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LES ORIGINES DU CALCUL SYMPLECTIQUE CHEZ LAGRANGE

par Patrick IGLESIAS

INTRODUCTION

Entre 1808 et 1811, Lagrange développe une théorie de la variation des
constantes appliquée aux problemes de la mécanique. C’est I’acte de naissance
du calcul symplectique, terme qui ne sera inventé qu’en 1946 par Hermann
Weyl!). Le but qu’il poursuit a I’époque est la généralisation d’un théoreme
de Laplace, sur la stabilité séculaire du grand axe de l’orbite elliptique d’une
planete, perturbée par D’attraction d’autres corps c€lestes.

Depuis Kepler on sait résoudre explicitement le probleme des éphémé-
rides des planetes. C’est-a-dire, calculer avec une précision aussi grande que
I’on veut la position de la Terre (ou de toute autre planete) connaissant sa
position et sa vitesse a un instant donné, a condition toutefois de considérer
seulement 1’attraction du Soleil et de négliger completement I’influence des
autres planetes. Mais bien que ce savoir soit important, il est largement
insuffisant pour ce qui est du mouvement réel des planctes. L’influence des
autres planetes sur la Terre est-elle vraiment négligeable, ne va-t-elle pas a
terme déstabiliser notre trajectoire et nous expulser aux confins de 1’espace ?

Il faut donc traiter le probleme dans sa globalité: calculer la position
d’une planete quelconque, connaissant les positions et vitesses de toutes les
planetes, et ne négligeant I'influence d’aucune d’entre elles. La difficulté de
cette question donne le vertige, et on ne sait y répondre, encore actuellement,
ni analytiquement ni méme numériquement.

On pourrait croire, en effet, qu’avec I’avénement de 1’ordinateur cette ques-
tion soit devenue académique : pourquoi ne pas intégrer naivement les équations
du mouvement par une méthode numérique quelconque. Malheureusement,

Y Voir 1a note historique 2 a la fin de cette introduction.
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si les erreurs d’approximations, inévitables dans ce genre de calcul, sont
négligeables sur un bref intervalle de temps, elles deviennent catastrophiques
a long terme. Cette incertitude sur la position de la plan¢te n’a rien a voir avec
une €ventuelle situation chaotique du systeme (le systtme a deux corps est
d’ailleurs parfaitement intégrable dans tous les sens raisonnables que 1’on veut
bien donner a ce mot), elle est simplement la conséquence de 1’accumulation
des erreurs commises par 1’ordinateur lors de Dl’intégration numérique des
équations du mouvement. L’existence d’une méthode analytique d’intégration
du mouvement est donc capitale pour résoudre convenablement cette question.
Si cette remarque est vraie pour le probleme a deux corps, elle ’est a for-
tiori pour le probleme a n corps (i.e. un nombre quelconque de planetes en
interaction). Or, comme nous ’avons déja dit, nous ne connaissons toujours
aucune méthode analytique satisfaisante susceptible de résoudre cette ques-
tion. Lagrange a contourné cette difficulté en appliquant de fagon astucieuse
sa méthode de la variation des constantes aux problemes de la mécanique
analytique. Décrivons rapidement ce dont il s agit.

Considérons d’abord un corps matériel (une planete) attiré par un centre fixe
(Ie Soleil) selon la loi de la gravitation universelle. Les équations différentielles
qui décrivent son mouvement sont de degré deux dans 1’espace a trois
dimensions, il faudra donc six constantes d'intégration®) pour le décrire.
D’aprés Newton, nous savons que la trajectoire de ce corps est une ellipse?),
de foyer le centre d’attraction®). Pour décrire completement cette ellipse il
nous faut d’abord connaitre le plan dans lequel elle s’inscrit (le plan de
I’orbite), on peut le repérer par le vecteur unitaire qui lui est orthogonal, ce
qui fait deux parametres. Pour définir I’ellipse dans son plan on peut choisir
la position du deuxieme foyer, ce qui donne deux nouveaux parametres, et la
longueur de I’ellipse ), soit au total: cinq parametres pour situer et décrire la
trajectoire du corps dans 1’espace.

Mais si ces cing parametres suffisent 2 définir completement la trajectoire
du corps céleste, ils ne suffisent pas a déterminer son mouvement. En effet,

2) A cette époque on disait constantes d’intégration quand nous parlons aujourd’hui d’espace
de solutions. Par exemple, 1’équation différentielle ordinaire réelle dx/dt = x a toutes ses solutions
de la forme x(t) = ¢ exp(f), ol ¢ est une constante arbitraire — la fameuse constante d’intégration.
Or, ¢ caractérise justement cette solution.

3) Si Kepler a découvert le mouvement elliptique des planétes, c’est Newton qui 1’a « déduit»
de la loi de la gravitation universelle qui porte son nom. Pour une discussion plus approfondie
sur ce sujet voir la theése de F. de Gandt [dG87].

#) Les caractéristiques géométriques de cette ellipse étant, par ailleurs, liées aux position et
vitesse initiales du corps.

) 11 est possible maintenant de tracer I’ellipse par la méthode du jardinier.
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comment déterminer la position de la planéte & chaque instant sur sa trajectoire
si Nous ne connaissons pas sa position A une origine des temps arbitraire ?
ou encore la date de son passage a I’aphélie ? Voila comment s’introduit ce
sixitme parametre que les astronomes appellent 1’époque.

Nous aurions pu tout aussi bien choisir six autres parametres : par exemple
les position et vitesse initiales de la planéte a I’origine des temps. Ils définissent
aussi, de facon unique, le mouvement de la planete. Seul le caractere pratique
de tel ou tel ensemble de parameétres peut déterminer notre choix. Les
astronomes appellent éléments képlériens de la planéte un tel ensemble de
six parametres servant & caractériser son mouvement, cinq pour la figure de
I’ellipse et I’époque.

L’ensemble des mouvements de la planete considérés indépendamment du
choix des parameétres qui nous servent a les décrire®) sera appelé espace des
mouvements képlériens.

Supposons maintenant que la planéte, qui suit un mouvement képlérien m,
subisse un choc instantané di a l’impact d’un astéroide. Apreés le choc
elle suivra encore un mouvement képlérien m’ différent du précédent. Le
mouvement (perturbé) de cette planete sera donc décrit par son mouvement
m avant le choc, son mouvement m’ aprés le choc et I’'instant du choc ¢.
Supposons ensuite que la planete subisse une série de chocs de ce type.
Le mouvement réel de la planete sera décrit par une courbe dans 1’espace
des mouvements képlériens, discontinue et constante par morceaux, chaque
morceau de courbe décrivant le mouvement képlérien de la plancte entre
deux chocs successifs. En étendant ce raisonnement, Lagrange assimilera
I’interaction des autres planetes du systéme a une série infinie de chocs
«Infiniments petits et continuels». Il décrira ainsi le mouvement réel de la
planete perturbée par une courbe, cette fois différentiable, tracée dans son
espace des mouvements képlériens. C’est en précisant 1’équation différentielle
de cette courbe’) qu’il fera apparaitre la structure symplectique de I’espace des
mouvements. I1 donnera I’expression des composantes de la forme symplectique
de I’espace des mouvements képlériens dans le systeme de coordonnées que
sont les éléments de la planéete. 11 en déduira entre autre la stabilité séculaire
du grand axe des planétes.

J'al essayé€, dans cet article, d’étre le plus fidele possible aux textes de
Lagrange. Désirant par la mettre en évidence le processus qui lui a permis, en

%) On dit que c’est une variété.

7 ; S 7 . 5 5 . .
) Aujourd’hui cette équation porte le nom d’équation de Hamilton, mais pour la petite

histoi.re sachez que Sir W.R. Hamilton avait juste six ans lorsque Lagrange la publia pour la
premiere fois.

| .-
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voulant résoudre le probleme du systeme des planetes, d’élaborer les premiers
€léments de calcul symplectique.

NOTE 1. C’est le 22 aofit 1808 que Lagrange présente a I’Institut de
France son Mémoire sur la théorie des variations des éléments des planétes
[LagO8] ou sont définis pour la premiere fois les crochets et parenthéses qui
portent son nom et qui sont, en termes modernes, les composantes de la forme
symplectique de 1’espace des mouvements d’une planéte.

Ce mémoire sera suivi de celui Sur la théorie générale de la variation
des constantes arbitraires [Lag09] présenté le 13 mars 1809, ou il généralise
sa méthode a tous les problemes de mécanique. Il en donnera une version
notablement simplifiée, et définitive, le 19 février 1810 [Lagl0]. C’est a partir
de cette version qu’il écrira les chapitres relatifs a ces questions dans la
deuxieme édition de son Traité de Mécanique Analytique [Lagll] (seconde
partie, de la cinquieme a la septiéme section). Ce volume ne sera publié
qu’apres sa mort.

NOTE 2. Dans son ouvrage sur Les Groupes classiques [Wey46], Her-
mann Weyl baptise ainsi: groupe symplectique, le groupe des transforma-
tions linéaires de R?*' qui préservent la forme bilinéaire antisymétrique
w = Y o ,dp; \dg;. Les relations étroites entre la structure définie par w
et la structure complexe (R** ~ C") lui font choisir le mot symplectique [gr.
oLU-TAEKTIKOC], transposition de complexe [lat. com-plexus] pour désigner
ce groupe; le mot complexe étant par ailleurs réservé. Le suffixe mAextikOc
~ plexus signifiant tenir, entrelacer ... L'idée de complexe, comme symplec-
tigue sous-entend l’existence de plusieurs types d’objets (ici deux) maintenus
ensemble dans une méme structure. De facon rapide et en anticipant sur la
suite, on peut dire que dans le premier cas la complexité représente la dua-
lité réel—imaginaire, et dans le second la symplecticité représente la dualité
position—vitesse. Voici ce qu’en dit lui-méme Weyl [Wey46, p. 165]:

The name ‘“complex group” formerly advocated by me in allusion to line
complexes, as these are defined by the vanishing of antisymetric bilinear
forms, has become more and more embarrassing through collision with the
word “complex” in the connotation of complex number. I therefore propose

to replace it by the corresponding Greek adjective “symplectic”. Dickson calls
the group the “Abelian linear group” in homage to Abel who first studied it.

En ce qui concerne la notion actuelle de géométrie symplectique, au sens
de I’étude des variétés différentielles munies d’une forme symplectique, il -
semble que ce soit J.-M. Souriau qui 1’ait introduite en 1953 dans son article
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Géométrie symplectique différentielle. Applications. [Sou53] Dans un article
plus récent du méme auteur : La structure symplectique de la mécanique décrite
par Lagrange en 1811 [Sou86], on peut lire un autre aspect des relations entre
la géométrie symplectique et la mécanique de Lagrange.

1. GEOMETRIE DES MOUVEMENTS D’UNE PLANETE
AUTOUR D’UN CENTRE FIXE

Pour comprendre et apprécier la méthode de la variation des constantes
développée par Lagrange, il est nécessaire de bien connaitre la résolution du
probléme a deux corps. Nous allons en donner un bref résumé dans ce qui
suit.

Depuis Newton on sait que les mouvements d’un point matériel (une
planete) autour d’un centre fixe (le Soleil) est décrit par I’équation différen-
tielle®) suivante:

d*r r
a2 37

(D

ot r désigne un vecteur non nul de I’espace R® et r son module.
Transformons cette équation différentielle en un systétme du premier ordre
dans [R® — {0}] X R®, les mouvements de la planéte deviennent les solutions

de:
dr . dav r

2 - — —_—=
) a dt =

Comme on le sait®), I’énergie totale du systéme est conservée le long du
mouvement. Les astronomes appellent constante des forces vives le double de
I’énergie, on la notera f :

2
(3) f=v-=.

-
D’autre part, comme la force d’attraction gravitationnelle est centrale, le
moment cinétique L est lui aussi conservé :

“4) L=rAv.

.)‘ Il faudralt_ en toute rigueur multiplier r par la constante d’attraction solaire, mais nous
choisirons les unités de telle sorte qu’elle soit égale A 1.

5 depuis Huygens, dans son Horlogium oscillatorium de 1673.
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