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for Ay g by simply adding the relation e = 0 to the usual presentation of the
Temperley-Lieb algebra. For a discussion of other contexts for e, see [MV].

We remark also that it follows from (3.6) (cf. also §5 below) and the
theory of cellular algebras that T(N) is non-semisimple if and only if N > /.
Thus the case N = [— 1 is distinguished as the unique one where T(N) is
semisimple, but the Jones form is degenerate.

(3.9) REMARK concerning the Jones (annular) algebras. Since the Jones
algebra J(n) (see (2.10) above) is a quotient of the algebra T%(n), any
J(n)-module lifts to a T%(n)-module. The W, .(n) which correspond to J(n)-
modules in this way are those where zZ = 1 and ¢ > 0 (2.10). Now the
conditions z2 = ¢° and y = zg~* (where s = t + 2k) of Theorem (3.4)
imply (if # > 0) that z/ = 1 if and only if y* = 1. Hence if z' = 1, the
modules W;.(n) and W, ,(n) of (3.4) may be thought of as J(n)-modules
and the map 6, as a homomorphism of J(n)-modules. If 1 =0, z =¢ and
the order ! of ¢* is finite, then Theorem (3.4) provides a homomorphism
Wsy — Wo o /M: x— x+M where s =2/ -2, y=¢/(=+1) and M is the
module defined in (2.9).

§4. DISCRIMINANTS

(4.1) DEFINITION. Throughout this section R denotes the function field
Q(g) and we consider the affine Temperley-Lieb algebras over the ring
R[z,z7!'] of Laurent polynomials. If 1 < s are non-negative integers of the

same parity define
s
18]k 1= :
135 {(S - Z)/Z:' X

The goal of this section is to compute the discriminant of the bilinear pairing
() Ve Wf,z(n) X WZZ_l(n) — R (n€Zxy).

This is the determinant of the gram matrix G;,(n) with entries (u,v),,
indexed by pairs of standard monic diagrams : t — n of rank (strictly) less
than (s—1)/2. Recall from (2.12) that these diagrams span a T(n)-submodule
W;.(n) of W,.(n) and that these submodules form an increasing filtration
of W,,(n) as s increases. When n < s, we write G;.(n) for this matrix,
because it is then independent of s. Similarly define the gram matrix G; ,(n)
for the pairing ( , ),0: Wf, oln) x W? «(m) — R and let G,(n) denote the éram
matrix of (, );: W,(n) x W,(n) — R with respect to the basis of finite, monic
diagrams. We maintain the standard notation s — ¢t = 2k.
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Recall from (2.13) that there is an idempotent e; € T(s) associated with
the trivial representation W,(s). Define the element v, € W, ,(s) by

Vs = [t 5] es ¥ = Z et -

Hm. t—s
standard

Note that by (2.14) v, spans the projection of W;.(s) onto the trivial
representation of T(s). We conjecture, but do not require, that the coefficients
(in R = Q(gq)) of the Laurent polynomials e,, in ¢ actually lie in Z>¢[q, g 1.

(4.2) PROPOSITION. With the notation above,

(4.2.1) (Vo) = I[] @-¢-a7+277.

t<r<s
r=t mod 2

Proof. By Lemma (2.11), e,z is a polynomial in R[z*] of degree at most
[ = k— |p|. We shall use Theorem (3.4) to compute the value of ¢, when
z? is specialised to ¢°. Taking n = m = s in (3.4.1), we see that 6(id,) is
annihilated by finite non-monic diagrams «: s — s. It follows from (2.14)
that 6,(idy) is a scalar multiple of the specialisation of v;. The coefficient
of n* in 0,(idy) is easily checked from the formula (3.4.1) to be 1. Since
es * es ¥ ' = e, x nF, we see that the coefficient of 7% in e, * n* is also 1,
whence after specialisation, we have [z;s5],0,(1d;) = v;. Hence e, specialises

to

(4.2.2) q'7 " ey (@It 1,

Similarly, Corollary (3.5) shows that the coefficient of z' in e, 18
(4.2.3) hEw(9)

where /g, (X) 1s as defined in (3.5). ,
Now the statement (4.2) will follow by induction on s from the claim:

(4.2.4) vy = —¢ —q S+ 2 %)V,

We now proceed to establish (4.2.4), using the observations just made. If «
is a finite diagram in T(s — 2), then no a = B on for some finite diagram
B:s — s.If a is not the identity, then (3 is not monic and so «* annihilates
n* * vg. It follows from (2.14) that

77* * Vg = )\Vs_z

for some scalar A in R = Q(q).
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To determine this scalar, we compute the coefficient of 7*~' in 7* * v,
and compare this with the corresponding coefficient [7;5—2], in Vs_2. In the
proof of Theorem (3.4), we enumerated the standard diagrams p:f— s such
that n* o = v = n*~!. We now compute the contribution of each such u to
the coefficient of n*~! in n* v, just as in the proof of (3.4).

In case 1, u =n* and the contribution is

—[214[5 514

to the coefficient of v. Cases 2 and 3 do not arise because a’ = 2 and
b’ = s — 1. There are three possibilities that arise in Case 4. Suppose first
that 1 has nonzero rank, or equivalently that s —2 > ¢; hence ¢,(1) =2 and
¢,.(s) = s—1 as in the proof of (3.4). It follows that |v|—|u| =2 and so e, has
the form rz2+7ro-+r_z~2 for some ry,70,7—> in R = Q(g). We have r_, =1,
by symmetry, r, = [t;5 — 2], by (4.2.3) and ¢’y + 1o + g °r—2 = [2]4l2; 54
by (4.2.2). Thus the contribution of & 1is

(4.2.5) 2 — ¢ —q +z7 D)ty s — 2], + [21,5 5], -

Otherwise we may assume that p is finite, or equivalently that r = s — 2.
If t =0, then ¢, (1) =2 =s and the coefficient e, has the form riz+r_;z™"
for some r;,r_; € R. We have r; =r_; by symmetry and r; = 1 by (4.2.3).
Hence this term contributes x(79)(z+z~!) which is equal to the expression in
(4.2.5). Next suppose = s — 2 > 0. Then either s € thr(x) and ¢,(1) = 2,
or 1 € thr(p) and ¢,(s) = s — 1. In the first case e, = ryz+ r_jz~!
and by symmetry in the second case the coefficient is 7_1z + riz7 . We
have r; =1 and r_; = [s — 1]; by (4.2.3). Hence these terms contribute
X(M)(z + [s — 1,27 4+ x(77 (s — 11,z + z~1) which is also equal to the
expression (4.2.5).

Each of the three possibilities yields the same contribution (4.2.5), from
which it follows that the coefficient of v in n* x v, is A[f;s — 2], where
AN =22~¢ —q*+z 2% The claim (4.2.4), and hence the proposition,
follows. [ |

(4.3) COROLLARY. For non-negative integers t < s of the same parity,
we have the recurrence :

, dim Wg(n)
det G;T*(n) = det G; _(n) det G(n) ([z; 51, ! H (2 —q —q" +z—2)>
1<r<s

=t mod 2

where n € Zxo. This, together with the initial condition detG' _(n) = 1
determines detGj (n) for any n,s,t.
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Proof. Define a basis of W;1*(n) as follows. If pu:¢ — n has rank
(strictly) less than k = (s — ¢)/2, define v, = u. Alternatively, if u:t — n
has rank k&, then (1.9.1) shows that there exists a unique finite monic diagram
p': s — n such that u = p'on®; define v, = p'*v; and note that v, = [t; 5],

mod W7 (n). The discriminant of the pairing (—,—);. with respect to this
basis is therefore
(4.3.1) [£; 5124 W det G2 (n) .

We obtain the recurrence above by computing this discriminant in another
way.
If p:t— s is standard and p # ¥, then

4.3.2) (Vg ez = 0.

Together with the previous proposition, this implies that for any finite diagram
a:rs— s,
(4.3.3) (o vg, vg) . = { slgh b a=1d,
’ 0 otherwise,
where \ = (v,,7%);,, which is given explicitly in (4.2.1).

Let u,v:t— n be standard of rank at most k. If |u| =k and |v| < &,
then

<Vu>V1/>t,z — <Vs> (N/)* * V>t,z =0 |
by (432). If |u| < k and |v| < k, then (v,,V,).. = (u,v),. If
lu| = |v| = k, then (i/,v'), is the coefficient of the identity in /"2’
and so (4.3.3) shows that

(Vi Vo ez = [8 S, (W, V')

Therefore the discriminant of the pairing on Wfff(n) with respect to this
basis is

det G‘;‘,z(n) X det G4(n) ([[; S]qA)dim W,(n) ’

which, taking account of (4.3.1) above, completes the proof of (4.3). ]

(4.4) COROLLARY. With the notation above,

44.1)  detG,(m =detGiom) || @—q —q "+ AW,

<r<s
r=t mod 2

Proof. Comparing the coefficients of the highest power of z=! on both
sides of (4.3) we see that
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(4.4.2) det fogz(n) = det G} o(n) det Gs(n)[1; 51, slim. W)
If we write QO(s) = det Gf,z(n)/ det Gj o(n), then it follows from (4.3) and
(4.4.2) that

Q(S -+ 2) = Q(S) H (Zz — q" _ q_" + 2—2)dim W(m) .

t<r<s
r=t mod 2

This recurrence for Q(s) is easily solved using the fact that Q) = 1. Taking
into account the relation dim W1* = dim W, (n)+dim W, 42 (n)+- - - +dim Wi(n),
which is an easy consequence of (2.12.1), the desired equation (4.4.1)
follows. [

(4.5) COROLLARY. With the notation above,

im W,.(n)
det Gy o(n) [z;r]q>d
det G o(n) = ——>— ] 1 :
eLGiol) detGso(n) - ([S;r]q

r=t mod 2

Proof. The recurrence (4.4.2) shows that

(+3.1) detGro(n) = detGi o) [[  detG.(mle;ry ™™

r>s
r=t mod 2

For (4.4.2) to hold for all s > ¢, we must take det Gi,o(”) to be equal to 1.
Hence

[[ deGin=detGoot [ fssrf™" .

rz2s F>s
r=t mod 2 r=t mod 2

Substituting this into (4.5.1), we obtain the statement. [

(4.6) PROPOSITION. If t < n are non-negative integers of the same parity,
then

det G[,O(l’l) = :tl 5

Proof. Identify (as above) n with u({0} xn). Let k = (n—r)/2. Partially
order the set of cardinality-k subsets of n as follows: if x; <x < --- < x
and y; < y, < --- < y; are sequences of elements of n, we say that
{x;} <{y:} if x; <y; for all j in k.

We claim that if p,v:t — n are standard, then (u,v),0 = O unless
rgt(n) > Ift(v). Furthermore if rgt(p) = Ift(v), then (u,v);0 = 1. That is,
the gram matrix with respect to this pair of ordered bases is triangular with
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diagonal entries all equal to one, whence its determinant is one. Hence the
result will follow from these two claims. ‘

Let pu,v: t — n be standard. Choose graphs for p and v with the property
that each edge crosses the left side of the fundamental rectangle at most once
and recall from section one the construction of a graph for the composition
o = v* o . First suppose that (u,v), 0 # 0; then o = 7~ I#I=I¥l: ¢+ — 7 since
z =0 (cf. (2.11.2)). In this case it is possible to orient the edges of the graphs
of 1 and v in such a way that:

(1) Each lower vertex of u is a source.
(2) Each lower vertex of v is a sink.

(3) Each upper vertex x € u(Z x n) is a source (or sink) in precisely one of
1 and v.

(4) Each edge of p or v which crosses the left side of the fundamental
rectangle is directed from right to left; that is if x,y € u({0} x n) are
such that ¢,(x) = V(y) (resp. ¢,(x) = V(y)) then this edge is directed
from y to x in the graph of u (resp. v).

To see this, observe that the property (4) implies that when the graphs of
p and v* are juxtaposed to form the composition v* oy, the orientations of
their edges match, giving an orientation (i.e. linear ordering) to the (gbu, qb ‘)
orbits on (Z x t) LI (Z x n) LI (Z x t) which are described in the preamble to
(1.4). Conversely, such an ordering on these orbits gives an orientation with
the required properties. We therefore describe such an ordering or orientation
on the orbits which will satisfy the above requirements. If # = 0, orient the
g(o) = || + |v| infinite loops (see preamble to (1.4) — these correspond to
incontractible circuits on the cylinder) from right to left. If # > O, orient each
edge of o (“through string”) from the lower vertex to the upper vertex. Note
that since |v* o u| = [v*| + |u|, all edges of the graphs of p and v* which
cross the left side of the fundamental rectangle are included in the edges of
the graph of o, i.e. lie on the through strings of the composite graph. Thus
only the contractible (finite) loops which are contained in the fundamental
rectangle remain and these may be oriented arbitrarily (say, anti-clockwise).
The properties (1) to (4) are clear. Moreover it is also easy to see that if
such an orientation exists, then o = 7= Ivl=1¥lgince the conditions imply that
lv* o u| = |v*| + |p|. An example is depicted in the diagram opposite.

Let a denote the i-th element of rgt(x), where n is identified with
u({0} x n), etc. Now there are at least i sources of the (directed
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X/

EXAMPLE

The sources of p in n are circled

graph of) p in the interval a C n, because when y € rgt(u) and
y < a, there is precisely one source in the set {y,¢,(y)} Na, by prop-
erty (4) above. Similarly, let b denote the i-th element of Ift(v). Then
the above argument shows that there are at least k — i sinks of v In
{b+1,b+2,...,n} C n and since, by property (2), v has k sinks in
n, there are at most i sinks of v in b. Moreover if the number of
sinks of v in b is precisely i, any arc of v from b € n to an ele-
ment of {b+ 1,b+2,...,n} C n must have sink b, otherwise the num-
ber of sinks of v in {b+ 1,b+2,...,n} C n would be greater than
k — i. Now by property (3), a sink of v is a source of u. Hence if
b > a, the number of sources of x4 which < b is i,so that by the argu-
ment just given, g is a sink of v, hence a source of p. But the num-
ber of sources of p which < g is > i. Hence the number of sources
of u which < b 1s at least i + 1, a contradiction. Hence b < a and so

Ift(v) < rgt(p).

Finally, assume that 1ft(v) = rgt(x). Then in forming the composite v* o,
there are no finite orbits (or contractible loops). For if there were any such
orbit, it would be contained in the fundamental rectangle because of the rank
condition and hence some element of u({0} x n) would be in Ift(v) N Ift(w),
which is impossible. Hence (u,v),0=1. [

As an immediate consequence of (4.4.1) and (4.6), we have

(4.7) COROLLARY. If (t,z) € A and n € Lo, we have

detG;.(n) = + H (22 — —q T+ Z~2)dim Wi (1)

r>t
r=t mod 2
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(4.8) COROLLARY.

(1) If n is an odd positive integer, then Jones’ annular algebra J(n)
(with parameter § = —q — g~ ') is non-semisimple if and only if there exist
distinct odd integers s,t € n such that ¢ = 1.

(2) If n is an even positive integer, then Jones’ annular algebra J(n)
(with parameter 6 = —q — q~"') is non-semisimple if and only if ¢27! =1
or there exist distinct even integers s,t € n such that g% = 1.

Proof. By [GL, 3.8] the algebra is semisimple precisely when the bilinear
pairing ( , );. is non-degenerate on each cell representation (of J(n)); this
condition is equivalent to the vanishing of the determinant detG; .(n), which
by (4.7) immediately yields the stated condition.  []

§5. DECOMPOSITION MATRICES

(5.1) THEOREM. Let R be an algebraically closed field of characteristic
zero and q a nonzero element of R. Let =< be the weakest partial order on
the set A° defined in (2.6) such that (t,z) <X (s,y) if (¢t,z) and (s,y) satisfy
the hypotheses of Theorem (3.4) for q or ¢~ '. If (t,2) € A*, n € Z>o and
(s,y) € A%(n), then the multiplicity of the irreducible T“(n)-module L, (n)
in the cell representation W;,(n) of (2.6) is one if (s,y) = (t,z) and zero
otherwise.

Proof. Let R be a field and g € R. Let p: R[y] — R be the R-algebra
homomorphism defined by y +— ¢ + ¢!, where y is an indeterminate over
R. Suppose W is a free R[y]-module of finite rank with an R[y]-bilinear
foom (, ): W x W — R[y]. If R is regarded as a R[y]-module via the
homomorphism p, the free R-module Wz = R ®g[,; W inherits an R-bilinear
form (, Jg: Wg x Wg — R given by (1 ® x,1 ® y)r = p({x,y)). Choose
R[y]-bases By and B, of W and let G denote the associated gram matrix
of (, ). If this form is nonsingular (i.e. detG # 0), then it may be shown
that the multiplicity of the polynomial y — ¢ — ¢! in the determinant detG
is greater than or equal to the R-dimension of the radical of ( , )z. In fact
if we denote the multiplicity of the polynomial y — ¢ —¢~! in f € R[y] by
mult(f), then

mult(detG) = ) _ dimrad’

where rad’ denotes the image under ¢: W — Wr : w +— 1 ®@ w of the °
R[y]-submodule {w € W | {(w,v) € (y —q — g~ ')'R[y] for any v € W},
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