Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 44 (1998)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: LES ORIGINES DU CALCUL SYMPLECTIQUE CHEZ LAGRANGE
Autor: IGLESIAS, Patrick

DOl: https://doi.org/10.5169/seals-63904

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-63904
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique, t. 44 (1998), p. 257277

LES ORIGINES DU CALCUL SYMPLECTIQUE CHEZ LAGRANGE

par Patrick IGLESIAS

INTRODUCTION

Entre 1808 et 1811, Lagrange développe une théorie de la variation des
constantes appliquée aux problemes de la mécanique. C’est I’acte de naissance
du calcul symplectique, terme qui ne sera inventé qu’en 1946 par Hermann
Weyl!). Le but qu’il poursuit a I’époque est la généralisation d’un théoreme
de Laplace, sur la stabilité séculaire du grand axe de l’orbite elliptique d’une
planete, perturbée par D’attraction d’autres corps c€lestes.

Depuis Kepler on sait résoudre explicitement le probleme des éphémé-
rides des planetes. C’est-a-dire, calculer avec une précision aussi grande que
I’on veut la position de la Terre (ou de toute autre planete) connaissant sa
position et sa vitesse a un instant donné, a condition toutefois de considérer
seulement 1’attraction du Soleil et de négliger completement I’influence des
autres planetes. Mais bien que ce savoir soit important, il est largement
insuffisant pour ce qui est du mouvement réel des planctes. L’influence des
autres planetes sur la Terre est-elle vraiment négligeable, ne va-t-elle pas a
terme déstabiliser notre trajectoire et nous expulser aux confins de 1’espace ?

Il faut donc traiter le probleme dans sa globalité: calculer la position
d’une planete quelconque, connaissant les positions et vitesses de toutes les
planetes, et ne négligeant I'influence d’aucune d’entre elles. La difficulté de
cette question donne le vertige, et on ne sait y répondre, encore actuellement,
ni analytiquement ni méme numériquement.

On pourrait croire, en effet, qu’avec I’avénement de 1’ordinateur cette ques-
tion soit devenue académique : pourquoi ne pas intégrer naivement les équations
du mouvement par une méthode numérique quelconque. Malheureusement,

Y Voir 1a note historique 2 a la fin de cette introduction.
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si les erreurs d’approximations, inévitables dans ce genre de calcul, sont
négligeables sur un bref intervalle de temps, elles deviennent catastrophiques
a long terme. Cette incertitude sur la position de la plan¢te n’a rien a voir avec
une €ventuelle situation chaotique du systeme (le systtme a deux corps est
d’ailleurs parfaitement intégrable dans tous les sens raisonnables que 1’on veut
bien donner a ce mot), elle est simplement la conséquence de 1’accumulation
des erreurs commises par 1’ordinateur lors de Dl’intégration numérique des
équations du mouvement. L’existence d’une méthode analytique d’intégration
du mouvement est donc capitale pour résoudre convenablement cette question.
Si cette remarque est vraie pour le probleme a deux corps, elle ’est a for-
tiori pour le probleme a n corps (i.e. un nombre quelconque de planetes en
interaction). Or, comme nous ’avons déja dit, nous ne connaissons toujours
aucune méthode analytique satisfaisante susceptible de résoudre cette ques-
tion. Lagrange a contourné cette difficulté en appliquant de fagon astucieuse
sa méthode de la variation des constantes aux problemes de la mécanique
analytique. Décrivons rapidement ce dont il s agit.

Considérons d’abord un corps matériel (une planete) attiré par un centre fixe
(Ie Soleil) selon la loi de la gravitation universelle. Les équations différentielles
qui décrivent son mouvement sont de degré deux dans 1’espace a trois
dimensions, il faudra donc six constantes d'intégration®) pour le décrire.
D’aprés Newton, nous savons que la trajectoire de ce corps est une ellipse?),
de foyer le centre d’attraction®). Pour décrire completement cette ellipse il
nous faut d’abord connaitre le plan dans lequel elle s’inscrit (le plan de
I’orbite), on peut le repérer par le vecteur unitaire qui lui est orthogonal, ce
qui fait deux parametres. Pour définir I’ellipse dans son plan on peut choisir
la position du deuxieme foyer, ce qui donne deux nouveaux parametres, et la
longueur de I’ellipse ), soit au total: cinq parametres pour situer et décrire la
trajectoire du corps dans 1’espace.

Mais si ces cing parametres suffisent 2 définir completement la trajectoire
du corps céleste, ils ne suffisent pas a déterminer son mouvement. En effet,

2) A cette époque on disait constantes d’intégration quand nous parlons aujourd’hui d’espace
de solutions. Par exemple, 1’équation différentielle ordinaire réelle dx/dt = x a toutes ses solutions
de la forme x(t) = ¢ exp(f), ol ¢ est une constante arbitraire — la fameuse constante d’intégration.
Or, ¢ caractérise justement cette solution.

3) Si Kepler a découvert le mouvement elliptique des planétes, c’est Newton qui 1’a « déduit»
de la loi de la gravitation universelle qui porte son nom. Pour une discussion plus approfondie
sur ce sujet voir la theése de F. de Gandt [dG87].

#) Les caractéristiques géométriques de cette ellipse étant, par ailleurs, liées aux position et
vitesse initiales du corps.

) 11 est possible maintenant de tracer I’ellipse par la méthode du jardinier.
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comment déterminer la position de la planéte & chaque instant sur sa trajectoire
si Nous ne connaissons pas sa position A une origine des temps arbitraire ?
ou encore la date de son passage a I’aphélie ? Voila comment s’introduit ce
sixitme parametre que les astronomes appellent 1’époque.

Nous aurions pu tout aussi bien choisir six autres parametres : par exemple
les position et vitesse initiales de la planéte a I’origine des temps. Ils définissent
aussi, de facon unique, le mouvement de la planete. Seul le caractere pratique
de tel ou tel ensemble de parameétres peut déterminer notre choix. Les
astronomes appellent éléments képlériens de la planéte un tel ensemble de
six parametres servant & caractériser son mouvement, cinq pour la figure de
I’ellipse et I’époque.

L’ensemble des mouvements de la planete considérés indépendamment du
choix des parameétres qui nous servent a les décrire®) sera appelé espace des
mouvements képlériens.

Supposons maintenant que la planéte, qui suit un mouvement képlérien m,
subisse un choc instantané di a l’impact d’un astéroide. Apreés le choc
elle suivra encore un mouvement képlérien m’ différent du précédent. Le
mouvement (perturbé) de cette planete sera donc décrit par son mouvement
m avant le choc, son mouvement m’ aprés le choc et I’'instant du choc ¢.
Supposons ensuite que la planete subisse une série de chocs de ce type.
Le mouvement réel de la planete sera décrit par une courbe dans 1’espace
des mouvements képlériens, discontinue et constante par morceaux, chaque
morceau de courbe décrivant le mouvement képlérien de la plancte entre
deux chocs successifs. En étendant ce raisonnement, Lagrange assimilera
I’interaction des autres planetes du systéme a une série infinie de chocs
«Infiniments petits et continuels». Il décrira ainsi le mouvement réel de la
planete perturbée par une courbe, cette fois différentiable, tracée dans son
espace des mouvements képlériens. C’est en précisant 1’équation différentielle
de cette courbe’) qu’il fera apparaitre la structure symplectique de I’espace des
mouvements. I1 donnera I’expression des composantes de la forme symplectique
de I’espace des mouvements képlériens dans le systeme de coordonnées que
sont les éléments de la planéete. 11 en déduira entre autre la stabilité séculaire
du grand axe des planétes.

J'al essayé€, dans cet article, d’étre le plus fidele possible aux textes de
Lagrange. Désirant par la mettre en évidence le processus qui lui a permis, en

%) On dit que c’est une variété.

7 ; S 7 . 5 5 . .
) Aujourd’hui cette équation porte le nom d’équation de Hamilton, mais pour la petite

histoi.re sachez que Sir W.R. Hamilton avait juste six ans lorsque Lagrange la publia pour la
premiere fois.

| .-
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voulant résoudre le probleme du systeme des planetes, d’élaborer les premiers
€léments de calcul symplectique.

NOTE 1. C’est le 22 aofit 1808 que Lagrange présente a I’Institut de
France son Mémoire sur la théorie des variations des éléments des planétes
[LagO8] ou sont définis pour la premiere fois les crochets et parenthéses qui
portent son nom et qui sont, en termes modernes, les composantes de la forme
symplectique de 1’espace des mouvements d’une planéte.

Ce mémoire sera suivi de celui Sur la théorie générale de la variation
des constantes arbitraires [Lag09] présenté le 13 mars 1809, ou il généralise
sa méthode a tous les problemes de mécanique. Il en donnera une version
notablement simplifiée, et définitive, le 19 février 1810 [Lagl0]. C’est a partir
de cette version qu’il écrira les chapitres relatifs a ces questions dans la
deuxieme édition de son Traité de Mécanique Analytique [Lagll] (seconde
partie, de la cinquieme a la septiéme section). Ce volume ne sera publié
qu’apres sa mort.

NOTE 2. Dans son ouvrage sur Les Groupes classiques [Wey46], Her-
mann Weyl baptise ainsi: groupe symplectique, le groupe des transforma-
tions linéaires de R?*' qui préservent la forme bilinéaire antisymétrique
w = Y o ,dp; \dg;. Les relations étroites entre la structure définie par w
et la structure complexe (R** ~ C") lui font choisir le mot symplectique [gr.
oLU-TAEKTIKOC], transposition de complexe [lat. com-plexus] pour désigner
ce groupe; le mot complexe étant par ailleurs réservé. Le suffixe mAextikOc
~ plexus signifiant tenir, entrelacer ... L'idée de complexe, comme symplec-
tigue sous-entend l’existence de plusieurs types d’objets (ici deux) maintenus
ensemble dans une méme structure. De facon rapide et en anticipant sur la
suite, on peut dire que dans le premier cas la complexité représente la dua-
lité réel—imaginaire, et dans le second la symplecticité représente la dualité
position—vitesse. Voici ce qu’en dit lui-méme Weyl [Wey46, p. 165]:

The name ‘“complex group” formerly advocated by me in allusion to line
complexes, as these are defined by the vanishing of antisymetric bilinear
forms, has become more and more embarrassing through collision with the
word “complex” in the connotation of complex number. I therefore propose

to replace it by the corresponding Greek adjective “symplectic”. Dickson calls
the group the “Abelian linear group” in homage to Abel who first studied it.

En ce qui concerne la notion actuelle de géométrie symplectique, au sens
de I’étude des variétés différentielles munies d’une forme symplectique, il -
semble que ce soit J.-M. Souriau qui 1’ait introduite en 1953 dans son article
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Géométrie symplectique différentielle. Applications. [Sou53] Dans un article
plus récent du méme auteur : La structure symplectique de la mécanique décrite
par Lagrange en 1811 [Sou86], on peut lire un autre aspect des relations entre
la géométrie symplectique et la mécanique de Lagrange.

1. GEOMETRIE DES MOUVEMENTS D’UNE PLANETE
AUTOUR D’UN CENTRE FIXE

Pour comprendre et apprécier la méthode de la variation des constantes
développée par Lagrange, il est nécessaire de bien connaitre la résolution du
probléme a deux corps. Nous allons en donner un bref résumé dans ce qui
suit.

Depuis Newton on sait que les mouvements d’un point matériel (une
planete) autour d’un centre fixe (le Soleil) est décrit par I’équation différen-
tielle®) suivante:

d*r r
a2 37

(D

ot r désigne un vecteur non nul de I’espace R® et r son module.
Transformons cette équation différentielle en un systétme du premier ordre
dans [R® — {0}] X R®, les mouvements de la planéte deviennent les solutions

de:
dr . dav r

2 - — —_—=
) a dt =

Comme on le sait®), I’énergie totale du systéme est conservée le long du
mouvement. Les astronomes appellent constante des forces vives le double de
I’énergie, on la notera f :

2
(3) f=v-=.

-
D’autre part, comme la force d’attraction gravitationnelle est centrale, le
moment cinétique L est lui aussi conservé :

“4) L=rAv.

.)‘ Il faudralt_ en toute rigueur multiplier r par la constante d’attraction solaire, mais nous
choisirons les unités de telle sorte qu’elle soit égale A 1.

5 depuis Huygens, dans son Horlogium oscillatorium de 1673.
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FIGURE 1
L’orbite de la planete P

De cette invariance on déduit que le mouvement de la planete s’effectue dans
le plan orthogonal a L.

On peut vérifier qu’un autre vecteur, indépendant de L, est miraculeusement
conservé le long du mouvement, c’est le vecteur de Laplace : ‘

(5) E—LAvV+ .
v

On déduit, de cet invariant supplémentaire, les trajectoires des planetes. En
effet, on a immédiatement :

(6) E*=14+fI* e E.L=0.
Le vecteur E est donc dans le plan du mouvement. On a de plus, le long du
mouvement :
(7) Er+L>=r.
Soit ¢ I’angle entre E et r, alors:
L2
(8) Ercos¢ +L*> =r ou encore r:m,

On reconnait ainsi I’équation d’une conique de parameétre L?, d’excentricité
E et d’axe la direction du vecteur E. Les astronomes appellent 1’angle ¢
I’anomalie vraie'?). Le vecteur E pourrait s’appeler le vecteur d’excentricité.

Les trajectoires de la planete sont donc des sections coniques, avec le
Soleil pour foyer. Leur nature dépend essentiellement du signe de 1’énergie
totale, comme le montre la formule (6).

10y Dans ce contexte, le terme anomalie signifie simplement parametre.
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e Sif<0 alors E <1, ’orbite est elliptique.
e Sif=0 alors E =1, I'orbite est parabolique.
e Sif >0 alors E > 1, orbite est hyperbolique.

Dans le cas des orbites elliptiques, on trouve tout de suite la valeur du
demi-grand axe, noté a:

) a 7

Nous pouvons décrire complétement la variété des mouvements képlériens
elliptiques (f < 0) si I’on exclut les chutes sur le centre, c’est-a-dire si on
se restreint 2 L # 0. Une trajectoire elliptique est bien définie par les deux
vecteurs L et E; le vecteur E donnant a la fois ’excentricité et 1’axe de
Jla conique, le plan étant défini comme I’orthogonal de L et le parametre
de D’ellipse valant L?. Autrement dit, I’espace des trajectoires képlériennes
elliptiques est équivalent & I’ensemble des couples de vecteurs (E,L) € R?xR?
tels que:

(10) E<1, L#0 e E.L=0.

C’est une sous-variété, de dimension 5, de R?> x R3. Ce n’est pas encore
I’espace des mouvements képlériens elliptiques: il nous faut pouvoir calculer
la position de la planete a chaque instant. On pourrait, pour cela, choisir la
position de la planete sur son orbite (c’est-a-dire I’anomalie vraie) a 1'instant
zéro. Mais ce choix donne lieu a des calculs pénibles. On considére plutot le
vecteur qui joint I’origine du cercle circonscrit a l’ellipse, au point A de ce
cercle qui a la méme projection orthogonale, sur 1’axe dirigé par E, que la
planete P (voir figure 2).

Ce vecteur, ou plus précisément I’angle 6 qu’il fait avec 1’axe de I’ellipse,
est appelé anomalie excentrique''), il a été introduit par Kepler. En utilisant
la définition de la constante [ et apreés quelques manipulations algébriques,
on peut constater que, le long du mouvement :

(11) dt = Va* |1 — Ecos(6)] db .
Ce qui nous donne par intégration une nouvelle constante du mouvement:

(12) c:t—\/gg{Q—Esin(Q)] :

1 . . . . < :
1Y Comme le montre la figure I’anomalie excentrique doit son nom 2 ce qu’il est le parameétre
excentré de l'ellipse, le vrai centre étant bien entendu le foyer: centre d’attraction.
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FIGURE 2

L’anomalie excentrique

C’est la valeur de ¢ pour 8 = 0, c’est-a-dire la date du passage de la planéte
a ’aphélie. C’est ce parametre que les astronomes appellent 1’épogue de la
planete, et qu’ils choisissent a la place de 1I’anomalie excentrique a 1’instant
z€ro '2).

REMARQUE. Les mouvements képlériens sont donc définis par les valeurs
de I’époque, du moment cinétique et du vecteur de Laplace. Mais il est évident,
puisque tous les mouvements elliptiques sont périodiques, que cet espace des
mouvements képlériens est aussi I’ensemble des conditions initiales a 1’instant
t =0, c’est-a-dire I’ouvert de R® x R? des couples (r,v) vérifiant:

2
(13) rAv#0 et v*—Z=<0.
r

La représentation d’'un mouvement képlérien par ses conditions initiales ou
par ses caractéristiques géométriques est a priori purement affaire de golt. |
Nous verrons quand méme que certaines représentations sont plus pratiques
que d’autres. Lagrange choisira les six éléments képlériens (a,b,c,h,i, k), ou

a est la valeur du demi-grand axe (I’inverse de la constante des forces vives
au signe pres), b est le parametre de 1’ellipse (le carré du moment cinétique),
¢ est ’époque. Les éléments s, i et k déterminent le plan de I’orbite et 1’axe

12y En réalité ce parametre est mal défini puisque le mouvement de la planéte est périodique.
Il n’est vraiment défini que modulo Va3 (la période du mouvement). Il faudrait plutét choisir
C = exp(ic/Va3). Ce qui est équivalent au choix de A a I’instant zéro.
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de Dellipse dans ce plan: i est I'inclinaison du plan de I'orbite par rapport a
un plan de référence, h est la longitude des nceuds, c’est-a-dire I’angle que
fait la trace du plan de 1’orbite sur le plan de référence (la ligne des nceuds),
et k est la longitude du périhélie, c’est-a-dire I’angle que fait I’axe de ’ellipse
avec la ligne des nceuds.

2. LA METHODE DE LA VARIATION DES CONSTANTES

Maintenant que nous avons bien compris et résolu'?) le probleme a deux
corps (au moins en ce qui concerne les orbites elliptiques), il nous reste a
traiter le probléme a deux corps perturbé, et d’introduire ainsi les premiers
calculs symplectiques comme 1’a fait Lagrange. Nous nous bornerons, comme
lui, aux perturbations des orbites elliptiques.

Nous avons déja expliqué, dans 1’introduction, la méthode de la variation
des constantes: l’influence de la perturbation a laquelle est soumise une
planete attirée par un centre fixe est traduite comme une courbe sur 1’espace
des éléments de la planete, c’est-a-dire I’espace de ses mouvements képlériens.
C’est cette courbe dont il s’agit de déterminer I’équation, et éventuellement
d’en extraire quelques renseignements, comme par exemple la stabilit¢ du
grand axe. Ce résultat avait ét¢ découvert par Laplace en 1773. Nous allons
montrer maintenant comment Lagrange 1’a inclus dans le cadre général de sa
méthode de la variation des constantes.

Supposons donc, comme le fait Lagrange, que la planete subisse de fagon
continue une série de chocs infiniment petits. Ces chocs se traduisent par une
variation instantanée de la vitesse, sans conséquence sur sa position. Si on
désigne par a un €lément quelconque de la plancte (pas nécessairement le
demi grand axe), on pourra écrire '4):

da  Oa dv
dt— Ovdt’
En remarquant que le vecteur dv/dt représente exactement la force perturba-

trice X exercée sur la planéte a I’instant ¢ au point r, la variation infinitésimale
de I’élément a, sous D’effet de la perturbation, peut s’écrire & nouveau :

da Oa
B?‘&X'

(14)

(15)

13 . . . . .
) En toute rigueur il faudrait encore inverser la fonction 6 — ¢. Probléme connu sous le
nom de Probléme de Kepler. Mais ce n’est pas le but de cet article.

14 ‘.z 5 ’ " .
) De fagon générale, on note dy/Ox I’application linéaire tangente d’une application x — y.
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Le mouvement vrai est ainsi décrit par la courbe intégrale de cette équation,
tracée dans I’espace des éléments de la planéte. Cette famille d’ellipses est
appel€e famille d’ ellipses osculatrices du mouvement perturbé.

Supposons maintenant que la force perturbatrice X dérive d’un potentiel Q,
autrement dit que:

0Q
(16) X=7°,
et que ce potentiel de perturbation € ne soit fonction que de r. Ce qui, dit
autrement, s’€crit:
0Q
5 =

Nous ne changeons donc rien en écrivant:

(17) 0.

> da OQ B da 0Q
ovi Ort  Ori Ovi '

i=1

da
1 i
118) dt

C’est maintenant, avec cette transformation astucieuse de Lagrange, que
la véritable histoire commence, d’ou sortira la géométrie symplectique. Mais
allons un peu plus loin: puisque 1’application (¢,r,v) — (t,a,b,c, h,i, k) est
un difféomorphisme, le potentiel de perturbation peut étre considéré aussi bien
comme une fonction de r que comme une fonction du temps ¢ et des €léments
(a,b,c,h,i, k) de la planete. En remplacant ’expression de

0Q  9Q da  0Q 9b

(19) or daor Taboar©

tc.,

et de
0Q B 0 da 0Q Ob

(20) (—9;—%%—}——(—95—3—‘;—{—6’[0.,

dans 1’équation (18), nous obtenons une nouvelle expression de da/dt :

21 a _ @)% 4 a,0% 4 e
2D da 7 Ob "7 Oc N
ou les parenthéses (a,b), (a,c), ..., sont les fonctions de (¢,r,v) définies
par:
3
da Ob  Ob Oa
(22) @)=Y -

£~ v Or' Oy Or'

I1 en est de méme pour les autres parenthéses, au nombre de quatorze puisqu’on
peut déja constater que (a,b) = —(b,a) etc. Les termes 0Q/0a, 0Q/0b, etc.
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intervenant dans cette formule, peuvent étre considérés comme les forces
de perturbations rapportées aux variables (a,b,c,h,i,k). Les coefficients des
forces de perturbation exprimées dans les variables (a, b, ¢, A, 1, k), sont appelés
aujourd’hui parenthéses de Lagrange®).

L’expression formelle (15) de la variation da/dt est beaucoup plus simple
que celle (21) a laquelle nous avons abouti aprés toutes ces transformations.
On est en droit de se demander quel intérét nous avons eu a effectuer ces
transformations. La réponse est contenue dans le théoréme suivant de Lagrange,
ol I’on considere le difféomorphisme (¢,r,v) — (¢,a,b,c, h,i,k).

THEOREME 1 [Lagrange]. Les parenthéses (a,b), (a,c), etc. considérées
comme des fonctions de (t,a,b,c,h,i,k) ne sont fonction que des éléments
(a,b,c,h,i,k).

A ce propos Lagrange écrira exactement [Lagll, volume II page 73]:

«Ainsi la variation de a sera représentée par une formule qui ne contiendra
que les différences partielles de € par rapport a b, c, etc., multipliées chacune
par une fonction de a, b, c, etc., sans ¢. Et la méme chose aura lieu a I’égard
des variations des autres constantes arbitraires b, c, A, etc.»

NOTE 3. Lagrange donnera successivement plusieurs démonstrations de ce
théoreme, le généralisant et le simplifiant chaque fois davantage. Il 1’énonce la
premiere fois, dans le cadre du mouvement des planetes, dans son mémoire de
1808 [Lag08]. Il le généralise ensuite a tous les problemes de la mécanique,
dans son mémoire de 1809 [Lag09]. Il le publie enfin, sous sa forme achevée
la plus générale, dans son mémoire de 1810 [Lagl0]. La démonstration est
épurée, simplifiée et le mémoire ne comporte plus alors que quelques pages.
L’énoncé particulier que nous avons donné plus haut est extrait de sa Mécanique
Analytique publi€e en 1811 [Lagll]. Il faut remarquer qu’une variante de ce
théoreme est aujourd’hui connu des étudiants sous la forme suivante : le crochet
de Poisson de deux constantes du mouvement est encore une constante du
mouvement ...

Aussitot €noncé son théoreme, Lagrange remarquera que la formule (21)
donnant I’expression de la variation des €léments de la planete en fonction
des forces de perturbations s’inverse, et notera que:

0Q db dc

15 et parfois méme appelés crochets de Poisson.
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ou les crochets [a,b], [a,c], ..., ne sont eux-mémes fonctions que des
éléments (a, b, c,h,i, k), et sont explicitement donnés par :

S ori oy By or

24 = _
24 L2, b] — Oda Ob Oa Ob’

etc.

Dans cette derniere équation les vecteurs r et v sont considérés comme
fonctions de ¢ et des éléments (a,b,c,h,i, k).

Ainsi le mouvement de la planete perturbée est décrit par une €équation
différentielle (21) sur ’espace des mouvements de la planete non perturbée,
ou si ’on préfere sur ’espace des constantes d intégration du systeéme non
perturbé. C’est évidemment 1a 'origine du nom donné par Lagrange a sa
méthode : la méthode de la variation des constantes. En effet, la variation des
constantes d’intégration du systeme non perturbé décrit le mouvement réel du
systeme perturbé.

NOTE 4. Cette méthode est évidemment de méme nature que la méthode
du méme nom que Lagrange avait développée entre 1774 et 1779, a la
fois pour comprendre la nature des solutions particuliéres des équations
différentielles [Lag74, Lag79] que pour résoudre les systemes différentiels
linéaires inhomogenes [Lag75, Remarque 5, pages 159-165]. C’est dans ce
dernier mémoire '°) Sur les suites récurrentes ... que Lagrange expose de facon
formelle sa méthode, sur la variation des constantes. Méthode qu’il n’avait
fait qu’ébaucher dans [Lag74], mais qu’il avait déja abondamment utilisée.

Dans le cas des équations linéaires inhomogenes [Lag75], la partie non
homogene est traitée comme une perturbation de la partie linéaire. L’espace des
solutions du systeme linéaire est un espace vectoriel dont chaque point est un
ensemble de constantes d’intégration. Le terme non linéaire du systeme initial
définit sur cet espace vectoriel un nouveau systeme différentiel, équivalent au
premier, mais qui porte sur les constantes d’intégration du systéme linéaire.
Il est intéressant de noter a ce propos cette remarque de Lagrange [Lag75,
page 163]:

«J’avoue que l’intégration des équations en a, b, c, ... et x sera le plus
souvent trés difficile, du moins aussi difficile que celle de I’équation proposée

[...] mais le grand usage de la méthode précédente est pour intégrer par

approximation les équations dont on connait déja I’intégrale complete a peu
prés, c’est-a-dire en négligeant les quantités qu’on regarde comme treés petites. »

16) Ce mémoire n’a que peu a voir avec la méthode de la variation des constantes. Lagrange -
dit lui méme: «Quoique ce ne soit pas ici le lieu de nous occuper de cette matiere, je vais
néanmoins en traiter en peu de mots, me réservant de le faire ailleurs avec plus d’ étendue.»
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Il achéve la remarque 5 de son article Sur les suites récurrentes... par ce
paragraphe prémonitoire, treize ans avant son premier mémoire sur la variation
des constantes appliquées au systeme des planétes:

«Il est visible au reste que cette méthode, que je ne fais qu’exposer ici en
passant, peut s’appliquer également au cas ol l’on aurait plusieurs €quations
différentielles entre plusieurs variables dont on connaitrait les intégrales com-
pletes approchées, c’est-a-dire en y négligeant des quantités supposées tres
petites. Elle sera par conséquent fort utile pour calculer les mouvements des
planétes en tant qu’ils sont altérés par leur action mutuelle, puisqu’en faisant
abstraction de cette action la solution complete du probleme est connue; et
il est bon de remarquer que, comme dans ce cas les constantes a, b, c,...
représentent ce qu’on nomme les éléments des planétes, notre méthode donnera

immédiatement les variations de ces éléments provenantes de 1’action que les
planetes exercent les unes sur les autres. »

On peut se demander quelle est alors la différence entre cette méthode,
introduite dans les années 1770, et son application au cas du systeme des
planctes ? Elle releve principalement du type de systeme traité. En appliquant
sa méthode générale de la variation des constantes aux systemes différentiels
spécifiques de la mécanique, Lagrange fait apparaitre une structure particuliere,
qui n’existe pas dans le cas général et qui est a 'origine de la géométrie
symplectique. Cette structure, caractérisée par les crochets et parentheses qu’il
a définis, Lagrange va savoir en tirer profit, comme il I’espérait, dans 1’étude de
la stabilité du grand axe des planetes, c’est ce que nous allons voir maintenant.

3. APPLICATION A LA STABILITE SECULAIRE DU GRAND AXE

Nous sommes en mesure maintenant de déduire, de toutes ces transforma-
tions et manipulations algébriques, le théoreme de Lagrange sur la stabilité
du grand axe des planétes. Appliquons la formule (23) a I’époque ¢ :

0Q da db dk
25 —— : — — * o o —
(25) By [c,a] 5 + [c, b] d[ + -+ [, k] o
On peut vérifier que les crochets [c, b], [c, h], [c,i], [c, k] sont nuls; il reste:
o0Q 1 da
(26) c,al = —1/2a* dot —=-— 2
L, a] / N e T T a

Si on se rappelle alors que le demi-grand axe a est égal & —1 /f, ou la

constante des forces vives f est le double de 1’énergie '’y H du mouvement
képlérien, on obtient:

'Y La lettre H a été choisie par Lagrange en ’honneur de Huygens et non de Hamilton, voir
[Lagll, tome I, pages 217-226 et 267-270).
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dH  0Q
dt  Oc’

Cette formule est en réalité tres générale et Lagrange 1’établit pour tous les
problémes de mécanique analytique conservatifs [Lag09].

27)

Comme nous ’avons déja dit, le potentiel de perturbation € (fonction de r)
est considéré comme fonction de ¢ et des éléments képlériens (a, b, c, h,i,k).
Mais le temps n’intervient dans € que par 7 — ¢, plus précisément € n’est
fonction que de (a,b,t—c,h,i, k). En effet dans les coordonnées du plan de
’orbite, en prenant pour axe des x 1’axe du vecteur E et en posant r = (x,y),
on a:

(28) x=ay/1— g— +acos(f) et y= Vab sin(f) ,

ou I’anomalie excentrique 6 est donnée en inversant la formule (12) de Kepler.
On peut préciser davantage les choses en notant ¢g la fonction:

(29) ¢rp: 80— 0 — Esin(f) avec E = 1—1—9—.

a

Cette fonction est inversible (car E < 1) et on peut écrire:

/ b i (t—c
(30) x=a\|1— P -+ acos I:Q5E (W)}

et
31 y:\/a_bsin {gbgl (;;;):l :

On en déduit, d’une part, une nouvelle expression pour la formule (27) donnant
la variation de 1’énergie H :

(32) dH  0Q
da ot
On constate, d’autre part, que la fonction €2 est périodique en ¢ —c¢ (formules
(30) et (31)), de période 2ma>/?. Le potentiel peut se développer alors en série
trigonométrique. Il est intéressant de noter ce que Lagrange €crit explicitement
a ce propos [Lag08, pages 735-736]:
«comme les valeurs des coordonnées peuvent étre réduites en série de
sinus et cosinus, il est facile de voir que la fonction  pourra étre réduite en

une série de sinus et cosinus; ces sinus et cosinus ayant pour coefficients des
fonctions des éléments a, b, c, etc.»
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Nous écrivons aujourd’hui:
ik(t — ¢)
(33) Q= ;Ak exp—— 7

Les coefﬁcients A, étant des fonctions seulement des €léments de 1’orbite
a, b, h, i, k, l’equatlon (32) devient alors:

kA ik(t —c)
5o U3 o M
k0
Ainsi que I’énonce Lagrange : la premiére approximation consiste a regarder
dans la fonction Q tous ces éléments comme constants [Lag08, page 736]
__ je. & considérer, A I’intérieur des fonctions A;, les éléments de 1’orbite
comme constants. Sans vouloir commenter la validité de cette affirmation, on

obtient ensuite par intégration:

ik(t —c)
(35) H(t) ~ Hy + ZAk Y
k0
ce premier ordre d’approximation, la fonction H (et donc le grand axe
a = —1/2H) ne contient pas de terme linéaire en ¢ (qu'on appelle ) le

terme séculaire) mais seulement des termes périodiques. Nous venons de
démontrer le théoréme de stabilité du grand axe de Lagrange. Laissons lui le
soin de I’exprimer [Lag08, page 736]:

THEOREME 2 [Lagrange]. Les grands axes des planétes ne peuvent étre
sujets qu'a des variations périodiques, et non a des variations croissant comme
le temps.

Ce théoreme n’est qu’une application particuliecre des méthodes de la
variation des constantes introduites par Lagrange. Il ne concerne, tel qu’il est
présenté ici, que la premicre approximation (démontrée la premicre fois, mais
par d’autres méthodes, par Laplace en 1773). Son véritable théoreme sur la
stabilit¢ séculaire des grands axes des planétes (ou il €tend véritablement le
résultat de Laplace) est plus profond, subtil et délicat car il prend en compte
le mouvement de toutes les planetes (consulter par exemple [Ste69]). Il n’est
malheureusement pas possible de le présenter dans cet article.

L’importance de cette nouvelle méthode introduite par Lagrange, outre
qu’elle formule de facon €élégante les principes de la mécanique analytique

1 < N . . o
8) Car sa présence entraine des perturbations sensibles au long des siécles.
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— en introduisant la structure symplectique de 1’espace des mouvements
képlériens — facilite aussi le calcul des autres inégalités'®). C’est ce qui
la rendra célebre puisque Lagrange montrera que la variation de 1’angle du
périhélie de Jupiter, observée par les astronomes (mais non encore expliquée
a ’époque), est périodique. Il en calculera la période (~ 900 ans si on croit
Sternberg [Ste69]).

4. LA STRUCTURE SYMPLECTIQUE DE
L’ESPACE DES MOUVEMENTS KEPLERIENS

Ces crochets [a, b], [a,c], ..., fonctions seulement des éléments képlériens
a, b, c etc. possedent trois propriétés remarquables.

1° Ils sont anti-symétriques :

(36) la,b] = —[b,a], [a,c] = —[c,a], etc,

2° La matrice w définie par la famille de crochets:
37 wap = [a,b],  wae =[a,c], etc,
est inversible, et son inverse est la matrice des parentheses de Lagrange:

(38) (W), =@b), (W), =(@0), etc,

3° Pour tous les triplets d’éléments (a, b, c), (a,b,h), ..., (i, h,k) I’équation

aux dérivées partielles suivante est vérifiée:

olb,c] Olc,a]l Ola,b]
da | ab | oc

Ces trois propriétés font de la matrice w ce qu’on appelle aujourd’hui une

(39) 0, etc.

forme symplectique.

Sans vouloir s’attarder sur les définitions formelles, disons seulement
qu’une forme différentielle définie sur un ouvert d’un espace numérique est |
une application qui a chaque point de cet ouvert associe une application
multilin€aire alternée. Par exemple, une 2-forme w définie sur un ouvert de
R?" sera caractérisée par n(n — 1)/2 fonctions wj;, de telle sorte que:

40) W@, V) =3 w0 XY,
N

19) C’est ainsi qu’on appelait les variations des éléments de 1’orbite dues aux perturbations
extérieures.
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ol x est un point de l’ouvert de définition, X = XY et ¥ = (¥/) deux
vecteurs de R?", les indices i et j variant de 1 a 2xn. On dit que la 2-forme
différentielle w est symplectique si elle est non dégénérée en chaque point et
si elle est fermée, c’est-a-dire %) :

(41) ' Oiwjk + Ojwyi + Okwy; = 0,

pour tout triplet d’indices i,j,k; on note dw = 0.

Les trois propriétés que nous avons énoncées plus haut font des crochets
de Lagrange les composantes d’une forme symplectique sur l’espace des
mouvements képlériens de la planéte. Les deux premieres propriétés ont €té
soulignées explicitement par Lagrange, méme s’il ne pouvait considérer a
son époque ces crochets comme les éléments d’une matrice, a fortiori d’une
2-forme différentielle. Quant a la propriété de fermeture il ne I’évoque pas.
Ce n’est que plus tard que son importance apparaitra avec la formalisation du
calcul différentiel. Du point de vue de la mécanique cette derniere propriété
est la conséquence de 1’existence du potentiel €2 des forces de perturbation:
X =0Q/0r.

Lagrange calculera explicitement la valeur de ses crochets, c’est-a-dire les
composantes de la forme symplectique, qui sont au nombre de quinze. Il
en donnera les expressions dans diverses cartes de l’espace des mouvements
képlériens, c’est-a-dire pour divers choix d’éléments képlériens caractérisant
les mouvements de la planete. Il n’y a pas grand intérét a donner ici I’ensemble
de ces expressions que I’on peut trouver dans [Lag08] et [Lagll1].

REMARQUE. Lagrange note que 1’on peut toujours choisir les positions
et les vitesses a un instant donné, comme constantes d’intégration, plutdt que
les €léments de la planéte. L’expression des parenthéses et des crochets s’en

trouve alors notablement simplifi€ée. En effet dans ce cas les seuls crochets
non nuls sont:

(42) vi,ril=1, i=1,2,3.

Comme on le voit les variables se regroupent par deux: r; avec v; et leurs
crochets sont constants. Cette forme symplectique définie de facon générale sur
R" X R" est appelée aujourd’hui forme symplectique canonique. Le Théoréme
de Darboux dit que toute forme symplectique posséde au moins localement
des coordonnées canoniques. Mais Lagrange, méme s’il dit qu’«il y aurait

2 2 : ] N . .
0) Cette formulation n’est pas tres parlante, dire qu’une forme différentielle w est fermée

signifie précisément qu’elle est localement exacte: pour tout point x il existe un voisinage U et
une forme différentielle o tel que w|y = da.
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toujours de 1’avantage a utiliser ces constantes a la place des autres constantes
a, b, c, etc.» [Lagll, volume II, page 76], n’utilisera pratiquement pas
ces coordonnées canoniques. En particulier, la carte (a,b,c,h,i,k) n’est pas
canonique.

Revenons a la méthode de la variation des constantes telle qu’elle est
présentée plus haut, et en particulier a la formule (14). Nous pouvons en donner
une justification en termes plus actuels. Considérons 1’espace Y des conditions
initiales du systéme étudié, c’est-a-dire 1’espace des triplets y = (¢,r,v) ou
tcR, rcR>—{0} et veR>. Les solutions de I’équation différentielle
dr dv r
E =v et ZE = ——;3

sont les courbes intégrales du feuilletage défint sur Y par:

(43) +X,

1
(44) y— R-& avec &= \
—r/r +X
Le vecteur ¢ se décompose en & + X :
1 0
(45) &g = A et x=120
—r/r? X

L’espace des mouvements képlériens est I’espace quotient K = Y/R - &,
c’est-a-dire ’espace des courbes intégrales du feuilletage y — R - &p.

mouvement non perturbé

|
mouvement perturbé

FIGURE 3

Projection de Y sur K
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Considérons alors une feuille du feuilletage -y +— R - § passant par

y = (t,r,v). Cette courbe se projette sur ’espace des mouvements képlériens
K, son équation est alors:
dm

(46) i Dy (§) = Dmy(&0) + Dmy ()

ol 7w:y — m est la projection de Y sur son quotient et D désigne
I’application linéaire tangente. Or, par construction: Dmy(&o) = 0, il reste donc
dm/dt = Dmy(x). Un petit dessin vaut parfois mieux qu’un long discours, voir
figure 3. C’est la famille d’équations (15). Enfin, transformée en la famille
d’équations (21), elle s’écrit encore:

(47) ‘—g =w™'(dQ),

ol dQ désigne la différenticlle de Q. Par analogie avec le cas euclidien,
comme w est inversible, on appelle gradient symplectique de la fonction € le
champ de vecteurs w~!(dQ). L’équation différentielle qui décrit la variation
des constantes devient aprés ces conventions de langage:

dm
—_ = Q).
(48) o grad(£2)

L’évolution du mouvement m, perturbé par le potentiel €2, est donc la courbe
intégrale du gradient symplectique du potentiel de perturbation.

CONCLUSION

La partie la plus douteuse du travail de Lagrange concerne slrement
la méthode d’approximation utilisée. Je voudrais a ce propos souligner
qu’hormis ces méthodes d’approximation les conclusions de Lagrange sont
rigoureusement établies méme si la présentation qu’il en a faite, et que j’ai
essayé de reproduire ici, ne respecte pas les canons actuels de la mathématique.
En ce sens, les transformations qu’il apporte aux €quations initiales ne sont

pas d’une grande utilit€¢ puisque celles qu’il obtient leur sont absolument
équivalentes. Laissons-le parler:

«Ainsi on peut regarder les équations précédentes entre les nouvelles
variables a, b, c, etc. comme les transformées des équations en x, y, z; mais
ces transformations seraient peu utiles pour la solution générale du probleéme.
Leur grande utilit€ est lorsque la solution rigoureuse est impossible, et que

les forces perturbatrices sont tres petites; elles fournissent alors un moyen
d’approximation. »
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Mais la justification de ces méthodes emploiera un grand nombre de
mathématiciens apres lui et non des moindres. Poincaré soulignait dans
I'introduction de sa célebre Nouvelle mécanique céleste [P0i92]:

«Ces méthodes qui consistent a développer les coordonnées des astres
suivant les puissances des masses, ont en effet un caractére commun qui
s’oppose a leur emploi pour le calcul des éphémérides a longue échéance.
Les séries obtenues contiennent des termes dits séculaires, ou le temps sort
des signes des sinus et cosinus, et il en résulte que leur convergence pourrait
devenir douteuse si ’on donnait a ce temps ¢ une grande valeur.

La présence de ces termes séculaires ne tient pas a la nature du probleme,
mais seulement a la méthode employée. Il est facile de se rendre compte, en
effet, que si la véritable expression d’une coordonnée contient un terme en
sinamt, o étant une constante et m l'une des masses, on trouvera quand
on voudra développer suivant les puissances de m, des termes séculaires
amt — o’m’t /6 + - et la présence de ces termes donnerait une idée trés
fausse de la véritable forme de la fonction étudiée. »

Cette objection est sans nul doute trés pertinente et a conduit, notamment
grace aux travaux de Poincaré, au développement de la géométrie symplectique
— en particulier en ce qui concerne son application a la mécanique. De nouvelles
théories sont nées comme par exemple la théorie des systemes completement
intégrables et de leur perturbation qui a donné le fameux théoreme?!) de
Kolmogorov — Arnold —Moser, sur la stabilité de nombreux mouvements apres
perturbation (voir [Arn76] [Arn80]).
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