant
abstraction de cette action la solution complete du probleme est connue; et
il est bon de remarquer que, comme dans ce cas les constantes a, b, c,...
représentent ce qu’on nomme les éléments des planétes, notre méthode donnera

immédiatement les variations de ces éléments provenantes de 1’action que les
planetes exercent les unes sur les autres. »

On peut se demander quelle est alors la différence entre cette méthode,
introduite dans les années 1770, et son application au cas du systeme des
planctes ? Elle releve principalement du type de systeme traité. En appliquant
sa méthode générale de la variation des constantes aux systemes différentiels
spécifiques de la mécanique, Lagrange fait apparaitre une structure particuliere,
qui n’existe pas dans le cas général et qui est a 'origine de la géométrie
symplectique. Cette structure, caractérisée par les crochets et parentheses qu’il
a définis, Lagrange va savoir en tirer profit, comme il I’espérait, dans 1’étude de
la stabilité du grand axe des planetes, c’est ce que nous allons voir maintenant.

3. APPLICATION A LA STABILITE SECULAIRE DU GRAND AXE

Nous sommes en mesure maintenant de déduire, de toutes ces transforma-
tions et manipulations algébriques, le théoreme de Lagrange sur la stabilité
du grand axe des planétes. Appliquons la formule (23) a I’époque ¢ :

0Q da db dk
25 —— : — — * o o —
(25) By [c,a] 5 + [c, b] d[ + -+ [, k] o
On peut vérifier que les crochets [c, b], [c, h], [c,i], [c, k] sont nuls; il reste:
o0Q 1 da
(26) c,al = —1/2a* dot —=-— 2
L, a] / N e T T a

Si on se rappelle alors que le demi-grand axe a est égal & —1 /f, ou la

constante des forces vives f est le double de 1’énergie '’y H du mouvement
képlérien, on obtient:

'Y La lettre H a été choisie par Lagrange en ’honneur de Huygens et non de Hamilton, voir
[Lagll, tome I, pages 217-226 et 267-270).
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dH  0Q
dt  Oc’

Cette formule est en réalité tres générale et Lagrange 1’établit pour tous les
problémes de mécanique analytique conservatifs [Lag09].

27)

Comme nous ’avons déja dit, le potentiel de perturbation € (fonction de r)
est considéré comme fonction de ¢ et des éléments képlériens (a, b, c, h,i,k).
Mais le temps n’intervient dans € que par 7 — ¢, plus précisément € n’est
fonction que de (a,b,t—c,h,i, k). En effet dans les coordonnées du plan de
’orbite, en prenant pour axe des x 1’axe du vecteur E et en posant r = (x,y),
on a:

(28) x=ay/1— g— +acos(f) et y= Vab sin(f) ,

ou I’anomalie excentrique 6 est donnée en inversant la formule (12) de Kepler.
On peut préciser davantage les choses en notant ¢g la fonction:

(29) ¢rp: 80— 0 — Esin(f) avec E = 1—1—9—.

a

Cette fonction est inversible (car E < 1) et on peut écrire:

/ b i (t—c
(30) x=a\|1— P -+ acos I:Q5E (W)}

et
31 y:\/a_bsin {gbgl (;;;):l :

On en déduit, d’une part, une nouvelle expression pour la formule (27) donnant
la variation de 1’énergie H :

(32) dH  0Q
da ot
On constate, d’autre part, que la fonction €2 est périodique en ¢ —c¢ (formules
(30) et (31)), de période 2ma>/?. Le potentiel peut se développer alors en série
trigonométrique. Il est intéressant de noter ce que Lagrange €crit explicitement
a ce propos [Lag08, pages 735-736]:
«comme les valeurs des coordonnées peuvent étre réduites en série de
sinus et cosinus, il est facile de voir que la fonction  pourra étre réduite en

une série de sinus et cosinus; ces sinus et cosinus ayant pour coefficients des
fonctions des éléments a, b, c, etc.»
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Nous écrivons aujourd’hui:
ik(t — ¢)
(33) Q= ;Ak exp—— 7

Les coefﬁcients A, étant des fonctions seulement des €léments de 1’orbite
a, b, h, i, k, l’equatlon (32) devient alors:

kA ik(t —c)
5o U3 o M
k0
Ainsi que I’énonce Lagrange : la premiére approximation consiste a regarder
dans la fonction Q tous ces éléments comme constants [Lag08, page 736]
__ je. & considérer, A I’intérieur des fonctions A;, les éléments de 1’orbite
comme constants. Sans vouloir commenter la validité de cette affirmation, on

obtient ensuite par intégration:

ik(t —c)
(35) H(t) ~ Hy + ZAk Y
k0
ce premier ordre d’approximation, la fonction H (et donc le grand axe
a = —1/2H) ne contient pas de terme linéaire en ¢ (qu'on appelle ) le

terme séculaire) mais seulement des termes périodiques. Nous venons de
démontrer le théoréme de stabilité du grand axe de Lagrange. Laissons lui le
soin de I’exprimer [Lag08, page 736]:

THEOREME 2 [Lagrange]. Les grands axes des planétes ne peuvent étre
sujets qu'a des variations périodiques, et non a des variations croissant comme
le temps.

Ce théoreme n’est qu’une application particuliecre des méthodes de la
variation des constantes introduites par Lagrange. Il ne concerne, tel qu’il est
présenté ici, que la premicre approximation (démontrée la premicre fois, mais
par d’autres méthodes, par Laplace en 1773). Son véritable théoreme sur la
stabilit¢ séculaire des grands axes des planétes (ou il €tend véritablement le
résultat de Laplace) est plus profond, subtil et délicat car il prend en compte
le mouvement de toutes les planetes (consulter par exemple [Ste69]). Il n’est
malheureusement pas possible de le présenter dans cet article.

L’importance de cette nouvelle méthode introduite par Lagrange, outre
qu’elle formule de facon €élégante les principes de la mécanique analytique

1 < N . . o
8) Car sa présence entraine des perturbations sensibles au long des siécles.
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— en introduisant la structure symplectique de 1’espace des mouvements
képlériens — facilite aussi le calcul des autres inégalités'®). C’est ce qui
la rendra célebre puisque Lagrange montrera que la variation de 1’angle du
périhélie de Jupiter, observée par les astronomes (mais non encore expliquée
a ’époque), est périodique. Il en calculera la période (~ 900 ans si on croit
Sternberg [Ste69]).

4. LA STRUCTURE SYMPLECTIQUE DE
L’ESPACE DES MOUVEMENTS KEPLERIENS

Ces crochets [a, b], [a,c], ..., fonctions seulement des éléments képlériens
a, b, c etc. possedent trois propriétés remarquables.

1° Ils sont anti-symétriques :

(36) la,b] = —[b,a], [a,c] = —[c,a], etc,

2° La matrice w définie par la famille de crochets:
37 wap = [a,b],  wae =[a,c], etc,
est inversible, et son inverse est la matrice des parentheses de Lagrange:

(38) (W), =@b), (W), =(@0), etc,

3° Pour tous les triplets d’éléments (a, b, c), (a,b,h), ..., (i, h,k) I’équation

aux dérivées partielles suivante est vérifiée:

olb,c] Olc,a]l Ola,b]
da | ab | oc

Ces trois propriétés font de la matrice w ce qu’on appelle aujourd’hui une

(39) 0, etc.

forme symplectique.

Sans vouloir s’attarder sur les définitions formelles, disons seulement
qu’une forme différentielle définie sur un ouvert d’un espace numérique est |
une application qui a chaque point de cet ouvert associe une application
multilin€aire alternée. Par exemple, une 2-forme w définie sur un ouvert de
R?" sera caractérisée par n(n — 1)/2 fonctions wj;, de telle sorte que:

40) W@, V) =3 w0 XY,
N

19) C’est ainsi qu’on appelait les variations des éléments de 1’orbite dues aux perturbations
extérieures.
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