Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 44 (1998)

Heft: 3-4: L'ENSEIGNEMENT MATHEMATIQUE
Artikel: NEW PROOF OF VINCENT'S THEOREM
Autor: Alesina, Alberto / Galuzzi, Massimo

Kapitel: 8. ANEW PROOF OF VINCENT'S THEOREM
DOI: https://doi.org/10.5169/seals-63903

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-63903
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

246 A. ALESINA AND M. GALUZZI

THEOREM 7.5 (Chen’s Main Theorem). Let f(x) be an integral polynomial
of degree n > 3 with at least 3 variations. Let h be the smallest positive
integer for which

F? A>1,
and let m be the smallest positive integer such that
m > 5log,n.

Let k = h+ m. For an arbitrary continued fraction v = [cg,c1,...] > 0,
consider the polynomial fiy1 constructed by Fy. If V is the number of
variations of fry1 then the polynomial f has a unique positive root in

(pk—l P > and V is its multiplicity.

dk—1 4k
Proof. After h steps, the polynomial f,,; might have no variations,
and then f;,; will have no variations. If f;+; has V variations, by Chen’s
Theorem 1 it has a positive root in the right half plane. The partial quotients
c; are > 1 for i > h, and so we may apply Chen’s Theorem 2. [

8. A NEW PROOF OF VINCENT’S THEOREM

In this section we give a new and simpler proof of Vincent’s theorem,
which in turn improves on Chen’s result. For the sake of clarity, we prefer to
deal separately with the two cases of simple and multiple roots.

8.1 THE CASE OF SIMPLE ROOTS

In the case of simple roots, we show that Vincent’s theorem holds under
the only assumption '

2
AF Fp_1 > —

V3

independently of the polynomial degree n.
Our proof depends on the following result by Obreschkoff [30, p.81].

LEMMA 8.1. Let f(x) be a real polynomial with V variations in the
sequence of its coefficients; let V| be the number of variations of the
polynomial fi(x) = (x*+2 pxcosp+p*)f(x) (Where p> 0 and || < g b

Then V > Vy, and the difference V — V1 is an even number.
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The analogous result, for the polynomial (x + p)f(x), with p € R™, can
also be proved by a slight modification of Obreschkoff’s proof. In the sequel,
this extended version comprising both cases, will be referred to as Lemma 8.1.

For V =1 we get the following

COROLLARY 8.2. If a real polynomial has one positive simple root xo,
and all the other (possibly multiple) roots lie in the sector :

S\/gz{x:—a+iﬁ|a>0andﬁ2§3cx2}
then the sequence of its coefficients has exactly one sign variation.

Obreschkoff argued by contradiction. We give here a simple constructive
proof of the corollary.

Proof. 1t suffices to prove that if

fo=> ax*
k=0

1s a real polynomial whose sequence of coefficients has one variation, then
both

fa®) = (x + @) f(x),
fa,p() = [(x+ )* + 8] F(x)

have exactly one variation. Starting with f(x) = (x — xo) and iterating the
above argument for any root in § /3 one gets the claim.

Indeed,
n+1
fa@) = bk
k=0
where (setting a_; = a1 =0)

br=ar+ aa,_; for k:(),l,...,l’l-l—l.

If f has one variation, then there exist indices j and i, with 0 < Jj<i<n,
such that

a-i,ao,...,aj-1 >0 and a; >0,
8.1) Ay =-=a;1 =0 @Gi>j+1),
a; <0 and aj41,...,4,01 <0,
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whence

b07~--7bj—1 >0 and bj>0,
bi+1 <0 and b,’+2, e >bn+1 <0.
If i=j+1 only the sign of b; is unpredictable; if i > j+ 2, then bj1; >0
and b; < 0 (and bjyp = -+ = by =0 if i > j+ 2). In any case, the
polynomial f, has just one variation.
Now consider

n+2
Ja,p(x) = de X"T27%  where d;, =a; + 2aa_; + (@ + ﬁz) Aj—2
k=0

with
ar=a_1=0=apy = apnp.

If (8.1) still holds (including a_, = a,+, = 0), then
do,. . .,dj_1 Z Oanddj >0 ... anddi_’_z <0 anddi+3,...,dn+2 S 0

If i>j+4+3 or i =j+ 2, then the sequence d; has one variation.
If i=j+ 1 we show that

dj—H <0 1mphes dj+2 <0

and this suffices to prove that the sequence d; has only one variation.
The inequality

dj—H =djt1 + 2aaj i (a2 + ﬁz)aj_l <0
with a;_y > 0, implies a;y; + 2aa; < 0. Therefore
dj+2 =dji+2 +2 adj + (052 + 62) a;
<2aay; + (o? + 3a2)aj =20(aj41 +2aa)) <0

(since aj4, < 0) and this completes the proof.  []

Now we prove the theorem in our stronger form.

Proof. We use the same notation as before. Suppose 4 is such that

2
AFyFr1>—.

V3

2
Since —\/-g > 1, we know by the previous argument that all the quadratic"

irreducible factors of the transformed polynomial ¢(x) have nonnegative
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coefficients and that at most one linear factor of ¢(x) has coefficients with
opposite signs. This happens if and only if there is a positive root xo of f(x),
which belongs to the interval (a,b).

We only need to show that all the roots of f(x) different from xp are
mapped into the sector S 5. In this case the transformed polynomial ¢(x)
has exactly one variation by Corollary 8.2.

Once again we consider the map F: C — C defined by

X —a
b—x

In the previous section we observed that the map (8.2) transforms the circle

(8.2) y=7F K =

(8.3) .x_a+b’ 1

2 | =3lba

into the line Re(y) = 0, and the exterior of this circle into the half-plane
Re(y) < 0 (see Fig. 1a).

But another property of (8.2) is relevant: the circles passing through the
points a, b are sent into lines through the origin of the complex plane. More
precisely, the lines

Im(y) = £sRe(y) (s € R")

are the images of the circles centered at

+ a+b lb—al
- 4
¢ 7 Tl

with radius

|b— al 1
S DY §
2 +S2

It easily follows (see Fig. 2) that the sector S of the complex plane defined
by

r

(8.4) Re(y) <0 and |Im(y)| <|s|-|Re(y)|

is the image under F of the exterior of the eight-shaped figure R given by
the union of the two disks

]x—ci‘ <r.

A pomt x at distance greater than 2r from a point of the segment with
endpoints a,b cannot be in the interior of R, and hence F (x)eS.
To ensure the existence of at most one variation in the transformed

polynomial, we must require that s = v/3, and hence consider the particular
sector S 3.
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Im(y) = s Re(y)

=@

°
Fx)

Im(y) = —s Re()

FIGURE 2
|b— al z
Now r = —— and AF,F,_; > — impl
\/§ Wi h—1 /3 ply
2
AQth—1>%>
that 1s
A 2
> or A>2r.
|b—al = /3

Only the root xo is in the interior of R, and so any other root is mapped by
(8.2) into S. [

REMARK 8. To compute the continued fraction expansions of algebraic
numbers which occur as zeros of integer polynomials, an interesting class
- of polynomials is given by the reduced polynomials (see [12] and [14]).
A polynomial f(x) is reduced if it has a unique root xo > 1 and all its
other roots x; satisfy |xj| < 1 and Re(x;) < 0. A reduced polynomial does
not necessarily have a unique variation, nor is a polynomial with a unique
variation necessarily reduced. But it is interesting to observe that the machinery
(3.1) of Vincent’s theorem establishes a deep connection between the two
classes of polynomials. In [12], the authors give a brilliant proof that, for
sufficiently large 4, the polynomial f, is reduced. A remarkable difference
between reduced polynomials and polynomials with a single variation is that
we can immediately check that a polynomial has a single variation, while it
is not so immediate to verify that a polynomial is reduced. A possible test
is given by the combined use of Theorems 40.2 and 42.1 of [29]. Since we
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have replaced the transformation

Ph—1 T DPhX
X —

Gh—1 T qnX

by

a—+ bx

X ,

I +x

we have to replace the unitary circle by the circle of radius q—q—h—— We
h—1
obtain a reduced polynomial if we require that under the map (8.2) the image
Fxj) = );j_ a of a root x; of f(x), different from xg, is such that
(8.5) |Fp)| < qﬂ— .~ and ReF(x)<0.
h—1
Let t = A , and consider the Apollonius circle
dh—1
xX—a

8.6 =
(8.6) p—

Re() =0

|Im(y)| < s |Re()]

Sl
/

D

Apollonius circle

ly| =t

FIGURE 3

F maps the exterior of the circle (8.6) into the interior of the circle
ly| = t. Hence the first condition in (8.5) means that x; must be outside the
circle (8.6). The diameter of the circle (8.6) lies on the real axis, and its
endpoints are
_a—tb a+tb

u= R v =
1—1t 141t
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Clearly v > 0; moreover

Ph—1  4n Pn
y = dh=1 61;—1 qn _ Ph—1 — Ph >0,
" qh—1 — qn
dh—1

It follows that this circle is entirely contained in the right half plane. A root x;
different from x (see Fig. 3) lies outside the circle (8.3) if 4 is large enough
to have A > |b — a|. It follows that Re F(x;) < 0, and hence it is external to
the circle (8.6) corresponding to the value 4 + 1. Hence the condition

Fr_1Fp_2A>1

ensures that the polynomial f;,; is reduced.

8.2 THE CASE OF MULTIPLE ROOTS

Obreschkoff’s Lemma 8.1 yields the following

COROLLARY 8.3. Let f(x) = (x—x1)(x—x2)-...-(x—x,), where x; € RT.
Then
T
i) = (7 +2pxcosp+ p)f), p>0, ol < 12

has exactly r variations. More generally, a polynomial having r positive real
roots and all its other roots in the sector

? I 2

has exactly r variations.

This allows us to extend Vincent’s theorem to the case of multiple roots.
Suppose the polynomial f(x) has multiple roots, and let A be their least
distance. If & is sufficiently large to verify

FrFn_1A>1,

at most one root xy lies in (a, b), but since this root may have multiplicity r,
f» has O or at least r variations. It will have exactly r variations if we can
ensure that xy € (a,b) and that the other transformed roots lie in the sector

S={y[Rey<0, [Imy|<|tang]|-|Rex|},

. Let s = tan
r+2 r+2
substitutions into (8.4). We have proved

where ¢ = and let us make the appropriate *
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THEOREM 8.4. Let f(x) be a real polynomial of degree n whose roots
are of multiplicity smaller than r. Let ~y = [co,¢1,C2,-..] and, maintaining

the previous notation, consider the polynomials
_ Ph—1+ phx)
1 = (@n—1 + c]hx)f(—-—qh_l o)

-
r+2°

If h satisfies

/ 1 1
FprFp_ 1 A> 1+ 5= — T3
S Sln]-q_—i

then the number of variations of fny1 equals the multiplicity of the root in
(ph—l &)
qn—1 qn

: : - x :
REMARK 9. Obviously, letting s = tan 5, we can implement an

algorithm to isolate the roots, without being forced to reduce the polynomial
f(x) to one with simple roots.

Let s = tan

REMARK 10. We conclude our paper by showing that our estimate of
the size of A is asymptotically better than Chen’s. Suppose we consider a
polynomial whose roots are of multiplicity < r (which necessarily has degree
n > r). We have proved that the isolation of a root can be carried out in p
steps, where p verifies

1

1
8.7 FF,_1A>, /1 =
87 prp—l \/+tan2L sin

T
r+2 r+2

We want to compare this integer with that needed by Chen’s theorem, that is
the smallest integer m = h + k, where & and k satisfy

(8.8) FaFpo1A>1 and k> jlogyr.
We know that
\/ng ~ ¢k+1 3

hence (8.7) becomes

é ¢2p+1 > —1_

5 sin 5
On the other hand, by (8.8) we have

A

(8.9) 3 1> 1 and k> 3log, .
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The second equality may be rewritten as

(8.10) % > r.
From the first inequality of (8.9) and (8.10) it follows that
A ongi ok A ot

Hence A

g ¢2m+1 >r.
Since

r>—— forr>2,
Sin 2

m > p for r sufficiently large and the proof is concluded. [

ACKNOWLEDGMENTS. We are indebted to Xu Kang, Alberto Setti and
Giancarlo Travaglini, for the help they gave us in preparing this paper.

REFERENCES

[1]  AKRITAS, A.G. Vincent’s theorem in algebraic manipulation. Ph. D. Thesis,
Operation Research Program, North Carolina State University, Raleigh,

N.C., 1978.

[2] —— A new method for polynomial real root isolation?). Proceedings of the
16™ annual southeast regional ACM conference, Atlanta, Georgia, April
1978, 39-43.

[3] —— A correction on a theorem by Uspensky. Bull. Soc. Math. Gréce (N.S.)
19 (1978), 278-285.

[4] —— Reflections on a pair of theorems by Budan and Fourier. Math. Mag. 55
(1982), 292-298.

[5] —— There is no “Uspensky’s method”. Extended abstract. Proceedings of

the 1986 Symposium on Symbolic and Algebraic Computation, Waterloo,
Ontario, Canada, 1986, 88-90. ‘

[6] —— The role of the Fibonacci sequence in the isolation of the real roots of
polynomial equations. Applications of Fibonacci Numbers, vol.3, 1988.
[71 —— Elements of Computer Algebra with Applications. John Wiley & Sons,

New York, 1989.

[8] AKRITAS, A.G. and S.D. DANIELOPOULOS. On the forgotten theorem of Mr.
Vincent. Historia Math. 5 (1978), 427-435.

[9] AKRITAS, A.G. and S.D. DANIELOPOULOS. A converse rule of signs for
polynomials. Computing 34 (1985), 283-286.

20) This paper won the first prize in the student paper competition.




	8. A NEW PROOF OF VINCENT'S THEOREM
	8.1 The case of simple roots
	8.2 The case of multiple roots


