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Géométrie symplectique différentielle. Applications. [Sou53] Dans un article

plus récent du même auteur : La structure symplectique de la mécanique décrite

par Lagrange en 1811 [Sou86], on peut lire un autre aspect des relations entre

la géométrie symplectique et la mécanique de Lagrange.

1. Géométrie des mouvements d'une planète
AUTOUR D'UN CENTRE FIXE

Pour comprendre et apprécier la méthode de la variation des constantes

développée par Lagrange, il est nécessaire de bien connaître la résolution du

problème à deux corps. Nous allons en donner un bref résumé dans ce qui
suit.

Depuis Newton on sait que les mouvements d'un point matériel (une

planète) autour d'un centre fixe (le Soleil) est décrit par l'équation différentielle

8 suivante :

(1) ^L -LV }
dt2 r3 '

où r désigne un vecteur non nul de l'espace R3 et r son module.
Transformons cette équation différentielle en un système du premier ordre
dans [R3 - {0}] x R3, les mouvements de la planète deviennent les solutions
de:

dr d\ r<2) d!=v-J!"?'
Comme on le sait9), l'énergie totale du système est conservée le long du
mouvement. Les astronomes appellent constante des forces vives le double de

l'énergie, on la notera / :

(3) f v2--.
r

D'autre part, comme la force d'attraction gravitationnelle est centrale, le
moment cinétique L est lui aussi conservé :

(4) L r A v.

Il faudrait en toute rigueur multiplier r par la constante d'attraction solaire, mais nou
choisirons les unités de telle sorte qu'elle soit égale à 1.

9) depuis Huygens, dans son Hoiiogium osciUatorium de 1673.



262 P. IGLESIAS

Figure 1

L'orbite de la planète P

De cette invariance on déduit que le mouvement de la planète s'effectue dans

le plan orthogonal à L.
On peut vérifier qu'un autre vecteur, indépendant de L, est miraculeusement

conservé le long du mouvement, c'est le vecteur de Laplace :

(5) E L A v + -r
On déduit, de cet invariant supplémentaire, les trajectoires des planètes. En

effet, on a immédiatement:

(6) E2 1+fL2etE. L 0.

Le vecteur E est donc dans le plan du mouvement. On a de plus, le long du

mouvement :

(7) E. r + L2

Soit 0 l'angle entre E et r, alors:

2 Ll
(8) E r cos 0 + L r ou encore r

1 — E cos 0

On reconnaît ainsi l'équation d'une conique de paramètre L2, d'excentricité

E et d'axe la direction du vecteur E. Les astronomes appellent l'angle 0
Y anomalie vraie10). Le vecteur E pourrait s'appeler le vecteur d'excentricité.

Les trajectoires de la planète sont donc des sections coniques, avec le

Soleil pour foyer. Leur nature dépend essentiellement du signe de l'énergie
totale, comme le montre la formule (6).

10 Dans ce contexte, le terme anomalie signifie simplement paramètre.
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• Si / < 0 alors E < 1, l'orbite est elliptique.

• Si / 0 alors E 1, l'orbite est parabolique.

• Si / > 0 alors E > 1, l'orbite est hyperbolique.

Dans le cas des orbites elliptiques, on trouve tout de suite la valeur du

demi-grand axe, noté a :

(9, i.
Nous pouvons décrire complètement la variété des mouvements képlériens

elliptiques (f < 0) si l'on exclut les chutes sur le centre, c'est-à-dire si on

se restreint à L^O. Une trajectoire elliptique est bien définie par les deux

vecteurs L et E ; le vecteur E donnant à la fois l'excentricité et l'axe de

la conique, le plan étant défini comme l'orthogonal de L et le paramètre

de l'ellipse valant L2. Autrement dit, l'espace des trajectoires képlériennes

elliptiques est équivalent à l'ensemble des couples de vecteurs (E, L) G R3 xR3

tels que:

(10) E< 1, L^O et E. L 0.

C'est une sous-variété, de dimension 5, de R3 x R3. Ce n'est pas encore

l'espace des mouvements képlériens elliptiques : il nous faut pouvoir calculer
la position de la planète à chaque instant. On pourrait, pour cela, choisir la

position de la planète sur son orbite (c'est-à-dire l'anomalie vraie) à Y instant
zéro. Mais ce choix donne lieu à des calculs pénibles. On considère plutôt le

vecteur qui joint l'origine du cercle circonscrit à l'ellipse, au point A de ce
cercle qui a la même projection orthogonale, sur l'axe dirigé par E, que la

planète P (voir figure 2).

Ce vecteur, ou plus précisément l'angle 6 qu'il fait avec l'axe de l'ellipse,
est appelé anomalie excentrique11 il a été introduit par Kepler. En utilisant
la définition de la constante / et après quelques manipulations algébriques,
on peut constater que, le long du mouvement:

(11) dt VcY 1—Ecos(6>) d6

Ce qui nous donne par intégration une nouvelle constante du mouvement :

(12) c t — Va* 6 — E sin(0)

11 Comme le montre la figure Yanomalie excentrique doit son nom à ce qu'il est le paramètre
excentré de l'ellipse, le vrai centre étant bien entendu le foyer: centre d'attraction.
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Figure 2

L'anomalie excentrique

C'est la valeur de t pour 6 0, c'est-à-dire la date du passage de la planète
à l'aphélie. C'est ce paramètre que les astronomes appellent Y époque de la

planète, et qu'ils choisissent à la place de l'anomalie excentrique à l'instant
zéro12

Remarque. Les mouvements képlériens sont donc définis par les valeurs
de l'époque, du moment cinétique et du vecteur de Laplace. Mais il est évident,

puisque tous les mouvements elliptiques sont périodiques, que cet espace des

mouvements képlériens est aussi l'ensemble des conditions initiales à l'instant
t — 0, c'est-à-dire l'ouvert de R3 x R3 des couples (r,v) vérifiant:

O 2
(13) rAv 7^0 et v <0.

r
La représentation d'un mouvement képlérien par ses conditions initiales ou

par ses caractéristiques géométriques est a priori purement affaire de goût.
Nous verrons quand même que certaines représentations sont plus pratiques

que d'autres. Lagrange choisira les six éléments képlériens (a,b,c,h,i,k), où

a est la valeur du demi-grand axe (l'inverse de la constante des forces vives

au signe près), b est le paramètre de l'ellipse (le carré du moment cinétique),
c est l'époque. Les éléments h, i et k déterminent le plan de l'orbite et l'axe

12 En réalité ce paramètre est mal défini puisque le mouvement de la planète est périodique.

Il n'est vraiment défini que modulo VcY (la période du mouvement). Il faudrait plutôt choisir

C exp(2ic/y/cP). Ce qui est équivalent au choix de A à l'instant zéro.
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de l'ellipse dans ce plan: i est l'inclinaison du plan de l'orbite par rapport à

un plan de référence, h est la longitude des nœuds, c'est-à-dire l'angle que

fait la trace du plan de l'orbite sur le plan de référence (la ligne des nœuds),

et k est la longitude du périhélie, c'est-à-dire l'angle que fait l'axe de l'ellipse

avec la ligne des nœuds.

2. La méthode de la variation des constantes

Maintenant que nous avons bien compris et résolu13) le problème à deux

corps (au moins en ce qui concerne les orbites elliptiques), il nous reste à

traiter le problème à deux corps perturbé, et d'introduire ainsi les premiers
calculs symplectiques comme l'a fait Lagrange. Nous nous bornerons, comme

lui, aux perturbations des orbites elliptiques.
Nous avons déjà expliqué, dans l'introduction, la méthode de la variation

des constantes : l'influence de la perturbation à laquelle est soumise une

planète attirée par un centre fixe est traduite comme une courbe sur l'espace
des éléments de la planète, c'est-à-dire l'espace de ses mouvements képlériens.
C'est cette courbe dont il s'agit de déterminer l'équation, et éventuellement

d'en extraire quelques renseignements, comme par exemple la stabilité du

grand axe. Ce résultat avait été découvert par Laplace en 1773. Nous allons

montrer maintenant comment Lagrange l'a inclus dans le cadre général de sa

méthode de la variation des constantes.

Supposons donc, comme le fait Lagrange, que la planète subisse de façon
continue une série de chocs infiniment petits. Ces chocs se traduisent par une
variation instantanée de la vitesse, sans conséquence sur sa position. Si on
désigne par a un élément quelconque de la planète (pas nécessairement le
demi grand axe), on pourra écrire14):

„ da da dv
(14) — -dt d\ dt

En remarquant que le vecteur dy/dt représente exactement la force perturbatrice

X exercée sur la planète à l'instant t au point r, la variation infinitésimale
de l'élément a, sous l'effet de la perturbation, peut s'écrire à nouveau:

(15) X t^-dt d\

En toute rigueur il faudrait encore inverser la fonction 6 i-> t. Problème connu sous le
nom de Problème de Kepler. Mais ce n'est pas le but de cet article.

14) De façon générale, on note dy/dx l'application linéaire tangente d'une application x y.
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