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A NEW PROOF OF VINCENT’S THEOREM

by Alberto ALESINA and Massimo GALUZZI

ABSTRACT. Vincent’s theorem (1836) asserts that, given a real polynomial f(x)
without multiple roots, the substitution

X — Cco+ 1

1+ I

1
Ch+ —
X

B3 -+ "+

where the ¢; are arbitrary positive integers and # is sufficiently large, transforms f(x)
into a polynomial f541(x) which has at most one sign variation in the sequence of its
coefficients.

This theorem is basic for highly efficient methods (implemented in modern computer
algebra systems) to separate the roots of a real polynomial.

In this paper we provide a new simple proof of the theorem, which improves the
known estimates of the size of # and can be extended to the case of multiple roots.
We also give an historical survey of the subject.

1. INTRODUCTION

The aim of this paper is to give a new and simple proof of Vincent’s
theorem. The theorem has an interesting history.

It originally appeared as a note, Sur la résolution des équations numériques,
appended at the end of the sixth edition of Bourdon’s Elémens d’algébre [13],
without explicit mention of Vincent’s authorship. Bourdon, who was Vincent’s
father-in-law '), merely acknowledges his debt to his son-in-law for “plusieurs
améliorations de détail et quelques additions” in the Avertissement at the
beginning of his book.

. ') Information about Vincent, who was an influential personality in his time, can be found
in [21] and [31].
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The debt must have been important, because Vincent later published the
result under his name alone: first in the Mémoires de la Société royale de
Lille (1834), and afterwards, with some improvements, in the Journal de
mathématiques pures et appliquées (1836) (see [36]).

Unfortunately (for Vincent), Sturm’s theorem concerning the number of real
roots of an algebraic equation in a given interval, which originally appeared
without proof in 1829 and was then published in complete form in 1835,
was growing in popularity and ended by superseding Vincent’s result. And
times were not ripe to understand the remarkable algorithmic potentialities of
Vincent’s theorem in comparison with Sturm’s (see [7]).

Liouville introduces the publication of Vincent’s note in his Journal with
the unflattering remark that the note was being published again, with some
additions to the version which had previously appeared in the Mémoires de
Lille, “dans I’intérét des professeurs” [36, p.341, note]. After a subsequent
careful reading of Vincent’s paper, Liouville commented?): “We do not see
that these results, curious as they may be, can be of use in our current
research.”

The theorem was forgotten until 1948, when it was published in Uspensky’s
book [35]. Uspensky was the first to describe an algorithm based on Vincent’s
theorem to separate the roots of a polynomial. But to avoid useless calculations,
he didn’t follow Vincent’s original approach (through Budan’s theorem), as
was pointed out by Akritas ([3], [5]), who also corrected an error in Uspensky’s
theorem.

Uspensky, who probably doubted that Vincent’s original argument could be
turned into a proof satisfying modern standards, elaborated another ingenious,
but unnecessarily complicated, proof. In Section 6 we show that the essence of
Uspensky’s result can be obtained through a careful consideration of Vincent’s
proof.

After Uspensky’s book, the theorem appeared in Obreschkoff’s book [30],
but without any particular application.

The first implementation of an algorithm based on Vincent’s theorem in
terms suitable for modern computer algebra was made by Akritas (see [1])
and by Rosen and Shallit ([32], see also [18]). Since then, the considerable
attention devoted to the subject by Akritas ([3], [5], [6], [7], [8], [9]) has given
this algorithm its present status of a powerful tool of computer algebra systems.

2) Quoted in [28, p.521]. Liouville’s text is in a notebook (Ms 3617 (7)) at the Institut
de France (Bibliothéque) in Paris. Quite obviously Liouville does not refer only to the content .
of Vincent’s theorem, but to the possibility of using Vincent’s result for the studies about
transcendental numbers he was conducting at that time.
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Curiously, all the proofs before that of Chen-Wang [17], in 1987, have
not really used the fact that the complex roots of a real polynomial appear in
conjugate pairs. Nor have they considered the effect of the maps of the complex
plane into itself, which are naturally related to Vincent’s theorem. Chen’s proof,
which also depends on Obreschkoff’s generalization of Descartes’ rule of signs,
only partially exploits the consideration of the fractional linear transformations
connected to Vincent’s Theorem, and is rather complicated?).

Only Bombieri and van der Poorten consider in full clarity [12] the
behaviour of the roots of a polynomial under the action of the fractional
linear transformations related to the problem. Proposition 3.1 of [12] gives
a result strictly related to Vincent’s theorem, regarding the possibility of
obtaining reduced polynomials (see Remark 8) instead of polynomials having
a single sign variation, but the proof can easily be adapted to the situation of
Vincent’s theorem.

Our proof of the theorem was inspired by the geometric treatment in [12],
and combines the use of geometrical transformations with another result of
Obreschkoff [30, III, §17] for which, in a particular but relevant case, we
provide a new direct proof.

The resulting proof of Vincent’s theorem is simple and short (to us), and
can easily be extended to the case of multiple roots*).

2. PRELIMINARY FACTS
As we shall deal extensively with sign variations, we begin with

DEFINITION 2.1. Given a sequence (finite or infinite) of real numbers

Qp, &y, Qa, ..., we say that there is a sign variation between two terms o
and o, if one of the following conditions holds:

1) g=p+1 and a, and o, have opposite signs;

2) g>p+1 and the terms a1, Qp+2; - -+, g1 are all zero while «,
and o, have opposite signs?).

3) Unfortunately, we haven’t yet been able to get Wang’s paper [38], and all our information
depends on Chen’s paper [17]. Hence we refer to Chen-Wang’s theorem.

) Fpr the gonvenience of the reader, we have decided to unify the notation and the symbolism
of a subject which, in more than a century and a half, has been considered in very different forms.
Throughout the paper the sequence of Fibonacci numbers F 0,F1,... begins with 1 instead of 0.

Some minor changes have been introduced in the statement as well as in the proof of many
theorems to conform to this convention.

) Cf. [7, p.338]
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Given an arbitrary real polynomial
X+ o X X ay,

the expression (sign) variation of the polynomial will be used as an abbreviation
to mean a sign variation in the sequence of its coefficients.

EXAMPLE 2.2. The polynomial x’ — 7x* 4 3x%> 4+ 5, whose sequence of
coefficients is {1,0,0,0,—7,3,0,5}, has two variations, while the polynomial
x° — 1 has one variation.

The 1dea of relating the number of sign variations of a real polynomial to
the number of its positive real roots goes back to the beginning of modern
algebra. In his Géométrie (1637) Descartes boldly writes®) (without any trace
of a proof): “An equation can have as many true [positive] roots as it contains
changes of sign, from + to — or from — to +; and as many false [negative]
roots as the number of times two + signs or two — signs are found in
succession.”

This astonishing claim, which many contemporaries hardly believed, and
sometimes misinterpreted’), was subsequently improved by the statement that
the number of sign variations of a real polynomial simply is an upper bound
to the number of positive roots, the difference being an even number.

A complete proof was given by Gauss only?®) in 1828 !

Descartes’ Rule of Signs, as the previous statement is now called, gives
precise information about the positive roots of a polynomial only in two
cases: when there are no variations at all and therefore the polynomial has |
no positive real roots, and when there is a single variation; in the latter case
the polynomial has precisely one positive real root.

A deep generalization of Descartes’ Rule of Signs 1s given by the following
theorem of Budan and Fourier?).

%) 34, p. 160]

7) See the letter of Carcavi to Descartes ([19], vol. V, p.374) and Descartes’ answer (ibidem,
p. 397).

8) See [11] and the review by one of the authors in Mathematical Reviews 94d:01017.

) The priority of Budan or Fourier has been a matter of historical dispute for a long time.
Fourier’s point of view is exposed by Navier in the Avertissement de I'éditeur of [11]. From a
modern point of view the controversy appears rather pointless. The mere content of the theorem
given by the two authors is the same, but Fourier emphasizes its benefit to localize the possible
real roots, avoiding the unnecessary calculations that a naive use of Lagrange’s “équation au
carré des différences” implies ([11, p.28]). Budan, on the other hand, has an amazingly modern.
understanding of the relevance of reducing the algorithm (his own word) to translate a polynomial
by x = x+ p, where p is an integer, to simple additions [15, pp. 11-16].
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THEOREM 2.3. Consider an n-th degree real polynomial f(x) and two
real numbers p,q with p < q. Then the sequence

2.1 f@, f' @, @), - )
cannot have fewer variations than the sequence
(2.2) F@, f'@, '@, .-, f" @)

The number of real roots of the equation f(x) = 0 included in the interval
(p,q) equals the difference between the number of variations of the two
sequences (2.1) and (2.2) decreased, if necessary, by an even number.

The choice p = 0 and ¢ = co immediately yields Descartes’ result. The
previous theorem provides a better understanding of Descartes” Rule: the role
of the single sequence of the coefficients of a polynomial, originally used by
Descartes, appears as the result of a very particular situation. Indeed Descartes’
Rule is stated in terms of the number of variations of the sequence

(2.3) QQ, O, Q, ...y Oy
of the coefficients of
(2.4) X"+ X T+,

as a consequence of the fact that the search for the positive roots corresponds
to the particular choice of the interval (0, c0).
In fact, for x = 0 the Fourier sequence

FOO, F10, £/, oy )

reduces to
(2.5) O ay, 1 ap_y, 2!y, ..., nl-ag,

whose terms differ by a positive factor from the terms of the sequence (2.3).
The sequences (2.3) and (2.5) clearly have the same number of variations.
For x = oo the Fourier sequence has no variations. Its role disappears and
Descartes’ rule may be formulated in terms of a single sequence.

In 1829 Sturm announced the following theorem (proved only in 1835),
which seemed to establish definitely %) the accidental choice of the sequence
(2.3) to investigate the number of positive real roots of the polynomial (2.4).

'0Y The ‘fascinating story of Sturm’s theorem as well as the impressive number of algebraic
researches it originated is described in [33]. For the sake of simplicity, we state the theorem
In the case of the fundamental sequence whose first terms are f(x) and f’(x). Actually Sturm

formulated the theorem in the more general terms of what was later called a “Sturm sequence”
[7, pp. 341-349].
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THEOREM 2.4. Let f(x) be an n-th degree real polynomial without multiple
roots and consider the sequence of polynomials defined recursively by

d
So&x) =7(x), filx) = % ,

fk(X) - Qk-i-l(x)fk—l-l(-x) _fk+2(x)7 fOl" k = 27 ey — 27
where qy11(x) is the quotient of fi(x) by frr1(x) and fir12(x) is the opposite
of the remainder polynomial.

Then the number of zeros of f(x) between p and q (p < q) equals the
number of variations lost by the sequence

fO(x)a fl(x)7 - % 7fn(x)
when x = p is replaced by x = q.

Sturm’s theorem gives such a clear answer to the problem of determining
the number of roots in a given interval that its algorithmic complexity was
not considered relevant until the appearence of computer algebra. Let us see
how 1t works through an example.

EXAMPLE 2.5. We take an example from [35]. Given the polynomial
f)=x>+3x% —4x+1,

we want to know the number of its positive roots. Since f'(x) = fi(x) =
3x%2 + 6x — 4, and we have

1 7
P43 —dx+ 1= g(x+l)(3x2+6x—4)—§(2x—1),

we deduce that .
falx) = §(2x —1).

Again

9 5 7 1
= 3x 4=+ 2x—1)— =
fi(x) = 3x° + 6x 14()ch2) 3( X ) 1

and so i
f3(x) = 4_1 .

Sturm’s sequence is given by

7 1
(¥ +32% —dx+1, 3¢ + 6x — 4, 5(2% 1), Z}'



A NEW PROOF OF VINCENT’S THEOREM 225

For x = 0 the sequence becomes

(1453}
Y J 37 4
and it has two variations. The limits as x — -oo give the sequence

{+00, 400, 400, +c0}, which has no variations. We conclude that f(x) has
two positive roots. L]

REMARK 1. It is quite evident that Sturm’s theorem also makes it possible
to isolate the roots, i.e. to find disjoint intervals each containing a single root.
Consider the previous example. If we evaluate Sturm’s sequence at x = 1 we

have
7 1

{1,5, 3
Since this sequence has no variations, the number of variations lost in passing
from 0 to 1 is two, and it follows that the positive roots are located in
(0,1). Let us evaluate the sequence for x = % following an obvious bisection
method. We have {1 ]
gm0k
1

It follows that Sturm’s sequence loses one variation in passing from 0 to 5
and loses one more variation in passing from 1 to 1. Hence one root is

2
located in (0, 3) and the other in (3,1).

Considering the complete answer given by Sturm’s theorem, the number of
variations of a polynomial seems to be very weakly connected to the number
of its positive roots, and the ‘lucky’ case given by 0 or 1 variations looks
like an accident.

However we shall see that this situation may be considered the general
one. Every polynomial has some sort of ‘canonical forms’ in which it assumes
0 or 1 variations. Moreover, these canonical forms can be obtained through

an algorithm considerably less onerous than the one needed to implement
Sturm’s theorem.

In the sequel A denotes the ‘least roots distance’ of the polynomial f(x),
that is the minimal distance

min |¢o; —
j<k o — cuel

between distinct roots «; of the equation f(x) = 0.




226 A. ALESINA AND M. GALUZZI
3. A NECESSARY PRELIMINARY STEP: LAGRANGE

As Vincent repeatedly states, an important incentive to develop his own
procedure for isolating the roots of an algebraic equation was given by
Lagrange’s Traité de la résolution des équations numériques [26], which
collects and improves all the results in [23], [24], [25].

We begin by describing Lagrange’s method for approximating a real root of
an algebraic equation by a continued fraction expansion, in the oversimplified
case of an algebraic equation which has a single positive root.

Actually Lagrange does much more than that, and via his famous équation
au carré des différences, he gives a method which, in principle, amounts
to a complete solution of the problem of approximating all the real roots.
Nevertheless his solution is highly impractical and was strongly criticized by
Fourier ').

Let xo be the unique positive root of a polynomial f(x) of degree n, and
let the simple continued fraction expansion!?) of x; be given by

xo = [€o,C1,C2,...] = Co+ .
¢+ ———

cr + -,

where ¢g > 0 and ¢; > 0 for i > 0. To avoid trivial cases, we suppose that

X0 ¢ Q
Lagrange’s method (see also [12]) consists in constructing a sequence of
polynomials {fj,(x)} defined recursively by

Jo) =f(x),
and, for h > 0,
Jup100) = X" fi(cn + %) :
where ¢, is the integer part (> 1 for & > 1) of the unique positive root

1
) = (ap = xp)
ap—1 — Ch—1

of the polynomial f;,(x).

Denote the convergents of xo = [cg,c1,¢2,...] by & £ 12, .... Then

9’ q1° 92
1Y 120, p.28]. We shall consider this quite interesting question in a subsequent paper.

12 In this paper we make extensive use of the more familiar properties of continued fractions. A
A concise introduction to the subject is given in [12, Section 2].
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(setting, as usual, p_; =1,¢g-1=0,p_»,=0,g_2=1)

. 0 rPh—1 T DnX
(3.1 fh—H(x) — (CIh—l + th) f(Qh—l + th) )
and equality (3.1) shows that %)
Xp € (ph—lyeil .
dh—1 Ghn

Each of the polynomials f;, has a unique positive root, and it will be proved
later on that, for sufficiently large /4, they each have a single variation in the
sequence of their coefficients.

This apparently surprising result may be considered a particular case of
Vincent’s theorem which we are going to examine. But let us begin with a
result of Lagrange.

A particularly favourable condition occurs when the variation is located
between the coefficients of degree 1 and 0. The possibility of obtaining this
particular situation was explored in [26, Note XII] for a general change of

variables of the form
p+rx
P

q + sx

X

and for a more general location of the roots, paving the way for future
developments which led to Vincent’s theorem.
The change of variables

X — —X
A

does not affect the number of variations, consequently Lagrange limited himself
to consider

a -+ bx

x+1°

(3.2) X —

THEOREM 3.1 (Lagrange). Suppose that the real polynomial f(x) of degree
n has a single real root xy in the positive interval (a,b) [neither a or b
being roots], and that no complex root has its real part in the same interval.
If a is chosen sufficiently close to xq, then the polynomial

a+bx>
14+ x

has a unique variation, located between the coefficients of degree 0 and 1.

$) = (1 4+ 0" f(

13y By (a,b) we denote the interval whose endpoints are a, b, but we do not suppose a < b.
We also have Pi+1 = Cig1pi + pi—1 and gir1 = ¢ip1qi + qi—; .
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Proof. Denote by xi, xp, ..., x,_1 the other (real or complex) roots
of f(x). Consider first a real root x;. According to (3.2), x; is transformed
into

(33) & =

Xj—d

)
b—Xj

which is positive if and only if x; € (a,b), that is if and only if x; = xo.

Hence the factor x — x¢p is transformed into the factor x — &y, which has
a sign variation, while every other linear factor x —x; (j # 0) is transformed
into a factor of the form x+ p, with p € RT.

Consider now a complex root x; = p; + iox. Under (3.2), x; is carried
nto
_p—atiog _ (o — a)(b — pr) — o2 +i(b — a)oy

34 ==
Sk K b — px —iok (b — pr)* + of

By hypothesis px ¢ (a,b), (pr — a)(b — pr) < 0, and hence
(px — a)(b — p) — o
(b — pe)* + o}

Since complex roots appear in conjugate pairs, (3.2) transforms a quadratic
factor of f(x) of the form

Re &, = < 0.

x—p—io)x—p+io) :x2—2px+,02+02
into a quadratic factor of the form
x* +2Rx + R* + 2,

where R > 0.
Therefore, ¢(x) is of the form

Kx—&)x+p) ... (X +2Rx+R*+ 8% ...

where all the quantities &, p, ..., R, S, ... are strictly positive, and
Xg —dad
(3.5) & = p :

Obviously the coefficients of the polynomial
x+p)-...- (> +2Rx+R*+ 5% ...
are strictly positive as well. Let us write this polynomial as

bOXn_l 1 blxn_2 st o bn——2x + bn—l )
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where b; > 0. Hence, up to the constant K,

¢(x) — (JC - 50)(b0x”—1 T bl»xn—2 d <o s+ bn—2x = bn——l)
= box" + (b1 — Eobo)X" L 4 (by — Eb)X" TP - — Eobpt -

If in (3.5) a is so close to xgp as to verify

. b1 by b3
§0<mm(b0,b1,b2,...),
that 1s,

by — &by > 0, by — &by > 0, by — &by >0, ...

then all the coefficients of ¢(x), with the only exception of the constant term,
are positive. [

REMARK 2. The hypothesis on the real parts of the complex roots seems
to be a bit artificial, like an ‘ad hoc’ expedient. A simpler hypothesis is that
|b — a| be less than the least distance A of all the roots, i.e., |b —a| < A. The
distance between two conjugate roots p &£ ioc 1s 20, which entails A < 20.
The maximum value of the product (p — a)(b — p), when a < p < b, is
2(b—a)*. Tt follows that

Lb—aP < iN <o,

and the real part of the transformed roots given by (3.4) is negative.

REMARK 3. The hypotheses Lagrange makes in Note XII are very stringent.
By expanding the root into a continued fraction we can find a first integer A

sufficiently large in order to have Ph_ Pht < A. This ensures that all the
4n  4h—1
real parts of the roots transformed by
_ DPh—1 T PprX
X = —————
qh—1 + gnX
are negative. Carrying on the process, we can find a second larger integer
k such that |PX _ Pkl < €. Choosing a between Pr and s and b
9k k-1 qk k-1
Ph Ph—1 - , " .
between Z]_ and q——— we can satisfy Lagrange’s condition. But isn’t the
h h—1

knowledge of /4 and k equivalent to the possibility of approximating a root
as closely as we desire ? At first sight, Note XII appears pointless.

.
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4. VINCENT’S PROOF OF HIS THEOREM

A great merit of Vincent is to have understood perfectly the real aim
of Lagrange. The requirement that a polynomial have a unique variation at
a prescribed place is too demanding. We can be satisfied with the weaker
requirement that a polynomial have a unique variation. This weakening gives
the endpoints of the interval (a,b) a more balanced role. Moreover, in
order to carry out a process for isolating the roots of an algebraic equation
f(x) = 0, it is necessary to consider not only the behaviour of the polynomials
frn corresponding to the continued fraction expansions [cg,c1,C2,...] which
approximate the roots, but also the other apparently purposeless expansions
— and the related polynomials — which appear out of a systematic search for
the roots '#).

All this will be clarified by Example 5.2. To get to the point in question,
let us give a precise statement.

THEOREM 4.1. Consider an arbitrary real polynomial f(x) of degree n,
without multiple roots, and let v = [co, c1,Ca, ..., where the c; are arbitrary

positive integers for i > 1 and cy > 0, the k-th convergent being denoted by

&. Define the sequence of variable substitutions

qk
1 _
X o+ P Y 01,2,
1 gn—1 1 qnx
¢1 + 1
Cr+ .+ N
cp+ —
X
Then, for h sufficiently large, the polynomial
Ph—1 1 PnX
() = (gn—1 + g0 f (22
Jh+1 dh—1 T qh f(CIh-—1+C]hx>

has at most one variation.

Proof. To simplify the problem, we again follow Lagrange, setting

ap = ph—_l—, b, = Ph and making the substitution x « Ex. We are
qh—1 qhn qn
reduced to studying the variations of the polynomial
ay + bpx
: = {1 "fl—).
(4.1) b1 (0) = (1 4+ 2" f( T x )

14) Via the Budan-Fourier theorem, for example.
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For simplicity of notation, we hereafter denote a, and b, simply by a and
b, and @41 by ¢.

Denote again by xg, X1, ..., X,—1 the roots of f(x), and by A the least
distance between pairs of these roots.

The behaviour of real and complex roots is given by formulae (3.3) and
(3.4). But Vincent makes a judicious observation: in order that the root &
obtained from x; via (3.4) have negative real part, it is enough to require that

(4.2) (px —a)(b— pr) — o7 <0.

Considering (4.2) in geometrical terms °), we see that it is equivalent to asking
that the point (pg, o) of the p—o-plane should lie outside the circle whose
equation 1is

p*+0o* —(a+b)p+ab=0;

b
this circle is centered at (%,O) and its radius is 3|b — al.

But
1

2qnqn-1’

which shows that, as / increases, 3|b—a| — 0. Condition (4.2) is then
satisfied for 4 sufficiently large.

Assuming that / is large enough to satisfy (4.2) and the further inequality
1
dh dh—1
then at most one real root can belong to the interval (a,b).
Hence, for sufficiently large %, the polynomial (4.1) can be written as

Hb—al=

b —al = <A,

Kx+&)x+p)-...-(®+2Rx+R>+5%) - ...

?

where p, ..., R, § are positive and we take the minus or plus sign in (x£&0)
Xo—d

according to whether or not there exists a real root xg € (a, b) and o = .
Let g(x) be the polynomial whose transformed form under (3.2) is

G)=@+p) ... - +2Rx+R*+ 5% - ... .
At this point Vincent observes that

a-+ bx a—>b
I +x 1+x

=b+u.

15) Vincent actually uses a slightly different argument. He looks at the minimum value of the
: Dh—
product (% —p) (q;—_: —p) .
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Hence

G =1 +x)"""gb+u
4.3)

=(1+0""" | g®) + g' B+ g”(b)%z, T J .
Since u — 0 as h — oo,
G(x) — gb)(1 + )"
and the polynomial (4.1) has the limit
(4.4) K*(x+ &)(1 + 2"

For h large enough, the number of variations of (4.1) is equal to the number
of variations of (4.4). If we have the plus sign in the factor x + &, there are
no variations.

Let us consider the case!®) given by

(x = &)1 +x)"".

We have
n—1 n—1
(14+x)"1= Zakx”_l_k, where a; = < ' ) ,
k=0
and for k=1,2,...,
(4.5) a; — ar_1ap41 > 0.
Now

(x— &)1+ )" = — &) [aox”_1 +a x4 a7+ ]
= X"+ [a1 — aool X" +ar — a1 &)X P+ — &

From (4.5) it is clear that, if for a given k the coefficient of x"*,
ay — ar-1£o ,

is negative then all the subsequent coefficients are negative. Since the constant
term is negative we have exactly one variation.  []

16)  Obreschkoff’s lemma, quoted in Section 6, immediately gives the result, but we want to
follow Vincent’s argument.
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REMARK 4. We do not wish to deny Vincent’s great value and originality,

yet we find his proof disappointing. In fact, after a careful examination of
a+ bx

the effect of the variable transformation x < to get information about

+ X
the location of the roots of the polynomial ¢(x), Vincent abruptly neglects

what he has obtained and goes on to consider the effect of Taylor’s formula
applied to (1+4x)""!g(b+u). This approach carries no trace of all his previous
work, and it is evident that the results one can obtain about the size of & are
not best possible. A century later Uspensky modified the proof, but followed
the same path, as we shall see later. Obviously we are not trying to criticize
Vincent, but simply to emphasize the lack of consideration of the complex
plane structure.

REMARK 5. While continued fractions appear naturally in the search for
the roots of an algebraic equation, and are closely linked to the problem of
separating the roots (see the following example), it is evident that they merely
provide a tool, in the preceding proof, to get two sufficiently close values a, b.
The theorem may be formulated entirely in terms of the transformation (3.2).

EXAMPLE 4.2. To see how Vincent’s theorem can be used to separate the
roots of an equation, we consider once again the polynomial of Example 2.5.
The polynomial x* + 3x*> — 4x + 1 has two variations, hence the theorem of
Budan and Fourier implies that the equation

(4.6) 432 —4x+1=0

has either two or zero positive roots. By making the substitution x « 1 + x,
we obtain the polynomial

(I+xP +30+x?* -4+ +1=x4+62+5x+ 1,

which has no variations and consequently has no positive roots. This shows
that the equation (4.6) has no roots greater than 1. To consider the possibility
of roots in (0, 1), we make the substitution x «— 1—:;—‘ We obtain

1 1 1
1+ x)3 +3 —4
( ) (1+x)? (1 + x)? 1+ x

This polynomial still has two variations so it must again be subjected to the

+1} :x3—x2—2x+1.

transformations x « 1 +x, x «

P The transformed polynomials are

X2 —x—1, O —2x—1.
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Each of these has only one variation and hence has exactly one positive root.
The first polynomial is obtained by the two successive substitutions

1
— ?
1+x

(or directly by x « -2% ). It follows that its positive root corresponds to a root

X x—1+x,

of the original equation (4.6) in the interval (0, %). The second polynomial is
obtained by the two identical substitutions

1 1
x(_‘ ? — )
1+x 1 +x
or

1

X — I
1+
1 +x

Its positive root corresponds to a root of (4.6) in (%, 1).

REMARK 6. Looking at the previous example, we can be satisfied since
the equation
X432 —4x+1=0

has one positive root in each of the intervals (0, %), (%, 1). At this point, to
approximate these roots we could use a suitable method such as Newton’s or
Dandelin’s. But we can also proceed by using the same method. We know
that the root of (4.6) in the interval (%, 1) corresponds, via the substitution

1
£
I+
1 +x
to the positive root of x> +x*—2x—1 = 0. Inserting the substitutions x « 1+x,
1
X — nto
+x
X4 —2x—1=0
gives 1)

C4a?+3x—-1=0, 1+6x+5+x=0.

Since only the first equation has a variation, the root of the equation (4.6) is
to be found by the transformation

1 1
X — =
1 1
14+ — 1
+1—|—(1+x) +2+x

17y The second susbstitution is useless, but we make it for the sake of clarity.
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We find the new smaller interval (%—, 1). This remark explains the double role
of Vincent’s theorem, to isolate or to approximate the roots.

5. USPENSKY’S PROOF OF VINCENT’S THEOREM

Uspensky had the great merit of rediscovering Vincent’s theorem and of
providing the first modern proof. He also tried to popularize the use of the
theorem as a powerful tool to isolate the roots of algebraic equations, but
there he was unsuccessful, and it was only at the end of the seventies, mainly
by the work of Akritas, that the root separation algorithm acquired its present
status.

To clarify the structure of the proof, which at first sight looks rather
cumbersome, we extract part of its content as an independent lemma, which
1s of little interest in itself, but will be used also in the proof of Section 6.

LEMMA 5.1. If the n positive numbers

1
R, = (”k )(1+5k), k=0,1,... n—1,

1 i ..
are such that |6;| < —, then the n — 1 inequalities
n

(5.1) R; —~Ri_ 1Ry 1 >0, k=1,....n—1
hold.

Proof. The inequalities (5.1) may be written as

(1 + )2 n

02 (o004 500 —DET D
If € = max {|6;|}, the left hand side of (5.2) is greater than
(1—¢)? _ . 4
(1+¢)? (1422
Hence (5.2) holds if
4e n

(5.3)

A+ S =Pkt 1)

The minimum value of
n

(n—kyk+1)




236 A. ALESINA AND M. GALUZZI

s
4n 4/n

(n+12 (141’

1
It follows that (5.3) holds if e < —. [
n

Now we give a precise statement, followed by a summary of the essential
points of the proof [35, pp.298-303].

THEOREM 5.2. Let f(x) be a real polynomial of degree n, without multiple
roots, and with least roots distance A. Let ~v = [co,c1,C2,...], where the c¢;
are arbitrary positive integers for i > 1 and cy > 0, the k-th convergent

being denoted by gﬁ Let F denote the k-th term of the Fibonacci sequence
k

(defined by Fo =F1 =1, and Fyp = Fy_1 +Fy_ for k > 1). If the integer h
is such that '

A 1
Fni=>1 and AF,F,_;>14+ —,
2 €n

where
1.1
En = (1+;)n—1 -1,
then the polynomial given by (3.1),

Ph—1 +phx)

() = (gh—1 + Clhx)"f(%~1 T anx

has at most one variation'®).

Proof. The first part of the proof partially follows Vincent’s original

argument. To simplify the notation, we set, as in Section 4, a = Iﬂ,
' dh—1
b = @, and we make the change of variable x « —qh—_lx. We are led to
qn dh 3

study the number of variations of the polynomial

a-+ bx
),

P(x) = (1 +x)"f( -

the image of f under (4.1).

18) In Uspensky’s original proof [35] one reads Fj—iA > % , probably a misprint that Uspensky
had no time to correct, since he died before the publication of the book. The mistake, frequently
reproduced, was corrected by Akritas in [3]. But our rereading of Uspensky’s proof shows that
this hypothesis is unnecessary.
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Formulae (3.3) and (3.4) describe the behaviour of the linear and of the

: : A : : o
quadratic factors of f(x). The hypothesis Fj_1 5 > 1, which obviously implies

the weaker hypothesis Fj, F,_; A > 1, immediately allows us to prove that no
complex root can be transformed into a root having a positive real part, and
that at most one real root can be transformed into a positive real root.

Indeed, it follows from F, F,_1 A > 1 that

1 < 1
qnqn—1  FrnFp_

|b—al = <A,

and consequently at most one real root lies in the interval (a,b). A quick
look at formula (4.2) allows us to adapt the argument given in Remark 2 to
the present situation, in order to exclude that a complex root lies in the circle
having the real points a and b as the endpoints of a diameter.

Consider now the roots xg, x1, ..., x,—1 of f(x). If no root is in (a, b) then
all the factors of the transformed polynomial ¢(x) have positive coefficients,
hence ¢(x) has no variations, and the theorem is proved.

Let xo be the necessarily unique root of f(x) lying in (a,b), and denote
by x; any other (real or complex) root.

The root x; is transformed into

X5 —a b—a
P = = —1 =-1 9
g b—x; +b—xj T
Now |b—xj| = |b—xo+x0—x| > [xo—x]| — |b—x0| > A~ |b—aq.
It follows that
b—a b — al
x|~ A—|b—q|

Recalling that |b —a| =

1
,and that AF,F,_1 > 1+ —, we conclude
that 4h dh—1 . En

a

loj| < &
The polynomial ¢(x) is of the form
(5.4) =& +1+a)+1+a) ...-(x+1+a,_),
where |oj| < e, for j=1,...,n—1. Let

n—1-

@+1+a)G+1+a) .. .-+ 1+a,_1) = " THR A"+ 4R, _x+R

[ -
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The coefficient Ry is given by the sum of ("'

(I + o)1 +ap)-...-(1+ae), and

) products of the form

A+o)d4+ay) .- A+a)— <A+ o) - A+ |y ) — 1

1
<(l4e) —1<Q+e) ' =1=—.
n

Hence
—1
R = <” ><1+6k>,
k
with |
|6k < =
n

Now Lemma 5.1 may be applied to deduce that
R%—H — Ry Ry—1 > O,

and the argument used to conclude Vincent’s proof also ensures that the
transformed polynomial has only one variation.  [] |

REMARK 7. In [3], Akritas observes that the last part of this proof is of
enough interest to be stated as an independent Lemma:

If a real polynomial of degree n > 1 has one positive root, while all the
other roots are concentrated in a circular neighbourhood of —1 with radius
€., then the polynomial has exactly one variation.

In [9], this Lemma is presented as a converse of the rule of signs. Another
converse is given by a corollary to Obreschkoff’s Lemma presented in Section
8. In any case, the problem is now reduced to that of evaluating an integer 4
such that the substitution (3.2) sends all the roots but the positive one into a
neighbourhood of —1. Uspensky’s proof, while ingenious, looks unnecessarily
complicated, because the form (5.4) of the transformed polynomial does not
reflect the fact that the complex roots of real polynomials appear in conjugate
pairs. And instead of looking for a location of the roots & such that the
number of variations does not increase, Uspensky, like Vincent, looks for
a polynomial “close” to (1 4+ x)"~!. As a consequence he requires that the
roots of the transformed polynomial lie in a very small neighbourhood of
—1 (of radius g,, in fact), which in turn introduces the unnatural condition

1 2
FoFn_1A> 14+ —. We shall prove that the result holds if FjF,_; A > % ; A
En

and independently of 7.



A NEW PROOF OF VINCENT’S THEOREM 239

6. VINCENT’S PROOF REVISITED IN MODERN TERMS

The ‘qualitative’ argument used by Vincent to prove his theorem can easily
be recast in modern terms to obtain Uspensky’s result, but under the only
condition that

1
FhFh_1A>1+€—.

In view of the fact that Viete’s formulae relate the coefficients of a
polynomial to its roots, it is far from astonishing that Vincent’s proof can be
improved to provide a quantitative estimate for 4. But it is worthwhile to
observe that it gives exactly Uspensky’s result.

Consider once again the proof of Theorem 4.1 up to (4.3), which describes
the polynomial G(x).

Factoring out g(b) we have

_ g'(b) g"(b) , A () B
G(x) = (x+1)""1g) [1+ U+ R w1,
[ 1t-g(b) 2! g(b) (n— 1Dt g(b) J
Recalling that u = - , we have
+x
G 1 g'(b) _
(6.1) = (x+ 1" a—b)(x+1)"2
9(b) D@ et
(n—1)
g (b) 1
+ o004 a—>b)y" .
CEN YO
Since the roots of g(x) are xi,xp,...,x,_;, we have
g
1!-g(x)_ l'x—x, Zx—x
9" () . l 2! . Z 1
2090 A2 —x)r—x) — (= x)(x —x)
g,//(x) L Z i 3! . Z 1
3t g(x) T 3N —x)(x — x)(x —x) T (= x)(x — )0 — xg)
The above sums contain respectively (”Tl), (”;1), (”;1) ... terms.

1
Since Fj Fp_; A > 1+€— > 1, we have, in particular, |b — a| < A. Hence
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lb—a|=0-A, with 6<1.
Observe that

|b—x,~| = |b—-X0+X0—X,'| > ‘JC()—X,'|—|b—xO| >A—0A=({1—-0)A;

hence
g®(b) < n—1 1
k! - g(b) k) (1—0)kAx’
and
() k
g (b) r n—1\1 ., 0 n—1 0
—b —A"- = —)".
hygwfa 1<\ e )&% ooy S
6 :
Let T—3=-" The absolute value of the coefficient of x' on the right

hand side of (6.1) is smaller than

()0
_i_(n;l) <n;4>73+‘_.:nk l(n;l) (n—ll‘—k>7_k
- (n: 1>(1_|_T)n—1—i: (”: 1) (ﬁ)n—l—i.

To apply Lemma 5.1 we need to impose the condition

Il
<)

I \n—1-i 1
: — -1 - ]
(62) }(1_9) ‘<n vi,
which is equivalent to
1 \»1 : 1
(1—9> <l
that 1s
En
6.3 0<1— = :
a3 A+ bhm  1+e
It follows from 1
FpFrp_1A>1+ 6_
that
A 1 1

A= = >14—),
Thn—1 b—a|l 6 T En

hence (6.3) holds and (6.2) is satisfied. Lemma 5.1 may be applied to conclude )
the proof. [J
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7. CHEN’S PROOF OF VINCENT’S THEOREM

The proof given by Chen in 1987 [17] has the merit of focusing on the
fractional linear transformations of the complex plane into itself as one of the
principal tools involved in Vincent’s theorem. Keeping the previous notation,
we observe that the variable substitution

a -+ bx

1+x
whose effect we have considered in detail, corresponds to the map F: C — C
defined by

X —

xX—a
b—x

Chen’s proof, which also carries over to the case of multiple roots, depends
on a careful consideration of the effect of the map (7.1) on the roots of a
polynomial.

Another essential tool is given by Obreschkoff’s generalization of Descartes’
rule of signs which may be stated as follows:

(7.1) y=F=

THEOREM 7.1 [30, p.84]. The number of roots of a real algebraic equation
of degree n with 'V variations, whose argument ¢ verifies the inequality

T oy T
n—v P Sh_vo

is equal to 'V or is less than V by an even number.

We list some properties of the map (7.1) we are going to use.

i

Re(y) < 0

o |
F(x) /‘\K

FIGURE 1la
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e If x € R then F(x) € R and, more precisely, if x € (a,b) then F(x) € RT.
e The map (7.1) transforms the circle K
a-+b
2
into the line Re(y) = 0, and the exterior of this circle into the half-plane
Re(y) < 0 (see Fig. 1a).
e The map (7.1) (see Fig. 1b) transforms the left half plane Re(x) < O into
the interior of the circle H
|x+ a+b' _|a—?]
2b 2b

x_

1
=5 1b—d|

: : a : : L
whose diameter endpoints are —1 and 5 The imaginary axis 1is

transformed into H.

FIGURE 1b

With the help of these observations, we can prove the following

THEOREM 7.2 (Chen’s Theorem 1). Let f(x) be a real polynomial of
degree n whose least roots distance is A, and let v = [co,c1,...] with
c; non-negative integers, be a continued fraction, whose k-th convergent is

denoted by Pi Suppose that Fp,Fp_1 A > 1. Then the polynomial
dk

Ph—1 +PnX )
Gh—1 +4nx

has at most one root in the right half plane : one root if f,11(x) has a positive -
number of variations, and no root if it has no variations.

frr10) = (Gh—1 + )" f (
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Ph-1

Proof. We set, as before, a = . , b= q— and make the change of
-1 h
variable x «— "1y Once again we are led to study the number of variations
dh
o + b
a+ bx
=1 " :
) = (1 +0"f(T)
Since , |
b—al = < <A

dnqn-1 ~ FrnFr-
at most one root of f(x) (which is necessarily real) may be in the interior
of K.

If no root is in the interior of K, all the roots are mapped by F into
the left half plane, and ¢(x) has only factors with positive coefficients, and
consequently has no variations. If a root xy (> 0) is in the interior of K,
then F(xp) is a positive real number and ¢(x), having a positive root, must
have a positive number of variations.  []

Chen 1s now in a position to prove the following theorem.

THEOREM 7.3 (Chen’s Theorem 2). Suppose that the real polynomial f(x)
of degree n has only one root xy in the right half plane, and consider the
continued fraction -y = [cg,cy,...] with ¢; non-negative integers. Suppose
that the integer h is sufficiently large to have

. n
minpy gh—1, Ph—19n) > a

If the polynomial fj1(x) has V variations, then V is exactly the multiplicity

of xo and xg € (ph—1’311> :
4dh—1 Yh

Proof. To avoid trivial cases, we suppose that n > 3 and that V > 3.
We substitute ¢(x) for fj,;(x) as in the previous theorem.

By hypothesis f has only one (real) root xy in the right half plane. If
Xo ¢ (p het P h> then ¢(x) has no variations : hence a contradiction. Therefore,

qh—1 qn
Xy € (Zh—l gﬁ) and the multiplicity of the root F(xg) of ¢(x) is smaller
h—1 qh

than V. Since F is one-to-one it follows that the multiplicity of xy is also
smaller than V.

By the fundamental theorem of algebra the number of roots of f(x) in the
left half plane or on the imaginary axis is greater than n — V.
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F transforms all the roots different from xg into or on the circle H, hence
@(x) has a positive real root F(xyg) and all the other roots, whose number is
greater than n — V, are inside H or on its circumference.

Let g(x) = ¢(—x) and denote by —H the circle symmetric to H with
respect to the imaginary axis. The polynomial g(x) has at least n — V' roots
inside —H or on its circumference. Denoting by V' the number of variations
of g(x) we have

V' <n-V.

We prove that the number of the roots of g(x) within —H (or on its boundary)
is exactly n — V.

From n
min(Pn—1 Gn, Pr Gh—1) > I
we have
1 3 1 3
—_—< - and @ ——mm < —.
2Ph—19n N 2pngn-1  n
Hence
3 T Y
— < — < tan — .
n o n n
It follows that
1 7r 1 7T
. win—, -— — Ztm— .
2Ph—1qn no 2paqr- n

The maximum absolute value of the tangent of the argument of a point inside
the circle —H 1is given by

la—b| 1

2vVab  2\/PhGn—1DPh—19n

and
1 1 1

< - .
2\/Prdn—1 /Ph—19n ~ 2 min(py gn—1,Pnh—19n)

It follows that the circle —H 1is contained in the sector

W = {x : Jarg(x)| < %} .

The polynomial g(x) has degree n and it has V' variations. Since V' < n,
we have
T T
=V "
We may apply Obreschkoff’s result to conclude that the number of roots of .

g(x) within the sector
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W' = {x : arg()| < n—WV’}

is less than V' < n — V. But since g(x) has at least n — V roots within or
on the boundary of —H C W C W', the number of roots of g(x) within or
on —H is exactly n— V. Then ¢(x) and therefore f,4(x) has exactly n—V
roots in the left half plane. Hence V is the multiplicity of the only positive
root of f,11(x) and therefore of f(x). [

THEOREM 7.4. Let f(x) be an integral polynomial of degree n > 3,
with only one root xy in the right half plane, and suppose it has at least
3 variations. Let m be the smallest integer such that

m > 5 log,n,

where ¢ = liz\/—i Let v = [co,cy,...] with ¢; positive integers. If V is
the number of variations of fit1, then the root xo has multiplicity V and

Xg € (pm—l ,p—m> .
dm—1 4m

Proof. Since

m > %logqsn,

we have
™™ >n.

>

Let ¢ = 1‘2 . Writing the n-th Fibonacci number F, in our notation (see
note 4) as

1
F" — (a1l gl :
\/g(qﬁ P

we easily deduce
F)%I—l Z E :
6
The hypothesis ¢; > 1 implies that p; > ¢, for every k, hence

: n
mln(pm CIm—lapm—IQm) = F,i_l Z 6

and we may apply the previous theorem !9).  []

%) The reason why Chen does not explicitly require Fﬁz_l > n/6 is not clear, but we have
followed his approach.
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THEOREM 7.5 (Chen’s Main Theorem). Let f(x) be an integral polynomial
of degree n > 3 with at least 3 variations. Let h be the smallest positive
integer for which

F? A>1,
and let m be the smallest positive integer such that
m > 5log,n.

Let k = h+ m. For an arbitrary continued fraction v = [cg,c1,...] > 0,
consider the polynomial fiy1 constructed by Fy. If V is the number of
variations of fry1 then the polynomial f has a unique positive root in

(pk—l P > and V is its multiplicity.

dk—1 4k
Proof. After h steps, the polynomial f,,; might have no variations,
and then f;,; will have no variations. If f;+; has V variations, by Chen’s
Theorem 1 it has a positive root in the right half plane. The partial quotients
c; are > 1 for i > h, and so we may apply Chen’s Theorem 2. [

8. A NEW PROOF OF VINCENT’S THEOREM

In this section we give a new and simpler proof of Vincent’s theorem,
which in turn improves on Chen’s result. For the sake of clarity, we prefer to
deal separately with the two cases of simple and multiple roots.

8.1 THE CASE OF SIMPLE ROOTS

In the case of simple roots, we show that Vincent’s theorem holds under
the only assumption '

2
AF Fp_1 > —

V3

independently of the polynomial degree n.
Our proof depends on the following result by Obreschkoff [30, p.81].

LEMMA 8.1. Let f(x) be a real polynomial with V variations in the
sequence of its coefficients; let V| be the number of variations of the
polynomial fi(x) = (x*+2 pxcosp+p*)f(x) (Where p> 0 and || < g b

Then V > Vy, and the difference V — V1 is an even number.
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The analogous result, for the polynomial (x + p)f(x), with p € R™, can
also be proved by a slight modification of Obreschkoff’s proof. In the sequel,
this extended version comprising both cases, will be referred to as Lemma 8.1.

For V =1 we get the following

COROLLARY 8.2. If a real polynomial has one positive simple root xo,
and all the other (possibly multiple) roots lie in the sector :

S\/gz{x:—a+iﬁ|a>0andﬁ2§3cx2}
then the sequence of its coefficients has exactly one sign variation.

Obreschkoff argued by contradiction. We give here a simple constructive
proof of the corollary.

Proof. 1t suffices to prove that if

fo=> ax*
k=0

1s a real polynomial whose sequence of coefficients has one variation, then
both

fa®) = (x + @) f(x),
fa,p() = [(x+ )* + 8] F(x)

have exactly one variation. Starting with f(x) = (x — xo) and iterating the
above argument for any root in § /3 one gets the claim.

Indeed,
n+1
fa@) = bk
k=0
where (setting a_; = a1 =0)

br=ar+ aa,_; for k:(),l,...,l’l-l—l.

If f has one variation, then there exist indices j and i, with 0 < Jj<i<n,
such that

a-i,ao,...,aj-1 >0 and a; >0,
8.1) Ay =-=a;1 =0 @Gi>j+1),
a; <0 and aj41,...,4,01 <0,
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whence

b07~--7bj—1 >0 and bj>0,
bi+1 <0 and b,’+2, e >bn+1 <0.
If i=j+1 only the sign of b; is unpredictable; if i > j+ 2, then bj1; >0
and b; < 0 (and bjyp = -+ = by =0 if i > j+ 2). In any case, the
polynomial f, has just one variation.
Now consider

n+2
Ja,p(x) = de X"T27%  where d;, =a; + 2aa_; + (@ + ﬁz) Aj—2
k=0

with
ar=a_1=0=apy = apnp.

If (8.1) still holds (including a_, = a,+, = 0), then
do,. . .,dj_1 Z Oanddj >0 ... anddi_’_z <0 anddi+3,...,dn+2 S 0

If i>j+4+3 or i =j+ 2, then the sequence d; has one variation.
If i=j+ 1 we show that

dj—H <0 1mphes dj+2 <0

and this suffices to prove that the sequence d; has only one variation.
The inequality

dj—H =djt1 + 2aaj i (a2 + ﬁz)aj_l <0
with a;_y > 0, implies a;y; + 2aa; < 0. Therefore
dj+2 =dji+2 +2 adj + (052 + 62) a;
<2aay; + (o? + 3a2)aj =20(aj41 +2aa)) <0

(since aj4, < 0) and this completes the proof.  []

Now we prove the theorem in our stronger form.

Proof. We use the same notation as before. Suppose 4 is such that

2
AFyFr1>—.

V3

2
Since —\/-g > 1, we know by the previous argument that all the quadratic"

irreducible factors of the transformed polynomial ¢(x) have nonnegative
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coefficients and that at most one linear factor of ¢(x) has coefficients with
opposite signs. This happens if and only if there is a positive root xo of f(x),
which belongs to the interval (a,b).

We only need to show that all the roots of f(x) different from xp are
mapped into the sector S 5. In this case the transformed polynomial ¢(x)
has exactly one variation by Corollary 8.2.

Once again we consider the map F: C — C defined by

X —a
b—x

In the previous section we observed that the map (8.2) transforms the circle

(8.2) y=7F K =

(8.3) .x_a+b’ 1

2 | =3lba

into the line Re(y) = 0, and the exterior of this circle into the half-plane
Re(y) < 0 (see Fig. 1a).

But another property of (8.2) is relevant: the circles passing through the
points a, b are sent into lines through the origin of the complex plane. More
precisely, the lines

Im(y) = £sRe(y) (s € R")

are the images of the circles centered at

+ a+b lb—al
- 4
¢ 7 Tl

with radius

|b— al 1
S DY §
2 +S2

It easily follows (see Fig. 2) that the sector S of the complex plane defined
by

r

(8.4) Re(y) <0 and |Im(y)| <|s|-|Re(y)|

is the image under F of the exterior of the eight-shaped figure R given by
the union of the two disks

]x—ci‘ <r.

A pomt x at distance greater than 2r from a point of the segment with
endpoints a,b cannot be in the interior of R, and hence F (x)eS.
To ensure the existence of at most one variation in the transformed

polynomial, we must require that s = v/3, and hence consider the particular
sector S 3.
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Im(y) = s Re(y)

=@

°
Fx)

Im(y) = —s Re()

FIGURE 2
|b— al z
Now r = —— and AF,F,_; > — impl
\/§ Wi h—1 /3 ply
2
AQth—1>%>
that 1s
A 2
> or A>2r.
|b—al = /3

Only the root xo is in the interior of R, and so any other root is mapped by
(8.2) into S. [

REMARK 8. To compute the continued fraction expansions of algebraic
numbers which occur as zeros of integer polynomials, an interesting class
- of polynomials is given by the reduced polynomials (see [12] and [14]).
A polynomial f(x) is reduced if it has a unique root xo > 1 and all its
other roots x; satisfy |xj| < 1 and Re(x;) < 0. A reduced polynomial does
not necessarily have a unique variation, nor is a polynomial with a unique
variation necessarily reduced. But it is interesting to observe that the machinery
(3.1) of Vincent’s theorem establishes a deep connection between the two
classes of polynomials. In [12], the authors give a brilliant proof that, for
sufficiently large 4, the polynomial f, is reduced. A remarkable difference
between reduced polynomials and polynomials with a single variation is that
we can immediately check that a polynomial has a single variation, while it
is not so immediate to verify that a polynomial is reduced. A possible test
is given by the combined use of Theorems 40.2 and 42.1 of [29]. Since we
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have replaced the transformation

Ph—1 T DPhX
X —

Gh—1 T qnX

by

a—+ bx

X ,

I +x

we have to replace the unitary circle by the circle of radius q—q—h—— We
h—1
obtain a reduced polynomial if we require that under the map (8.2) the image
Fxj) = );j_ a of a root x; of f(x), different from xg, is such that
(8.5) |Fp)| < qﬂ— .~ and ReF(x)<0.
h—1
Let t = A , and consider the Apollonius circle
dh—1
xX—a

8.6 =
(8.6) p—

Re() =0

|Im(y)| < s |Re()]

Sl
/

D

Apollonius circle

ly| =t

FIGURE 3

F maps the exterior of the circle (8.6) into the interior of the circle
ly| = t. Hence the first condition in (8.5) means that x; must be outside the
circle (8.6). The diameter of the circle (8.6) lies on the real axis, and its
endpoints are
_a—tb a+tb

u= R v =
1—1t 141t
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Clearly v > 0; moreover

Ph—1  4n Pn
y = dh=1 61;—1 qn _ Ph—1 — Ph >0,
" qh—1 — qn
dh—1

It follows that this circle is entirely contained in the right half plane. A root x;
different from x (see Fig. 3) lies outside the circle (8.3) if 4 is large enough
to have A > |b — a|. It follows that Re F(x;) < 0, and hence it is external to
the circle (8.6) corresponding to the value 4 + 1. Hence the condition

Fr_1Fp_2A>1

ensures that the polynomial f;,; is reduced.

8.2 THE CASE OF MULTIPLE ROOTS

Obreschkoff’s Lemma 8.1 yields the following

COROLLARY 8.3. Let f(x) = (x—x1)(x—x2)-...-(x—x,), where x; € RT.
Then
T
i) = (7 +2pxcosp+ p)f), p>0, ol < 12

has exactly r variations. More generally, a polynomial having r positive real
roots and all its other roots in the sector

? I 2

has exactly r variations.

This allows us to extend Vincent’s theorem to the case of multiple roots.
Suppose the polynomial f(x) has multiple roots, and let A be their least
distance. If & is sufficiently large to verify

FrFn_1A>1,

at most one root xy lies in (a, b), but since this root may have multiplicity r,
f» has O or at least r variations. It will have exactly r variations if we can
ensure that xy € (a,b) and that the other transformed roots lie in the sector

S={y[Rey<0, [Imy|<|tang]|-|Rex|},

. Let s = tan
r+2 r+2
substitutions into (8.4). We have proved

where ¢ = and let us make the appropriate *
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THEOREM 8.4. Let f(x) be a real polynomial of degree n whose roots
are of multiplicity smaller than r. Let ~y = [co,¢1,C2,-..] and, maintaining

the previous notation, consider the polynomials
_ Ph—1+ phx)
1 = (@n—1 + c]hx)f(—-—qh_l o)

-
r+2°

If h satisfies

/ 1 1
FprFp_ 1 A> 1+ 5= — T3
S Sln]-q_—i

then the number of variations of fny1 equals the multiplicity of the root in
(ph—l &)
qn—1 qn

: : - x :
REMARK 9. Obviously, letting s = tan 5, we can implement an

algorithm to isolate the roots, without being forced to reduce the polynomial
f(x) to one with simple roots.

Let s = tan

REMARK 10. We conclude our paper by showing that our estimate of
the size of A is asymptotically better than Chen’s. Suppose we consider a
polynomial whose roots are of multiplicity < r (which necessarily has degree
n > r). We have proved that the isolation of a root can be carried out in p
steps, where p verifies

1

1
8.7 FF,_1A>, /1 =
87 prp—l \/+tan2L sin

T
r+2 r+2

We want to compare this integer with that needed by Chen’s theorem, that is
the smallest integer m = h + k, where & and k satisfy

(8.8) FaFpo1A>1 and k> jlogyr.
We know that
\/ng ~ ¢k+1 3

hence (8.7) becomes

é ¢2p+1 > —1_

5 sin 5
On the other hand, by (8.8) we have

A

(8.9) 3 1> 1 and k> 3log, .
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The second equality may be rewritten as

(8.10) % > r.
From the first inequality of (8.9) and (8.10) it follows that
A ongi ok A ot

Hence A

g ¢2m+1 >r.
Since

r>—— forr>2,
Sin 2

m > p for r sufficiently large and the proof is concluded. [
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