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Clearly v > 0; moreover

Ph—1  4n Pn
y = dh=1 61;—1 qn _ Ph—1 — Ph >0,
" qh—1 — qn
dh—1

It follows that this circle is entirely contained in the right half plane. A root x;
different from x (see Fig. 3) lies outside the circle (8.3) if 4 is large enough
to have A > |b — a|. It follows that Re F(x;) < 0, and hence it is external to
the circle (8.6) corresponding to the value 4 + 1. Hence the condition

Fr_1Fp_2A>1

ensures that the polynomial f;,; is reduced.

8.2 THE CASE OF MULTIPLE ROOTS

Obreschkoff’s Lemma 8.1 yields the following

COROLLARY 8.3. Let f(x) = (x—x1)(x—x2)-...-(x—x,), where x; € RT.
Then
T
i) = (7 +2pxcosp+ p)f), p>0, ol < 12

has exactly r variations. More generally, a polynomial having r positive real
roots and all its other roots in the sector

? I 2

has exactly r variations.

This allows us to extend Vincent’s theorem to the case of multiple roots.
Suppose the polynomial f(x) has multiple roots, and let A be their least
distance. If & is sufficiently large to verify

FrFn_1A>1,

at most one root xy lies in (a, b), but since this root may have multiplicity r,
f» has O or at least r variations. It will have exactly r variations if we can
ensure that xy € (a,b) and that the other transformed roots lie in the sector

S={y[Rey<0, [Imy|<|tang]|-|Rex|},

. Let s = tan
r+2 r+2
substitutions into (8.4). We have proved

where ¢ = and let us make the appropriate *
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THEOREM 8.4. Let f(x) be a real polynomial of degree n whose roots
are of multiplicity smaller than r. Let ~y = [co,¢1,C2,-..] and, maintaining

the previous notation, consider the polynomials
_ Ph—1+ phx)
1 = (@n—1 + c]hx)f(—-—qh_l o)

-
r+2°

If h satisfies

/ 1 1
FprFp_ 1 A> 1+ 5= — T3
S Sln]-q_—i

then the number of variations of fny1 equals the multiplicity of the root in
(ph—l &)
qn—1 qn

: : - x :
REMARK 9. Obviously, letting s = tan 5, we can implement an

algorithm to isolate the roots, without being forced to reduce the polynomial
f(x) to one with simple roots.

Let s = tan

REMARK 10. We conclude our paper by showing that our estimate of
the size of A is asymptotically better than Chen’s. Suppose we consider a
polynomial whose roots are of multiplicity < r (which necessarily has degree
n > r). We have proved that the isolation of a root can be carried out in p
steps, where p verifies

1

1
8.7 FF,_1A>, /1 =
87 prp—l \/+tan2L sin

T
r+2 r+2

We want to compare this integer with that needed by Chen’s theorem, that is
the smallest integer m = h + k, where & and k satisfy

(8.8) FaFpo1A>1 and k> jlogyr.
We know that
\/ng ~ ¢k+1 3

hence (8.7) becomes

é ¢2p+1 > —1_

5 sin 5
On the other hand, by (8.8) we have

A

(8.9) 3 1> 1 and k> 3log, .
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The second equality may be rewritten as

(8.10) % > r.
From the first inequality of (8.9) and (8.10) it follows that
A ongi ok A ot

Hence A

g ¢2m+1 >r.
Since

r>—— forr>2,
Sin 2

m > p for r sufficiently large and the proof is concluded. [
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