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Géométrie symplectique différentielle. Applications. [Sou53] Dans un article
plus récent du méme auteur : La structure symplectique de la mécanique décrite
par Lagrange en 1811 [Sou86], on peut lire un autre aspect des relations entre
la géométrie symplectique et la mécanique de Lagrange.

1. GEOMETRIE DES MOUVEMENTS D’UNE PLANETE
AUTOUR D’UN CENTRE FIXE

Pour comprendre et apprécier la méthode de la variation des constantes
développée par Lagrange, il est nécessaire de bien connaitre la résolution du
probléme a deux corps. Nous allons en donner un bref résumé dans ce qui
suit.

Depuis Newton on sait que les mouvements d’un point matériel (une
planete) autour d’un centre fixe (le Soleil) est décrit par I’équation différen-
tielle®) suivante:

d*r r
a2 37

(D

ot r désigne un vecteur non nul de I’espace R® et r son module.
Transformons cette équation différentielle en un systétme du premier ordre
dans [R® — {0}] X R®, les mouvements de la planéte deviennent les solutions

de:
dr . dav r

2 - — —_—=
) a dt =

Comme on le sait®), I’énergie totale du systéme est conservée le long du
mouvement. Les astronomes appellent constante des forces vives le double de
I’énergie, on la notera f :

2
(3) f=v-=.

-
D’autre part, comme la force d’attraction gravitationnelle est centrale, le
moment cinétique L est lui aussi conservé :

“4) L=rAv.

.)‘ Il faudralt_ en toute rigueur multiplier r par la constante d’attraction solaire, mais nous
choisirons les unités de telle sorte qu’elle soit égale A 1.

5 depuis Huygens, dans son Horlogium oscillatorium de 1673.
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FIGURE 1
L’orbite de la planete P

De cette invariance on déduit que le mouvement de la planete s’effectue dans
le plan orthogonal a L.

On peut vérifier qu’un autre vecteur, indépendant de L, est miraculeusement
conservé le long du mouvement, c’est le vecteur de Laplace : ‘

(5) E—LAvV+ .
v

On déduit, de cet invariant supplémentaire, les trajectoires des planetes. En
effet, on a immédiatement :

(6) E*=14+fI* e E.L=0.
Le vecteur E est donc dans le plan du mouvement. On a de plus, le long du
mouvement :
(7) Er+L>=r.
Soit ¢ I’angle entre E et r, alors:
L2
(8) Ercos¢ +L*> =r ou encore r:m,

On reconnait ainsi I’équation d’une conique de parameétre L?, d’excentricité
E et d’axe la direction du vecteur E. Les astronomes appellent 1’angle ¢
I’anomalie vraie'?). Le vecteur E pourrait s’appeler le vecteur d’excentricité.

Les trajectoires de la planete sont donc des sections coniques, avec le
Soleil pour foyer. Leur nature dépend essentiellement du signe de 1’énergie
totale, comme le montre la formule (6).

10y Dans ce contexte, le terme anomalie signifie simplement parametre.
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e Sif<0 alors E <1, ’orbite est elliptique.
e Sif=0 alors E =1, I'orbite est parabolique.
e Sif >0 alors E > 1, orbite est hyperbolique.

Dans le cas des orbites elliptiques, on trouve tout de suite la valeur du
demi-grand axe, noté a:

) a 7

Nous pouvons décrire complétement la variété des mouvements képlériens
elliptiques (f < 0) si I’on exclut les chutes sur le centre, c’est-a-dire si on
se restreint 2 L # 0. Une trajectoire elliptique est bien définie par les deux
vecteurs L et E; le vecteur E donnant a la fois ’excentricité et 1’axe de
Jla conique, le plan étant défini comme I’orthogonal de L et le parametre
de D’ellipse valant L?. Autrement dit, I’espace des trajectoires képlériennes
elliptiques est équivalent & I’ensemble des couples de vecteurs (E,L) € R?xR?
tels que:

(10) E<1, L#0 e E.L=0.

C’est une sous-variété, de dimension 5, de R?> x R3. Ce n’est pas encore
I’espace des mouvements képlériens elliptiques: il nous faut pouvoir calculer
la position de la planete a chaque instant. On pourrait, pour cela, choisir la
position de la planete sur son orbite (c’est-a-dire I’anomalie vraie) a 1'instant
zéro. Mais ce choix donne lieu a des calculs pénibles. On considére plutot le
vecteur qui joint I’origine du cercle circonscrit a l’ellipse, au point A de ce
cercle qui a la méme projection orthogonale, sur 1’axe dirigé par E, que la
planete P (voir figure 2).

Ce vecteur, ou plus précisément I’angle 6 qu’il fait avec 1’axe de I’ellipse,
est appelé anomalie excentrique''), il a été introduit par Kepler. En utilisant
la définition de la constante [ et apreés quelques manipulations algébriques,
on peut constater que, le long du mouvement :

(11) dt = Va* |1 — Ecos(6)] db .
Ce qui nous donne par intégration une nouvelle constante du mouvement:

(12) c:t—\/gg{Q—Esin(Q)] :

1 . . . . < :
1Y Comme le montre la figure I’anomalie excentrique doit son nom 2 ce qu’il est le parameétre
excentré de l'ellipse, le vrai centre étant bien entendu le foyer: centre d’attraction.
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FIGURE 2

L’anomalie excentrique

C’est la valeur de ¢ pour 8 = 0, c’est-a-dire la date du passage de la planéte
a ’aphélie. C’est ce parametre que les astronomes appellent 1’épogue de la
planete, et qu’ils choisissent a la place de 1I’anomalie excentrique a 1’instant
z€ro '2).

REMARQUE. Les mouvements képlériens sont donc définis par les valeurs
de I’époque, du moment cinétique et du vecteur de Laplace. Mais il est évident,
puisque tous les mouvements elliptiques sont périodiques, que cet espace des
mouvements képlériens est aussi I’ensemble des conditions initiales a 1’instant
t =0, c’est-a-dire I’ouvert de R® x R? des couples (r,v) vérifiant:

2
(13) rAv#0 et v*—Z=<0.
r

La représentation d’'un mouvement képlérien par ses conditions initiales ou
par ses caractéristiques géométriques est a priori purement affaire de golt. |
Nous verrons quand méme que certaines représentations sont plus pratiques
que d’autres. Lagrange choisira les six éléments képlériens (a,b,c,h,i, k), ou

a est la valeur du demi-grand axe (I’inverse de la constante des forces vives
au signe pres), b est le parametre de 1’ellipse (le carré du moment cinétique),
¢ est ’époque. Les éléments s, i et k déterminent le plan de I’orbite et 1’axe

12y En réalité ce parametre est mal défini puisque le mouvement de la planéte est périodique.
Il n’est vraiment défini que modulo Va3 (la période du mouvement). Il faudrait plutét choisir
C = exp(ic/Va3). Ce qui est équivalent au choix de A a I’instant zéro.



LES ORIGINES DU CALCUL SYMPLECTIQUE CHEZ LAGRANGE 265

de Dellipse dans ce plan: i est I'inclinaison du plan de I'orbite par rapport a
un plan de référence, h est la longitude des nceuds, c’est-a-dire I’angle que
fait la trace du plan de 1’orbite sur le plan de référence (la ligne des nceuds),
et k est la longitude du périhélie, c’est-a-dire I’angle que fait I’axe de ’ellipse
avec la ligne des nceuds.

2. LA METHODE DE LA VARIATION DES CONSTANTES

Maintenant que nous avons bien compris et résolu'?) le probleme a deux
corps (au moins en ce qui concerne les orbites elliptiques), il nous reste a
traiter le probléme a deux corps perturbé, et d’introduire ainsi les premiers
calculs symplectiques comme 1’a fait Lagrange. Nous nous bornerons, comme
lui, aux perturbations des orbites elliptiques.

Nous avons déja expliqué, dans 1’introduction, la méthode de la variation
des constantes: l’influence de la perturbation a laquelle est soumise une
planete attirée par un centre fixe est traduite comme une courbe sur 1’espace
des éléments de la planete, c’est-a-dire I’espace de ses mouvements képlériens.
C’est cette courbe dont il s’agit de déterminer I’équation, et éventuellement
d’en extraire quelques renseignements, comme par exemple la stabilit¢ du
grand axe. Ce résultat avait ét¢ découvert par Laplace en 1773. Nous allons
montrer maintenant comment Lagrange 1’a inclus dans le cadre général de sa
méthode de la variation des constantes.

Supposons donc, comme le fait Lagrange, que la planete subisse de fagon
continue une série de chocs infiniment petits. Ces chocs se traduisent par une
variation instantanée de la vitesse, sans conséquence sur sa position. Si on
désigne par a un €lément quelconque de la plancte (pas nécessairement le
demi grand axe), on pourra écrire '4):

da  Oa dv
dt— Ovdt’
En remarquant que le vecteur dv/dt représente exactement la force perturba-

trice X exercée sur la planéte a I’instant ¢ au point r, la variation infinitésimale
de I’élément a, sous D’effet de la perturbation, peut s’écrire & nouveau :

da Oa
B?‘&X'

(14)

(15)

13 . . . . .
) En toute rigueur il faudrait encore inverser la fonction 6 — ¢. Probléme connu sous le
nom de Probléme de Kepler. Mais ce n’est pas le but de cet article.

14 ‘.z 5 ’ " .
) De fagon générale, on note dy/Ox I’application linéaire tangente d’une application x — y.
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