
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 44 (1998)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES ORIGINES DU CALCUL SYMPLECTIQUE CHEZ LAGRANGE

Autor: IGLESIAS, Patrick

DOI: https://doi.org/10.5169/seals-63904

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-63904
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


LEnseignement Mathématique, t. 44 (1998), p. 257-277

LES ORIGINES DU CALCUL SYMPLECTIQUE CHEZ LAGRANGE

par Patrick IGLESIAS

Introduction

Entre 1808 et 1811, Lagrange développe une théorie de la variation des

constantes appliquée aux problèmes de la mécanique. C'est l'acte de naissance

du calcul symplectique, terme qui ne sera inventé qu'en 1946 par Hermann

Weyl1). Le but qu'il poursuit à l'époque est la généralisation d'un théorème

de Laplace, sur la stabilité séculaire du grand axe de l'orbite elliptique d'une

planète, perturbée par l'attraction d'autres corps célestes.

Depuis Kepler on sait résoudre explicitement le problème des éphémé-
rides des planètes. C'est-à-dire, calculer avec une précision aussi grande que
l'on veut la position de la Terre (ou de toute autre planète) connaissant sa

position et sa vitesse à un instant donné, à condition toutefois de considérer
seulement l'attraction du Soleil et de négliger complètement l'influence des

autres planètes. Mais bien que ce savoir soit important, il est largement
insuffisant pour ce qui est du mouvement réel des planètes. L'influence des

autres planètes sur la Terre est-elle vraiment négligeable, ne va-t-elle pas à

terme déstabiliser notre trajectoire et nous expulser aux confins de l'espace?
Il faut donc traiter le problème dans sa globalité: calculer la position

d'une planète quelconque, connaissant les positions et vitesses de toutes les

planètes, et ne négligeant l'influence d'aucune d'entre elles. La difficulté de

cette question donne le vertige, et on ne sait y répondre, encore actuellement,
ni analytiquement ni même numériquement.

On pourrait croire, en effet, qu'avec l'avènement de l'ordinateur cette question

soit devenue académique : pourquoi ne pas intégrer naïvement les équations
du mouvement par une méthode numérique quelconque. Malheureusement,

1 Voir la note historique 2 à la fin de cette introduction.
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si les erreurs d'approximations, inévitables dans ce genre de calcul, sont

négligeables sur un bref intervalle de temps, elles deviennent catastrophiques
à long terme. Cette incertitude sur la position de la planète n'a rien à voir avec

une éventuelle situation chaotique du système (le système à deux corps est

d'ailleurs parfaitement intégrable dans tous les sens raisonnables que l'on veut
bien donner à ce mot), elle est simplement la conséquence de l'accumulation
des erreurs commises par l'ordinateur lors de l'intégration numérique des

équations du mouvement. L'existence d'une méthode analytique d'intégration
du mouvement est donc capitale pour résoudre convenablement cette question.
Si cette remarque est vraie pour le problème à deux corps, elle l'est a
fortiori pour le problème à n corps (i.e. un nombre quelconque de planètes en

interaction). Or, comme nous l'avons déjà dit, nous ne connaissons toujours
aucune méthode analytique satisfaisante susceptible de résoudre cette question.

Lagrange a contourné cette difficulté en appliquant de façon astucieuse

sa méthode de la variation des constantes aux problèmes de la mécanique

analytique. Décrivons rapidement ce dont il s'agit.
Considérons d'abord un corps matériel (une planète) attiré par un centre fixe

(le Soleil) selon la loi de la gravitation universelle. Les équations différentielles

qui décrivent son mouvement sont de degré deux dans l'espace à trois

dimensions, il faudra donc six constantes d'intégration2) pour le décrire.

D'après Newton, nous savons que la trajectoire de ce corps est une ellipse3),
de foyer le centre d'attraction4). Pour décrire complètement cette ellipse il
nous faut d'abord connaître le plan dans lequel elle s'inscrit (le plan de

l'orbite), on peut le repérer par le vecteur unitaire qui lui est orthogonal, ce

qui fait deux paramètres. Pour définir l'ellipse dans son plan on peut choisir
la position du deuxième foyer, ce qui donne deux nouveaux paramètres, et la

longueur de l'ellipse5), soit au total: cinq paramètres pour situer et décrire la

trajectoire du corps dans l'espace.

Mais si ces cinq paramètres suffisent à définir complètement la trajectoire
du corps céleste, ils ne suffisent pas à déterminer son mouvement. En effet,

2) A cette époque on disait constantes d'intégration quand nous parlons aujourd'hui d'espace
de solutions. Par exemple, l'équation différentielle ordinaire réelle dx/dt x a toutes ses solutions
de la forme x(t) c exp(t), où c est une constante arbitraire — la fameuse constante d'intégration.
Or, c caractérise justement cette solution.

3) Si Kepler a découvert le mouvement elliptique des planètes, c'est Newton qui l'a «déduit»
de la loi de la gravitation universelle qui porte son nom. Pour une discussion plus approfondie
sur ce sujet voir la thèse de F. de Gandt [dG87].

4) Les caractéristiques géométriques de cette ellipse étant, par ailleurs, liées aux position et

vitesse initiales du corps.

5) Il est possible maintenant de tracer l'ellipse par la méthode du jardinier.
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comment déterminer la position de la planète à chaque instant sur sa trajectoire

si nous ne connaissons pas sa position à une origine des temps arbitraire?

ou encore la date de son passage à l'aphélie? Voilà comment s'introduit ce

sixième paramètre que les astronomes appellent Y époque.

Nous aurions pu tout aussi bien choisir six autres paramètres : par exemple

les position et vitesse initiales de la planète à l'origine des temps. Ils définissent

aussi, de façon unique, le mouvement de la planète. Seul le caractère pratique

de tel ou tel ensemble de paramètres peut déterminer notre choix. Les

astronomes appellent éléments képlériens de la planète un tel ensemble de

six paramètres servant à caractériser son mouvement, cinq pour la figure de

l'ellipse et l'époque.
L'ensemble des mouvements de la planète considérés indépendamment du

choix des paramètres qui nous servent à les décrire6) sera appelé espace des

mouvements képlériens.

Supposons maintenant que la planète, qui suit un mouvement képlérien m,
subisse un choc instantané dû à l'impact d'un astéroïde. Après le choc

elle suivra encore un mouvement képlérien m' différent du précédent. Le

mouvement (perturbé) de cette planète sera donc décrit par son mouvement

m avant le choc, son mouvement m' après le choc et l'instant du choc t.
Supposons ensuite que la planète subisse une série de chocs de ce type.
Le mouvement réel de la planète sera décrit par une courbe dans l'espace
des mouvements képlériens, discontinue et constante par morceaux, chaque

morceau de courbe décrivant le mouvement képlérien de la planète entre
deux chocs successifs. En étendant ce raisonnement, Lagrange assimilera
l'interaction des autres planètes du système à une série infinie de chocs

«infiniments petits et continuels». Il décrira ainsi le mouvement réel de la
planète perturbée par une courbe, cette fois différentiable, tracée dans son

espace des mouvements képlériens. C'est en précisant l'équation différentielle
de cette courbe7) qu'il fera apparaître la structure symplectique de Y espace des

mouvements. Il donnera l'expression des composantes de la forme symplectique
de l'espace des mouvements képlériens dans le système de coordonnées que
sont les éléments de la planète. Il en déduira entre autre la stabilité séculaire
du grand axe des planètes.

J'ai essayé, dans cet article, d'être le plus fidèle possible aux textes de

Lagrange. Désirant par là mettre en évidence le processus qui lui a permis, en

6) On dit que c'est une variété.

7) Aujourd hui cette équation porte le nom d'équation de Hamilton, mais pour la petite
histoire sachez que Sir W. R. Hamilton avait juste six ans lorsque Lagrange la publia pour la
première fois.
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voulant résoudre le problème du système des planètes, d'élaborer les premiers
éléments de calcul symplectique.

Note 1. C'est le 22 août 1808 que Lagrange présente à l'Institut de

France son Mémoire sur la théorie des variations des éléments des planètes
[Lag08] où sont définis pour la première fois les crochets et parenthèses qui
portent son nom et qui sont, en termes modernes, les composantes de Informe
symplectique de l'espace des mouvements d'une planète.

Ce mémoire sera suivi de celui Sur la théorie générale de la variation
des constantes arbitraires [Lag09] présenté le 13 mars 1809, où il généralise
sa méthode à tous les problèmes de mécanique. Il en donnera une version
notablement simplifiée, et définitive, le 19 février 1810 [Lag 10]. C'est à partir
de cette version qu'il écrira les chapitres relatifs à ces questions dans la

deuxième édition de son Traité de Mécanique Analytique [Lagll] (seconde

partie, de la cinquième à la septième section). Ce volume ne sera publié
qu'après sa mort.

Note 2. Dans son ouvrage sur Les Groupes classiques [Wey46],
Hermann Weyl baptise ainsi: groupe symplectique, le groupe des transformations

linéaires de R2n qui préservent la forme bilinéaire antisymétrique
uj Xw=i dPi Adqt. Les relations étroites entre la structure définie par u
et la structure complexe (R2" ~ Cn) lui font choisir le mot symplectique [gr.

GDja-7tÀ£KTiKÔç], transposition de complexe [lat. com-plexus] pour désigner

ce groupe; le mot complexe étant par ailleurs réservé. Le suffixe 7t?i£KTiKÔç

~ plexus signifiant tenir, entrelacer... L'idée de complexe, comme symplectique

sous-entend l'existence de plusieurs types d'objets (ici deux) maintenus

ensemble dans une même structure. De façon rapide et en anticipant sur la

suite, on peut dire que dans le premier cas la complexité représente la dualité

réel-imaginaire, et dans le second la symplecticité représente la dualité

position-vitesse. Voici ce qu'en dit lui-même Weyl [Wey46, p. 165]:

The name "complex group" formerly advocated by me in allusion to line
complexes, as these are defined by the vanishing of antisymetric bilinear
forms, has become more and more embarrassing through collision with the
word "complex" in the connotation of complex number. I therefore propose
to replace it by the corresponding Greek adjective "symplectic". Dickson calls
the group the "Abelian linear group" in homage to Abel who first studied it.

En ce qui concerne la notion actuelle de géométrie symplectique, au sens

de l'étude des variétés différentielles munies d'une forme symplectique, il
semble que ce soit J.-M. Souriau qui l'ait introduite en 1953 dans son article
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Géométrie symplectique différentielle. Applications. [Sou53] Dans un article

plus récent du même auteur : La structure symplectique de la mécanique décrite

par Lagrange en 1811 [Sou86], on peut lire un autre aspect des relations entre

la géométrie symplectique et la mécanique de Lagrange.

1. Géométrie des mouvements d'une planète
AUTOUR D'UN CENTRE FIXE

Pour comprendre et apprécier la méthode de la variation des constantes

développée par Lagrange, il est nécessaire de bien connaître la résolution du

problème à deux corps. Nous allons en donner un bref résumé dans ce qui
suit.

Depuis Newton on sait que les mouvements d'un point matériel (une

planète) autour d'un centre fixe (le Soleil) est décrit par l'équation différentielle

8 suivante :

(1) ^L -LV }
dt2 r3 '

où r désigne un vecteur non nul de l'espace R3 et r son module.
Transformons cette équation différentielle en un système du premier ordre
dans [R3 - {0}] x R3, les mouvements de la planète deviennent les solutions
de:

dr d\ r<2) d!=v-J!"?'
Comme on le sait9), l'énergie totale du système est conservée le long du
mouvement. Les astronomes appellent constante des forces vives le double de

l'énergie, on la notera / :

(3) f v2--.
r

D'autre part, comme la force d'attraction gravitationnelle est centrale, le
moment cinétique L est lui aussi conservé :

(4) L r A v.

Il faudrait en toute rigueur multiplier r par la constante d'attraction solaire, mais nou
choisirons les unités de telle sorte qu'elle soit égale à 1.

9) depuis Huygens, dans son Hoiiogium osciUatorium de 1673.
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Figure 1

L'orbite de la planète P

De cette invariance on déduit que le mouvement de la planète s'effectue dans

le plan orthogonal à L.
On peut vérifier qu'un autre vecteur, indépendant de L, est miraculeusement

conservé le long du mouvement, c'est le vecteur de Laplace :

(5) E L A v + -r
On déduit, de cet invariant supplémentaire, les trajectoires des planètes. En

effet, on a immédiatement:

(6) E2 1+fL2etE. L 0.

Le vecteur E est donc dans le plan du mouvement. On a de plus, le long du

mouvement :

(7) E. r + L2

Soit 0 l'angle entre E et r, alors:

2 Ll
(8) E r cos 0 + L r ou encore r

1 — E cos 0

On reconnaît ainsi l'équation d'une conique de paramètre L2, d'excentricité

E et d'axe la direction du vecteur E. Les astronomes appellent l'angle 0
Y anomalie vraie10). Le vecteur E pourrait s'appeler le vecteur d'excentricité.

Les trajectoires de la planète sont donc des sections coniques, avec le

Soleil pour foyer. Leur nature dépend essentiellement du signe de l'énergie
totale, comme le montre la formule (6).

10 Dans ce contexte, le terme anomalie signifie simplement paramètre.
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• Si / < 0 alors E < 1, l'orbite est elliptique.

• Si / 0 alors E 1, l'orbite est parabolique.

• Si / > 0 alors E > 1, l'orbite est hyperbolique.

Dans le cas des orbites elliptiques, on trouve tout de suite la valeur du

demi-grand axe, noté a :

(9, i.
Nous pouvons décrire complètement la variété des mouvements képlériens

elliptiques (f < 0) si l'on exclut les chutes sur le centre, c'est-à-dire si on

se restreint à L^O. Une trajectoire elliptique est bien définie par les deux

vecteurs L et E ; le vecteur E donnant à la fois l'excentricité et l'axe de

la conique, le plan étant défini comme l'orthogonal de L et le paramètre

de l'ellipse valant L2. Autrement dit, l'espace des trajectoires képlériennes

elliptiques est équivalent à l'ensemble des couples de vecteurs (E, L) G R3 xR3

tels que:

(10) E< 1, L^O et E. L 0.

C'est une sous-variété, de dimension 5, de R3 x R3. Ce n'est pas encore

l'espace des mouvements képlériens elliptiques : il nous faut pouvoir calculer
la position de la planète à chaque instant. On pourrait, pour cela, choisir la

position de la planète sur son orbite (c'est-à-dire l'anomalie vraie) à Y instant
zéro. Mais ce choix donne lieu à des calculs pénibles. On considère plutôt le

vecteur qui joint l'origine du cercle circonscrit à l'ellipse, au point A de ce
cercle qui a la même projection orthogonale, sur l'axe dirigé par E, que la

planète P (voir figure 2).

Ce vecteur, ou plus précisément l'angle 6 qu'il fait avec l'axe de l'ellipse,
est appelé anomalie excentrique11 il a été introduit par Kepler. En utilisant
la définition de la constante / et après quelques manipulations algébriques,
on peut constater que, le long du mouvement:

(11) dt VcY 1—Ecos(6>) d6

Ce qui nous donne par intégration une nouvelle constante du mouvement :

(12) c t — Va* 6 — E sin(0)

11 Comme le montre la figure Yanomalie excentrique doit son nom à ce qu'il est le paramètre
excentré de l'ellipse, le vrai centre étant bien entendu le foyer: centre d'attraction.
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A

P \
r 0 mk
Ks K>IE

Figure 2

L'anomalie excentrique

C'est la valeur de t pour 6 0, c'est-à-dire la date du passage de la planète
à l'aphélie. C'est ce paramètre que les astronomes appellent Y époque de la

planète, et qu'ils choisissent à la place de l'anomalie excentrique à l'instant
zéro12

Remarque. Les mouvements képlériens sont donc définis par les valeurs
de l'époque, du moment cinétique et du vecteur de Laplace. Mais il est évident,

puisque tous les mouvements elliptiques sont périodiques, que cet espace des

mouvements képlériens est aussi l'ensemble des conditions initiales à l'instant
t — 0, c'est-à-dire l'ouvert de R3 x R3 des couples (r,v) vérifiant:

O 2
(13) rAv 7^0 et v <0.

r
La représentation d'un mouvement képlérien par ses conditions initiales ou

par ses caractéristiques géométriques est a priori purement affaire de goût.
Nous verrons quand même que certaines représentations sont plus pratiques

que d'autres. Lagrange choisira les six éléments képlériens (a,b,c,h,i,k), où

a est la valeur du demi-grand axe (l'inverse de la constante des forces vives

au signe près), b est le paramètre de l'ellipse (le carré du moment cinétique),
c est l'époque. Les éléments h, i et k déterminent le plan de l'orbite et l'axe

12 En réalité ce paramètre est mal défini puisque le mouvement de la planète est périodique.

Il n'est vraiment défini que modulo VcY (la période du mouvement). Il faudrait plutôt choisir

C exp(2ic/y/cP). Ce qui est équivalent au choix de A à l'instant zéro.
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de l'ellipse dans ce plan: i est l'inclinaison du plan de l'orbite par rapport à

un plan de référence, h est la longitude des nœuds, c'est-à-dire l'angle que

fait la trace du plan de l'orbite sur le plan de référence (la ligne des nœuds),

et k est la longitude du périhélie, c'est-à-dire l'angle que fait l'axe de l'ellipse

avec la ligne des nœuds.

2. La méthode de la variation des constantes

Maintenant que nous avons bien compris et résolu13) le problème à deux

corps (au moins en ce qui concerne les orbites elliptiques), il nous reste à

traiter le problème à deux corps perturbé, et d'introduire ainsi les premiers
calculs symplectiques comme l'a fait Lagrange. Nous nous bornerons, comme

lui, aux perturbations des orbites elliptiques.
Nous avons déjà expliqué, dans l'introduction, la méthode de la variation

des constantes : l'influence de la perturbation à laquelle est soumise une

planète attirée par un centre fixe est traduite comme une courbe sur l'espace
des éléments de la planète, c'est-à-dire l'espace de ses mouvements képlériens.
C'est cette courbe dont il s'agit de déterminer l'équation, et éventuellement

d'en extraire quelques renseignements, comme par exemple la stabilité du

grand axe. Ce résultat avait été découvert par Laplace en 1773. Nous allons

montrer maintenant comment Lagrange l'a inclus dans le cadre général de sa

méthode de la variation des constantes.

Supposons donc, comme le fait Lagrange, que la planète subisse de façon
continue une série de chocs infiniment petits. Ces chocs se traduisent par une
variation instantanée de la vitesse, sans conséquence sur sa position. Si on
désigne par a un élément quelconque de la planète (pas nécessairement le
demi grand axe), on pourra écrire14):

„ da da dv
(14) — -dt d\ dt

En remarquant que le vecteur dy/dt représente exactement la force perturbatrice

X exercée sur la planète à l'instant t au point r, la variation infinitésimale
de l'élément a, sous l'effet de la perturbation, peut s'écrire à nouveau:

(15) X t^-dt d\

En toute rigueur il faudrait encore inverser la fonction 6 i-> t. Problème connu sous le
nom de Problème de Kepler. Mais ce n'est pas le but de cet article.

14) De façon générale, on note dy/dx l'application linéaire tangente d'une application x y.
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Le mouvement vrai est ainsi décrit par la courbe intégrale de cette équation,
tracée dans l'espace des éléments de la planète. Cette famille d'ellipses est

appelée famille d'ellipses osculatrices du mouvement perturbé.
Supposons maintenant que la force perturbatrice X dérive d'un potentiel £2,

autrement dit que:

(!6) X=7T>or
et que ce potentiel de perturbation H ne soit fonction que de r. Ce qui, dit
autrement, s'écrit:

(17) ir 0-
ov

Nous ne changeons donc rien en écrivant:

da
_ y, da dQ da dQ

dt ^ dvl drl drl cV
i—\

C'est maintenant, avec cette transformation astucieuse de Lagrange, que
la véritable histoire commence, d'où sortira la géométrie symplectique. Mais
allons un peu plus loin: puisque l'application (t,r,v) ^ (t,a,b,c,h,i,k) est

un difféomorphisme, le potentiel de perturbation peut être considéré aussi bien

comme une fonction de r que comme une fonction du temps t et des éléments

(«a, b, c, h, z, k) de la planète. En remplaçant l'expression de

/irk. dQ dQ da dQ db
~dr~dä 9r + ~db ~dr^6tC''

et de

/Kl dQ. da ôQ db

Ih ~ + ~db dv+ CtC''

dans l'équation (18), nous obtenons une nouvelle expression de da/dt :

da dQ dQ,
(21) — (ö, ô) — + (a, c) — + etc.,

où les parenthèses (a,b), (a,c), sont les fonctions de (t,r,v) définies

par:

da db db da
} ^ ^ ~^d^ d? ~ dV' dr1 '

i= 1

Il en est de même pour les autres parenthèses, au nombre de quatorze puisqu'on

peut déjà constater que (a,b) —(b, a) etc. Les termes dQ/da, dQ/db, etc.
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intervenant dans cette formule, peuvent être considérés comme les forces

de perturbations rapportées aux variables (a,b,c,h,i,k). Les coefficients des

forces de perturbation exprimées dans les variables (a, fi, c, fi, z, k), sont appelés

aujourd'hui parenthèses de Lagrange15).

L'expression formelle (15) de la variation da/dt est beaucoup plus simple

que celle (21) à laquelle nous avons abouti après toutes ces transformations.

On est en droit de se demander quel intérêt nous avons eu à effectuer ces

transformations. La réponse est contenue dans le théorème suivant de Lagrange,

où l'on considère le difféomorphisme {t, r, v) i—» (£, a3 é, c, /z, z, k).

Théorème 1 [Lagrange]. Les parenthèses (a,b), (a,c), etc. considérées

comme des fonctions de (r, a, b, c, h. z, k) ne soztf fonction que des éléments

(a, /?, c, /z, z, £).

A ce propos Lagrange écrira exactement [Lagll, volume II page 73] :

« Ainsi la variation de a sera représentée par une formule qui ne contiendra

que les différences partielles de Q par rapport à b, c, etc., multipliées chacune

par une fonction de a, b, c, etc., sans r. Et la même chose aura lieu à l'égard
des variations des autres constantes arbitraires b, c, h, etc.»

Note 3. Lagrange donnera successivement plusieurs démonstrations de ce

théorème, le généralisant et le simplifiant chaque fois davantage. Il l'énonce la

première fois, dans le cadre du mouvement des planètes, dans son mémoire de

1808 [Lag08]. Il le généralise ensuite à tous les problèmes de la mécanique,
dans son mémoire de 1809 [Lag09]. Il le publie enfin, sous sa forme achevée

la plus générale, dans son mémoire de 1810 [Lag 10]. La démonstration est

épurée, simplifiée et le mémoire ne comporte plus alors que quelques pages.
L'énoncé particulier que nous avons donné plus haut est extrait de sa Mécanique
Analytique publiée en 1811 [Lagll]. Il faut remarquer qu'une variante de ce
théorème est aujourd'hui connu des étudiants sous la forme suivante : le crochet
de Poisson de deux constantes du mouvement est encore une constante du
mouvement...

Aussitôt énoncé son théorème, Lagrange remarquera que la formule (21)
donnant l'expression de la variation des éléments de la planète en fonction
des forces de perturbations s'inverse, et notera que:

rni\ ^ ri i^b r ^dc(23) -r— [<z, b] ——h [a, c] ——h etc.,da dt dt

15
et parfois même appelés crochets de Poisson.
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où les crochets [a,b], [a,c], ne sont eux-mêmes fonctions que des

éléments et sont explicitement donnés par :

Dans cette dernière équation les vecteurs r et v sont considérés comme
fonctions de t et des éléments (a, b, c, /z, z, k).

Ainsi le mouvement de la planète perturbée est décrit par une équation
différentielle (21) sur l'espace des mouvements de la planète non perturbée,

ou si l'on préfère sur Y espace des constantes d'intégration du système non

perturbé. C'est évidemment là l'origine du nom donné par Lagrange à sa

méthode : la méthode de la variation des constantes. En effet, la variation des

constantes d'intégration du système non perturbé décrit le mouvement réel du

système perturbé.

Note 4. Cette méthode est évidemment de même nature que la méthode

du même nom que Lagrange avait développée entre 1774 et 1779, à la

fois pour comprendre la nature des solutions particulières des équations

différentielles [Lag74, Lag79] que pour résoudre les systèmes différentiels
linéaires inhomogènes [Lag75, Remarque 5, pages 159-165]. C'est dans ce

dernier mémoire16 Sur les suites récurrentes... que Lagrange expose de façon
formelle sa méthode, sur la variation des constantes. Méthode qu'il n'avait
fait qu'ébaucher dans [Lag74], mais qu'il avait déjà abondamment utilisée.

Dans le cas des équations linéaires inhomogènes [Lag75], la partie non

homogène est traitée comme une perturbation de la partie linéaire. L'espace des

solutions du système linéaire est un espace vectoriel dont chaque point est un
ensemble de constantes d'intégration. Le terme non linéaire du système initial
définit sur cet espace vectoriel un nouveau système différentiel, équivalent au

premier, mais qui porte sur les constantes d'intégration du système linéaire.

Il est intéressant de noter à ce propos cette remarque de Lagrange [Lag75,

page 163]:

«J'avoue que l'intégration des équations en a, b, c, et x sera le plus
souvent très difficile, du moins aussi difficile que celle de l'équation proposée

[...] mais le grand usage de la méthode précédente est pour intégrer par
approximation les équations dont on connaît déjà l'intégrale complète à peu
près, c'est-à-dire en négligeant les quantités qu'on regarde comme très petites.»

Qrl Qyl Q\l drl
etc.

16) Ce mémoire n'a que peu à voir avec la méthode de la variation des constantes. Lagrange
dit lui même: «Quoique ce ne soit pas ici le lieu de nous occuper de cette matière, je vais
néanmoins en traiter en peu de mots, me réservant de le faire ailleurs avec plus d'étendue.»
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Il achève la remarque 5 de son article Sur les suites récurrentes... par ce

paragraphe prémonitoire, treize ans avant son premier mémoire sur la variation

des constantes appliquées au système des planètes:

«Il est visible au reste que cette méthode, que je ne fais qu'exposer ici en

passant, peut s'appliquer également au cas où l'on aurait plusieurs équations
différentielles entre plusieurs variables dont on connaîtrait les intégrales
complètes approchées, c'est-à-dire en y négligeant des quantités supposées très

petites. Elle sera par conséquent fort utile pour calculer les mouvements des

planètes en tant qu'ils sont altérés par leur action mutuelle, puisqu'en faisant
abstraction de cette action la solution complète du problème est connue; et

il est bon de remarquer que, comme dans ce cas les constantes a, b, c,...
représentent ce qu'on nomme les éléments des planètes, notre méthode donnera
immédiatement les variations de ces éléments provenantes de l'action que les

planètes exercent les unes sur les autres. »

On peut se demander quelle est alors la différence entre cette méthode,

introduite dans les années 1770, et son application au cas du système des

planètes Elle relève principalement du type de système traité. En appliquant
sa méthode générale de la variation des constantes aux systèmes différentiels

spécifiques de la mécanique, Lagrange fait apparaître une structure particulière,
qui n'existe pas dans le cas général et qui est à l'origine de la géométrie
symplectique. Cette structure, caractérisée par les crochets et parenthèses qu'il
a définis, Lagrange va savoir en tirer profit, comme il l'espérait, dans l'étude de

la stabilité du grand axe des planètes, c'est ce que nous allons voir maintenant.

3. Application à la stabilité séculaire du grand axe

Nous sommes en mesure maintenant de déduire, de toutes ces transformations

et manipulations algébriques, le théorème de Lagrange sur la stabilité
du grand axe des planètes. Appliquons la formule (23) à l'époque c :

dÇl
_ r 1

da
r 1.1

db
r

àk
(25) — [c, a\ — + [c, b] ——h • • • + [c,

oc dt dt dt
On peut vérifier que les crochets [c, b], [c, h], [c, i], [c, k] sont nuls ; il reste :

(26) [c,a] —l/2a2 d'où
ôc 2a2 dt

Si on se rappelle alors que le demi-grand axe a est égal à -1//, où la
constante des forces vives / est le double de l'énergie17) H du mouvement
képlérien, on obtient:

17 La lettre H a été choisie par Lagrange en l'honneur de Huygens et non de Hamilton, voir
[Lagll, tome I, pages 217-226 et 267-270].
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(27)
dH

dt

dQ
de

Cette formule est en réalité très générale et Lagrange l'établit pour tous les

problèmes de mécanique analytique conservatifs [Lag09].
Comme nous l'avons déjà dit, le potentiel de perturbation El (fonction de r)

est considéré comme fonction de t et des éléments képlériens (a, /?, c, /?, /', k).
Mais le temps n'intervient dans El que par t — c, plus précisément El n'est
fonction que de (a,b,t — c, h, i,k). En effet dans les coordonnées du plan de

l'orbite, en prenant pour axe des x l'axe du vecteur E et en posant r — (x,y),
on a:

(28) a\fl — - + acos(9) et y \[âb sin(6>),
\l a

où l'anomalie excentrique 9 est donnée en inversant la formule (12) de Kepler.
On peut préciser davantage les choses en notant cj)E la fonction:

(29) (j)E : 9 i—>• 9 — E sin(0) avec E y 1

Cette fonction est inversible (car E < 1 et on peut écrire :

(30)

et

(31)

x a\ 1 a cos («3/2

y Vab sm

On en déduit, d'une part, une nouvelle expression pour la formule (27) donnant

la variation de l'énergie H :

(32)
dH

_
d£l

dt dt

On constate, d'autre part, que la fonction £1 est périodique en t — c (formules

(30) et (31)), de période hxc?!2. Le potentiel peut se développer alors en série

trigonométrique. Il est intéressant de noter ce que Lagrange écrit explicitement
à ce propos [Lag08, pages 735-736] :

«comme les valeurs des coordonnées peuvent être réduites en série de

sinus et cosinus, il est facile de voir que la fonction El pourra être réduite en
une série de sinus et cosinus; ces sinus et cosinus ayant pour coefficients des

fonctions des éléments a, b, c, etc.»
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Nous écrivons aujourd'hui:

(33)
a

c)

k

Les coefficients Ak étant des fonctions seulement des éléments de l'orbite

a, b, h, i, k, l'équation (32) devient alors:

Ainsi que l'énonce Lagrange : la première approximation consiste à regarder

dans la fonction Q tous ces éléments comme constants [Lag08, page 736]

— i.e. à considérer, à l'intérieur des fonctions Ak, les éléments de l'orbite

comme constants. Sans vouloir commenter la validité de cette affirmation, on

obtient ensuite par intégration:

ce premier ordre d'approximation, la fonction H (et donc le grand axe

a —1/2H) ne contient pas de terme linéaire en t (qu'on appelle18) le

terme séculaire) mais seulement des termes périodiques. Nous venons de

démontrer le théorème de stabilité du grand axe de Lagrange. Laissons lui le

soin de l'exprimer [Lag08, page 736] :

THÉORÈME 2 [Lagrange]. Les grands axes des planètes ne peuvent être

sujets qu'à des variations périodiques, et non à des variations croissant comme
le temps.

Ce théorème n'est qu'une application particulière des méthodes de la

variation des constantes introduites par Lagrange. Il ne concerne, tel qu'il est

présenté ici, que la première approximation (démontrée la première fois, mais

par d'autres méthodes, par Laplace en 1773). Son véritable théorème sur la

stabilité séculaire des grands axes des planètes (où il étend véritablement le

résultat de Laplace) est plus profond, subtil et délicat car il prend en compte
le mouvement de toutes les planètes (consulter par exemple [Ste69]). Il n'est
malheureusement pas possible de le présenter dans cet article.

L'importance de cette nouvelle méthode introduite par Lagrange, outre
qu'elle formule de façon élégante les principes de la mécanique analytique

18 Car sa présence entraîne des perturbations sensibles au long des siècles.

(34)

(35)
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— en introduisant la structure symplectique de l'espace des mouvements

képlériens — facilite aussi le calcul des autres inégalités19). C'est ce qui
la rendra célèbre puisque Lagrange montrera que la variation de l'angle du

périhélie de Jupiter, observée par les astronomes (mais non encore expliquée
à l'époque), est périodique. Il en calculera la période 900 ans si on croit
Sternberg [Ste69]).

4. La structure symplectique de
L'ESPACE DES MOUVEMENTS KÉPLÉRIENS

Ces crochets [a, b], [a, c], fonctions seulement des éléments képlériens

a, b, c etc. possèdent trois propriétés remarquables.

1° Ils sont anti-symétriques\

(36) [a,b\ =—[b,a], [a, c] — [c, a], etc.,

2° La matrice co définie par la famille de crochets :

(37) üJab [a, b], cÜac [a, c], etc.,

est inversible, et son inverse est la matrice des parenthèses de Lagrange:

(38) (u~l)ab (a,b), (u~l)ac (a,c), etc.,

3° Pour tous les triplets d'éléments (a, b, c), (a,b,h), (z, /z, k) l'équation
aux dérivées partielles suivante est vérifiée :

d[b,c] d[c,a\ d[a,b] _
<39) ~sr + + ~êr Mc-

Ces trois propriétés font de la matrice uj ce qu'on appelle aujourd'hui une

forme symplectique.
Sans vouloir s'attarder sur les définitions formelles, disons seulement

qu'une forme différentielle définie sur un ouvert d'un espace numérique est

une application qui à chaque point de cet ouvert associe une application
multilinéaire alternée. Par exemple, une 2-forme uj définie sur un ouvert de

R2" sera caractérisée par n(n— l)/2 fonctions cj/y, de telle sorte que:

(40) u(x)(X, Y)

19) C'est ainsi qu'on appelait les variations des éléments de l'orbite dues aux perturbations
extérieures.
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où x est un point de l'ouvert de définition, X (X1) et Y (YJ) deux

vecteurs de R2", les indices i et j variant de 1 à 2/î. On dit que la 2-forme

différentielle lu est symplectique si elle est non dégénérée en chaque point et

si elle est fermée, c'est-à-dire20):

pour tout triplet d'indices ij. k ; on note du 0.

Les trois propriétés que nous avons énoncées plus haut font des crochets

de Lagrange les composantes d'une forme symplectique sur l'espace des

mouvements képlériens de la planète. Les deux premières propriétés ont été

soulignées explicitement par Lagrange, même s'il ne pouvait considérer à

son époque ces crochets comme les éléments d'une matrice, a fortiori d'une
2-forme différentielle. Quant à la propriété de fermeture il ne l'évoque pas.
Ce n'est que plus tard que son importance apparaîtra avec la formalisation du

calcul différentiel. Du point de vue de la mécanique cette dernière propriété
est la conséquence de l'existence du potentiel Q des forces de perturbation :

X d£l/dr.
Lagrange calculera explicitement la valeur de ses crochets, c'est-à-dire les

composantes de la forme symplectique, qui sont au nombre de quinze. Il
en donnera les expressions dans diverses cartes de l'espace des mouvements
képlériens, c'est-à-dire pour divers choix d'éléments képlériens caractérisant
les mouvements de la planète. Il n'y a pas grand intérêt à donner ici l'ensemble
de ces expressions que l'on peut trouver dans [Lag08] et [Lagll].

Remarque. Lagrange note que l'on peut toujours choisir les positions
et les vitesses à un instant donné, comme constantes d'intégration, plutôt que
les éléments de la planète. L'expression des parenthèses et des crochets s'en
trouve alors notablement simplifiée. En effet dans ce cas les seuls crochets
non nuls sont:

Comme on le voit les variables se regroupent par deux : r, avec V/ et leurs
crochets sont constants. Cette forme symplectique définie de façon générale sur
R'7 x R'7 est appelée aujourd'hui forme symplectique canonique. Le Théorème
de Darboux dit que toute forme symplectique possède au moins localement
des coordonnées canoniques. Mais Lagrange, même s'il dit qu'«il y aurait

Cette formulation n est pas très parlante, dire qu'une forme différentielle lu est fermée
signifie précisément qu'elle est localement exacte : pour tout point x il existe un voisinage U et
une forme différentielle a tel que uj\u da.

(41) djUjk + djtdkj -h d/c Uly — 0,

(42) [yhr/] 1, i= 1,2,3.
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toujours de l'avantage à utiliser ces constantes à la place des autres constantes

a, b, c, etc.» [Lagll, volume II, page 76], n'utilisera pratiquement pas

ces coordonnées canoniques. En particulier, la carte (a, ù, c, h, i, k) n'est pas

canonique.

Revenons à la méthode de la variation des constantes telle qu'elle est

présentée plus haut, et en particulier à la formule (14). Nous pouvons en donner

une justification en termes plus actuels. Considérons l'espace Y des conditions

initiales du système étudié, c'est-à-dire l'espace des triplets y (£, r, v) où

t G R, r G R3 — {0} et v G R3. Les solutions de l'équation différentielle

dr d\
(43) - v et

dt dt

sont les courbes intégrales du feuilletage défini sur Y par:

1

(44) y R • £ avec £

^

—rjr + X /

Le vecteur £ se décompose en £o + X :

(45) et

L'espace des mouvements képlériens est l'espace quotient JC Y/R • £o>

c'est-à-dire l'espace des courbes intégrales du feuilletage y i—> R • £o-

mouvement non perturbé

mouvement perturbé

Figure 3

Projection de Y sur JC
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Considérons alors une feuille du feuilletage -y R • £ passant par

y (f, r,v). Cette courbe se projette sur l'espace des mouvements képlériens

JC, son équation est alors :

(46) ^ - Dlty(Q D-K+

où Tt: y t— m est la projection de sur son quotient et désigne

l'application linéaire tangente. Or, par construction: Diry(£o} 0, il reste donc

dm/dt Diïy{x)- Un petit dessin vaut parfois mieux qu'un long discours, voir

figure 3. C'est la famille d'équations (15). Enfin, transformée en la famille

d'équations (21), elle s'écrit encore:

dm i

(47) ~dt=ÜJ ^

où dQ. désigne la différentielle de Q. Par analogie avec le cas euclidien,

comme lu est inversible, on appelle gradient symplectique de la fonction Q le

champ de vecteurs cu~1(dQ). L'équation différentielle qui décrit la variation

des constantes devient après ces conventions de langage :

dm
(48) — grad(O).

L'évolution du mouvement m, perturbé par le potentiel Q, est donc la courbe

intégrale du gradient symplectique du potentiel de perturbation.

Conclusion

La partie la plus douteuse du travail de Lagrange concerne sûrement

la méthode d'approximation utilisée. Je voudrais à ce propos souligner

qu'hormis ces méthodes d'approximation les conclusions de Lagrange sont

rigoureusement établies même si la présentation qu'il en a faite, et que j'ai
essayé de reproduire ici, ne respecte pas les canons actuels de la mathématique.
En ce sens, les transformations qu'il apporte aux équations initiales ne sont

pas d'une grande utilité puisque celles qu'il obtient leur sont absolument

équivalentes. Laissons-le parler:

«Ainsi on peut regarder les équations précédentes entre les nouvelles
variables a, b, c, etc. comme les transformées des équations en x, y, z; mais
ces transformations seraient peu utiles pour la solution générale du problème.
Leur grande utilité est lorsque la solution rigoureuse est impossible, et que
les forces perturbatrices sont très petites; elles fournissent alors un moyen
d'approximation. »
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Mais la justification de ces méthodes emploiera un grand nombre de

mathématiciens après lui et non des moindres. Poincaré soulignait dans

l'introduction de sa célèbre Nouvelle mécanique céleste [Poi92] :

«Ces méthodes qui consistent à développer les coordonnées des astres
suivant les puissances des masses, ont en effet un caractère commun qui
s'oppose à leur emploi pour le calcul des éphémérides à longue échéance.
Les séries obtenues contiennent des termes dits séculaires, où le temps sort
des signes des sinus et cosinus, et il en résulte que leur convergence pourrait
devenir douteuse si l'on donnait à ce temps t une grande valeur.

La présence de ces termes séculaires ne tient pas à la nature du problème,
mais seulement à la méthode employée. Il est facile de se rendre compte, en
effet, que si la véritable expression d'une coordonnée contient un terme en
sin amt, a étant une constante et m l'une des masses, on trouvera quand
on voudra développer suivant les puissances de m, des termes séculaires
amt — a3 m313 /6 + • • • et la présence de ces termes donnerait une idée très
fausse de la véritable forme de la fonction étudiée. »

Cette objection est sans nul doute très pertinente et a conduit, notamment

grâce aux travaux de Poincaré, au développement de la géométrie symplectique

- en particulier en ce qui concerne son application à la mécanique. De nouvelles

théories sont nées comme par exemple la théorie des systèmes complètement
intégrables et de leur perturbation qui a donné le fameux théorème21) de

Kolmogorov -Arnold - Moser, sur la stabilité de nombreux mouvements après

perturbation (voir [Arn76] [Arn80]).
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