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LES ORIGINES DU CALCUL SYMPLECTIQUE CHEZ LAGRANGE

par Patrick IGLESIAS

Introduction

Entre 1808 et 1811, Lagrange développe une théorie de la variation des

constantes appliquée aux problèmes de la mécanique. C'est l'acte de naissance

du calcul symplectique, terme qui ne sera inventé qu'en 1946 par Hermann

Weyl1). Le but qu'il poursuit à l'époque est la généralisation d'un théorème

de Laplace, sur la stabilité séculaire du grand axe de l'orbite elliptique d'une

planète, perturbée par l'attraction d'autres corps célestes.

Depuis Kepler on sait résoudre explicitement le problème des éphémé-
rides des planètes. C'est-à-dire, calculer avec une précision aussi grande que
l'on veut la position de la Terre (ou de toute autre planète) connaissant sa

position et sa vitesse à un instant donné, à condition toutefois de considérer
seulement l'attraction du Soleil et de négliger complètement l'influence des

autres planètes. Mais bien que ce savoir soit important, il est largement
insuffisant pour ce qui est du mouvement réel des planètes. L'influence des

autres planètes sur la Terre est-elle vraiment négligeable, ne va-t-elle pas à

terme déstabiliser notre trajectoire et nous expulser aux confins de l'espace?
Il faut donc traiter le problème dans sa globalité: calculer la position

d'une planète quelconque, connaissant les positions et vitesses de toutes les

planètes, et ne négligeant l'influence d'aucune d'entre elles. La difficulté de

cette question donne le vertige, et on ne sait y répondre, encore actuellement,
ni analytiquement ni même numériquement.

On pourrait croire, en effet, qu'avec l'avènement de l'ordinateur cette question

soit devenue académique : pourquoi ne pas intégrer naïvement les équations
du mouvement par une méthode numérique quelconque. Malheureusement,

1 Voir la note historique 2 à la fin de cette introduction.
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si les erreurs d'approximations, inévitables dans ce genre de calcul, sont

négligeables sur un bref intervalle de temps, elles deviennent catastrophiques
à long terme. Cette incertitude sur la position de la planète n'a rien à voir avec

une éventuelle situation chaotique du système (le système à deux corps est

d'ailleurs parfaitement intégrable dans tous les sens raisonnables que l'on veut
bien donner à ce mot), elle est simplement la conséquence de l'accumulation
des erreurs commises par l'ordinateur lors de l'intégration numérique des

équations du mouvement. L'existence d'une méthode analytique d'intégration
du mouvement est donc capitale pour résoudre convenablement cette question.
Si cette remarque est vraie pour le problème à deux corps, elle l'est a
fortiori pour le problème à n corps (i.e. un nombre quelconque de planètes en

interaction). Or, comme nous l'avons déjà dit, nous ne connaissons toujours
aucune méthode analytique satisfaisante susceptible de résoudre cette question.

Lagrange a contourné cette difficulté en appliquant de façon astucieuse

sa méthode de la variation des constantes aux problèmes de la mécanique

analytique. Décrivons rapidement ce dont il s'agit.
Considérons d'abord un corps matériel (une planète) attiré par un centre fixe

(le Soleil) selon la loi de la gravitation universelle. Les équations différentielles

qui décrivent son mouvement sont de degré deux dans l'espace à trois

dimensions, il faudra donc six constantes d'intégration2) pour le décrire.

D'après Newton, nous savons que la trajectoire de ce corps est une ellipse3),
de foyer le centre d'attraction4). Pour décrire complètement cette ellipse il
nous faut d'abord connaître le plan dans lequel elle s'inscrit (le plan de

l'orbite), on peut le repérer par le vecteur unitaire qui lui est orthogonal, ce

qui fait deux paramètres. Pour définir l'ellipse dans son plan on peut choisir
la position du deuxième foyer, ce qui donne deux nouveaux paramètres, et la

longueur de l'ellipse5), soit au total: cinq paramètres pour situer et décrire la

trajectoire du corps dans l'espace.

Mais si ces cinq paramètres suffisent à définir complètement la trajectoire
du corps céleste, ils ne suffisent pas à déterminer son mouvement. En effet,

2) A cette époque on disait constantes d'intégration quand nous parlons aujourd'hui d'espace
de solutions. Par exemple, l'équation différentielle ordinaire réelle dx/dt x a toutes ses solutions
de la forme x(t) c exp(t), où c est une constante arbitraire — la fameuse constante d'intégration.
Or, c caractérise justement cette solution.

3) Si Kepler a découvert le mouvement elliptique des planètes, c'est Newton qui l'a «déduit»
de la loi de la gravitation universelle qui porte son nom. Pour une discussion plus approfondie
sur ce sujet voir la thèse de F. de Gandt [dG87].

4) Les caractéristiques géométriques de cette ellipse étant, par ailleurs, liées aux position et

vitesse initiales du corps.

5) Il est possible maintenant de tracer l'ellipse par la méthode du jardinier.
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comment déterminer la position de la planète à chaque instant sur sa trajectoire

si nous ne connaissons pas sa position à une origine des temps arbitraire?

ou encore la date de son passage à l'aphélie? Voilà comment s'introduit ce

sixième paramètre que les astronomes appellent Y époque.

Nous aurions pu tout aussi bien choisir six autres paramètres : par exemple

les position et vitesse initiales de la planète à l'origine des temps. Ils définissent

aussi, de façon unique, le mouvement de la planète. Seul le caractère pratique

de tel ou tel ensemble de paramètres peut déterminer notre choix. Les

astronomes appellent éléments képlériens de la planète un tel ensemble de

six paramètres servant à caractériser son mouvement, cinq pour la figure de

l'ellipse et l'époque.
L'ensemble des mouvements de la planète considérés indépendamment du

choix des paramètres qui nous servent à les décrire6) sera appelé espace des

mouvements képlériens.

Supposons maintenant que la planète, qui suit un mouvement képlérien m,
subisse un choc instantané dû à l'impact d'un astéroïde. Après le choc

elle suivra encore un mouvement képlérien m' différent du précédent. Le

mouvement (perturbé) de cette planète sera donc décrit par son mouvement

m avant le choc, son mouvement m' après le choc et l'instant du choc t.
Supposons ensuite que la planète subisse une série de chocs de ce type.
Le mouvement réel de la planète sera décrit par une courbe dans l'espace
des mouvements képlériens, discontinue et constante par morceaux, chaque

morceau de courbe décrivant le mouvement képlérien de la planète entre
deux chocs successifs. En étendant ce raisonnement, Lagrange assimilera
l'interaction des autres planètes du système à une série infinie de chocs

«infiniments petits et continuels». Il décrira ainsi le mouvement réel de la
planète perturbée par une courbe, cette fois différentiable, tracée dans son

espace des mouvements képlériens. C'est en précisant l'équation différentielle
de cette courbe7) qu'il fera apparaître la structure symplectique de Y espace des

mouvements. Il donnera l'expression des composantes de la forme symplectique
de l'espace des mouvements képlériens dans le système de coordonnées que
sont les éléments de la planète. Il en déduira entre autre la stabilité séculaire
du grand axe des planètes.

J'ai essayé, dans cet article, d'être le plus fidèle possible aux textes de

Lagrange. Désirant par là mettre en évidence le processus qui lui a permis, en

6) On dit que c'est une variété.

7) Aujourd hui cette équation porte le nom d'équation de Hamilton, mais pour la petite
histoire sachez que Sir W. R. Hamilton avait juste six ans lorsque Lagrange la publia pour la
première fois.
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voulant résoudre le problème du système des planètes, d'élaborer les premiers
éléments de calcul symplectique.

Note 1. C'est le 22 août 1808 que Lagrange présente à l'Institut de

France son Mémoire sur la théorie des variations des éléments des planètes
[Lag08] où sont définis pour la première fois les crochets et parenthèses qui
portent son nom et qui sont, en termes modernes, les composantes de Informe
symplectique de l'espace des mouvements d'une planète.

Ce mémoire sera suivi de celui Sur la théorie générale de la variation
des constantes arbitraires [Lag09] présenté le 13 mars 1809, où il généralise
sa méthode à tous les problèmes de mécanique. Il en donnera une version
notablement simplifiée, et définitive, le 19 février 1810 [Lag 10]. C'est à partir
de cette version qu'il écrira les chapitres relatifs à ces questions dans la

deuxième édition de son Traité de Mécanique Analytique [Lagll] (seconde

partie, de la cinquième à la septième section). Ce volume ne sera publié
qu'après sa mort.

Note 2. Dans son ouvrage sur Les Groupes classiques [Wey46],
Hermann Weyl baptise ainsi: groupe symplectique, le groupe des transformations

linéaires de R2n qui préservent la forme bilinéaire antisymétrique
uj Xw=i dPi Adqt. Les relations étroites entre la structure définie par u
et la structure complexe (R2" ~ Cn) lui font choisir le mot symplectique [gr.

GDja-7tÀ£KTiKÔç], transposition de complexe [lat. com-plexus] pour désigner

ce groupe; le mot complexe étant par ailleurs réservé. Le suffixe 7t?i£KTiKÔç

~ plexus signifiant tenir, entrelacer... L'idée de complexe, comme symplectique

sous-entend l'existence de plusieurs types d'objets (ici deux) maintenus

ensemble dans une même structure. De façon rapide et en anticipant sur la

suite, on peut dire que dans le premier cas la complexité représente la dualité

réel-imaginaire, et dans le second la symplecticité représente la dualité

position-vitesse. Voici ce qu'en dit lui-même Weyl [Wey46, p. 165]:

The name "complex group" formerly advocated by me in allusion to line
complexes, as these are defined by the vanishing of antisymetric bilinear
forms, has become more and more embarrassing through collision with the
word "complex" in the connotation of complex number. I therefore propose
to replace it by the corresponding Greek adjective "symplectic". Dickson calls
the group the "Abelian linear group" in homage to Abel who first studied it.

En ce qui concerne la notion actuelle de géométrie symplectique, au sens

de l'étude des variétés différentielles munies d'une forme symplectique, il
semble que ce soit J.-M. Souriau qui l'ait introduite en 1953 dans son article
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Géométrie symplectique différentielle. Applications. [Sou53] Dans un article

plus récent du même auteur : La structure symplectique de la mécanique décrite

par Lagrange en 1811 [Sou86], on peut lire un autre aspect des relations entre

la géométrie symplectique et la mécanique de Lagrange.

1. Géométrie des mouvements d'une planète
AUTOUR D'UN CENTRE FIXE

Pour comprendre et apprécier la méthode de la variation des constantes

développée par Lagrange, il est nécessaire de bien connaître la résolution du

problème à deux corps. Nous allons en donner un bref résumé dans ce qui
suit.

Depuis Newton on sait que les mouvements d'un point matériel (une

planète) autour d'un centre fixe (le Soleil) est décrit par l'équation différentielle

8 suivante :

(1) ^L -LV }
dt2 r3 '

où r désigne un vecteur non nul de l'espace R3 et r son module.
Transformons cette équation différentielle en un système du premier ordre
dans [R3 - {0}] x R3, les mouvements de la planète deviennent les solutions
de:

dr d\ r<2) d!=v-J!"?'
Comme on le sait9), l'énergie totale du système est conservée le long du
mouvement. Les astronomes appellent constante des forces vives le double de

l'énergie, on la notera / :

(3) f v2--.
r

D'autre part, comme la force d'attraction gravitationnelle est centrale, le
moment cinétique L est lui aussi conservé :

(4) L r A v.

Il faudrait en toute rigueur multiplier r par la constante d'attraction solaire, mais nou
choisirons les unités de telle sorte qu'elle soit égale à 1.

9) depuis Huygens, dans son Hoiiogium osciUatorium de 1673.
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