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3. A NECESSARY PRELIMINARY STEP: LAGRANGE

As Vincent repeatedly states, an important incentive to develop his own
procedure for isolating the roots of an algebraic equation was given by
Lagrange’s Traité de la résolution des équations numériques [26], which
collects and improves all the results in [23], [24], [25].

We begin by describing Lagrange’s method for approximating a real root of
an algebraic equation by a continued fraction expansion, in the oversimplified
case of an algebraic equation which has a single positive root.

Actually Lagrange does much more than that, and via his famous équation
au carré des différences, he gives a method which, in principle, amounts
to a complete solution of the problem of approximating all the real roots.
Nevertheless his solution is highly impractical and was strongly criticized by
Fourier ').

Let xo be the unique positive root of a polynomial f(x) of degree n, and
let the simple continued fraction expansion!?) of x; be given by

xo = [€o,C1,C2,...] = Co+ .
¢+ ———

cr + -,

where ¢g > 0 and ¢; > 0 for i > 0. To avoid trivial cases, we suppose that

X0 ¢ Q
Lagrange’s method (see also [12]) consists in constructing a sequence of
polynomials {fj,(x)} defined recursively by

Jo) =f(x),
and, for h > 0,
Jup100) = X" fi(cn + %) :
where ¢, is the integer part (> 1 for & > 1) of the unique positive root

1
) = (ap = xp)
ap—1 — Ch—1

of the polynomial f;,(x).

Denote the convergents of xo = [cg,c1,¢2,...] by & £ 12, .... Then

9’ q1° 92
1Y 120, p.28]. We shall consider this quite interesting question in a subsequent paper.

12 In this paper we make extensive use of the more familiar properties of continued fractions. A
A concise introduction to the subject is given in [12, Section 2].
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(setting, as usual, p_; =1,¢g-1=0,p_»,=0,g_2=1)

. 0 rPh—1 T DnX
(3.1 fh—H(x) — (CIh—l + th) f(Qh—l + th) )
and equality (3.1) shows that %)
Xp € (ph—lyeil .
dh—1 Ghn

Each of the polynomials f;, has a unique positive root, and it will be proved
later on that, for sufficiently large /4, they each have a single variation in the
sequence of their coefficients.

This apparently surprising result may be considered a particular case of
Vincent’s theorem which we are going to examine. But let us begin with a
result of Lagrange.

A particularly favourable condition occurs when the variation is located
between the coefficients of degree 1 and 0. The possibility of obtaining this
particular situation was explored in [26, Note XII] for a general change of

variables of the form
p+rx
P

q + sx

X

and for a more general location of the roots, paving the way for future
developments which led to Vincent’s theorem.
The change of variables

X — —X
A

does not affect the number of variations, consequently Lagrange limited himself
to consider

a -+ bx

x+1°

(3.2) X —

THEOREM 3.1 (Lagrange). Suppose that the real polynomial f(x) of degree
n has a single real root xy in the positive interval (a,b) [neither a or b
being roots], and that no complex root has its real part in the same interval.
If a is chosen sufficiently close to xq, then the polynomial

a+bx>
14+ x

has a unique variation, located between the coefficients of degree 0 and 1.

$) = (1 4+ 0" f(

13y By (a,b) we denote the interval whose endpoints are a, b, but we do not suppose a < b.
We also have Pi+1 = Cig1pi + pi—1 and gir1 = ¢ip1qi + qi—; .
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Proof. Denote by xi, xp, ..., x,_1 the other (real or complex) roots
of f(x). Consider first a real root x;. According to (3.2), x; is transformed
into

(33) & =

Xj—d

)
b—Xj

which is positive if and only if x; € (a,b), that is if and only if x; = xo.

Hence the factor x — x¢p is transformed into the factor x — &y, which has
a sign variation, while every other linear factor x —x; (j # 0) is transformed
into a factor of the form x+ p, with p € RT.

Consider now a complex root x; = p; + iox. Under (3.2), x; is carried
nto
_p—atiog _ (o — a)(b — pr) — o2 +i(b — a)oy

34 ==
Sk K b — px —iok (b — pr)* + of

By hypothesis px ¢ (a,b), (pr — a)(b — pr) < 0, and hence
(px — a)(b — p) — o
(b — pe)* + o}

Since complex roots appear in conjugate pairs, (3.2) transforms a quadratic
factor of f(x) of the form

Re &, = < 0.

x—p—io)x—p+io) :x2—2px+,02+02
into a quadratic factor of the form
x* +2Rx + R* + 2,

where R > 0.
Therefore, ¢(x) is of the form

Kx—&)x+p) ... (X +2Rx+R*+ 8% ...

where all the quantities &, p, ..., R, S, ... are strictly positive, and
Xg —dad
(3.5) & = p :

Obviously the coefficients of the polynomial
x+p)-...- (> +2Rx+R*+ 5% ...
are strictly positive as well. Let us write this polynomial as

bOXn_l 1 blxn_2 st o bn——2x + bn—l )
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where b; > 0. Hence, up to the constant K,

¢(x) — (JC - 50)(b0x”—1 T bl»xn—2 d <o s+ bn—2x = bn——l)
= box" + (b1 — Eobo)X" L 4 (by — Eb)X" TP - — Eobpt -

If in (3.5) a is so close to xgp as to verify

. b1 by b3
§0<mm(b0,b1,b2,...),
that 1s,

by — &by > 0, by — &by > 0, by — &by >0, ...

then all the coefficients of ¢(x), with the only exception of the constant term,
are positive. [

REMARK 2. The hypothesis on the real parts of the complex roots seems
to be a bit artificial, like an ‘ad hoc’ expedient. A simpler hypothesis is that
|b — a| be less than the least distance A of all the roots, i.e., |b —a| < A. The
distance between two conjugate roots p &£ ioc 1s 20, which entails A < 20.
The maximum value of the product (p — a)(b — p), when a < p < b, is
2(b—a)*. Tt follows that

Lb—aP < iN <o,

and the real part of the transformed roots given by (3.4) is negative.

REMARK 3. The hypotheses Lagrange makes in Note XII are very stringent.
By expanding the root into a continued fraction we can find a first integer A

sufficiently large in order to have Ph_ Pht < A. This ensures that all the
4n  4h—1
real parts of the roots transformed by
_ DPh—1 T PprX
X = —————
qh—1 + gnX
are negative. Carrying on the process, we can find a second larger integer
k such that |PX _ Pkl < €. Choosing a between Pr and s and b
9k k-1 qk k-1
Ph Ph—1 - , " .
between Z]_ and q——— we can satisfy Lagrange’s condition. But isn’t the
h h—1

knowledge of /4 and k equivalent to the possibility of approximating a root
as closely as we desire ? At first sight, Note XII appears pointless.

.
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