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(2.13) THE TRIVIAL REPRESENTATION OF THE FINITE TEMPERLEY-LIEB
ALGEBRAS

The cell module W,(s) is one-dimensional and will be referred to as the
trivial representation of T(s). Observe that the diagrams f; € T(s) all act as
the zero operator in this representation, whence if e, is the corresponding
idempotent in T(s) (e, exists generically, by generic semisimplicity), then
fixe; =0 =egxf for all i. The idempotent e; is referred to in the literature
(cf. [MV], [We], [Li] and [J3], where e, was first identified) as the Jones, or
augmentation idempotent of T(s). '

(2.14) LEMMA. Let t, s and k be non-negative integers such that
s = t+2k. If x € W,-(s) is annihilated by all finite diagrams o:s — S
except idy, then x is a scalar multiple of es *n"*, where e is defined above
and n* is defined in (1.9.1).

Proof. We may suppose that k > 0, since the case k = 0 is trivial. The
hypothesis implies that Rx is a realization of the trivial representation of T(s),
whence x € e x W, -(s). We shall therefore be done if we show that

(2.14.1) es * W, (s) = Rey x 1" .

Now n* is characterised among the standard diagrams : ¢ — s as the unique
diagram of maximal rank (k). If p:¢ — s is standard and |u| < &, then
p = fi x v, for some standard diagram v:7 — s and i € {1,2,...,s — 1}
because ¢, must interchange two upper vertices in the fundamental rectangle
(recall £ > 0). Hence e;* = es xf; x v = 0, proving (2.14.1) and hence the
lemma. [

§3. HOMOMORPHISMS AND NATURAL TRANSFORMATIONS

For any integer n, define the Gaussian integer [n]; in the function field

Q(x) by

—n

X" —x
- 1—1 X -3 —
[n]x —_—— = X’ 4 n S [—n .

Define the Gaussian x-factorial by

[n!]x = [ndxln — 11k ... [21c[1)x -

For any pair n > k of positive integers, the Gaussian binomial coefficient is
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m _Dhdn =1 dn—kt 1) m 1
kK, KLk - 1. (10 .

These are Laurent polynomials in x, so that we may speak of [Z]q for any

invertible element g of a ring R. If ¢* has finite order /> 1, then [n], = 0
iff / divides n.

(3.1) DEFINITION. A forest is a partially ordered set such that if x <y
and x <z then y <z or z <y.

(3.2) EXAMPLES.

(1) The set of orbits of a planar involution ¢ (of a totally ordered set) is
a forest F(¢) with order defined by: X <Y if X is contained in the convex
hull of Y. For a finite diagram «: ¢t — n, the associated forest for ¢, is
denoted F(a).

(2) For any affine diagram p: ¢t — n, order the set Ift(x) (see (1.10)) by
stipulating that y <x if x <y < ¢,(x) or x < Vy < ¢,(x). This condition
amounts to the requirement that the convex hull of the orbit of x contains
some translate of the orbit of y. The resulting poset is a forest which we
denote by P(u).

The following result 1s well known.
(3.3) PROPOSITION (Stanley [RS]). Let P be a forest of cardinality n;

for y € P denote by hy the number of elements of P which are less than or
equal to y. Then the rational function

is a Laurent polynomial with integer coefficients.

It is possible to strengthen the proofs of [RS (5.3) and (22.1)] to yield
that the coefficients of Ap(x) are actually positive, but we do not require this
here.

The next result, one of the main ones in this work, provides the
homomorphisms between cell modules which enable us to analyse them. For
any affine diagram p: ¢t — s, we sometimes (e.g. in the statement of (3.4))
identify the set u({0} x s) with s in the obvious way, thereby identifying the
sets thr(u), rgt(u) and lft(pu) with subsets of s.
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(3.4) THEOREM. Let R be a ring with an invertible element q. Let t,
s and k be non-negative integers such that t+ 2k =s. Let z € R be such
that 22 = ¢° and set y = zg~*, so that y* = q'. Then there exists a natural
transformation 0: W5y, — W, , of T*-modules (2.5, 2.6) whose component at
n applied to a monic diagram v:s — n is given by:

(34.1) 0:v) = > g7 Mhpy(@) vp

W t—s

standard
where 2i = s(|u| — k) + (s + 1)/2 = > oemrw X> || is the rank (see (1.3)
et seq.) of the affine diagram o and hp(,y(X) is the polynomial associated to
the forest P(u) of (3.2)(2) by (3.3).

Proof. We shall assume without loss of generality that R is the function
field Q(¢'/?) and that s > ¢, the case s = ¢ having been covered in Theorem
(2.8).

To define a natural transformation 6 from W,, to W,., we require, for
each n € Z>(, a homomorphism 0,: W, ,(n) — W, .(n) such that for any pair
n,m of non-negative integers and diagram «: n — m, the following diagram
commutes :

W y(@)
Ws,y(n) — s,y(m)

(3.4.2) e,zl le

Weo(1) —= W, (m)

Now W; ,(s) is a one dimensional R-module with basis id,: s — 5. Write
0s(id;) = v. Taking n=m =s and a = 7, in (3.4.2) we see that

(1) Ts ¥V =YV,

Moreover if we take m = s — 2 and n = s, then W ,(m) = 0 whence
axv =0 for any o € Ts,s — 2). In particular, taking o = n}, we obtain

(2) nixv=0.

It follows that (1) and (2) are necessary conditions for the particular 6 of
(3.4.1) to define a natural transformation. We shall prove (1) and (2) shortly,
but first show that they are sufficient for the proof of the theorem. Suppose
v € W, ,(s) is such that (1) and (2) hold.
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Then v =} cu(q,2)u for certain coefficients c,(q,z) € R. Define 6 by

L t—s
standard
(3.43) On) = ) culg,vp
Wi t—s
standard

for any monic diagram v: s — n. Then (1) implies that the formula (3.4.3)
for 6, defines a unique R-linear map W;,(n) — W, ,(n) for each n; these
maps are clearly T%(n)-module homomorphisms. In order to prove that this
family of maps defines a natural transformation, fix a diagram «: n — m and
standard diagram v:s — n. If aov is also monic, then

ax0,)=a*xW*v)=(a)*xVv=(—q¢—qg Y aov)xv
=(=q—q " (aov) = On(av).

On the other hand, if cxov is not monic, then by Lemma 1.6 there is i € Z>
such that cov =aovofi=Bon* o7~ where = caovo7r'; hence we
have

—1)m(a,u)

ax0,)=(—q—q YN aov)xv=(—qg—q Y Bxntxkv=0

while 6,(a *v) = 6,(0) = 0, proving that the squares (3.4.2) commute. It
follows that @ is a natural transformation if (1) and (2) hold.

We therefore turn to the proof of (1) and (2) for the particular v defined by
(3.4.1). First we establish (1). Let p: t — s be standard, let © be the image of
7o and recall that 7oy = voo for some monic diagram o: t — ¢. Suppose
first that s ¢ thr(u); then o is the identity. Using the abuse of notation
explained after (1.10), we have thr(v) = {x+ 1| x € thr(u)} and ¢, agrees
with 750¢, 07! elsewhere. Hence 3° )% = 14+ cpnn®s (V] = [p]£1
and /hpy(X) = hpg,y(x). Alternatively, assume that s € thr(y). Then ¢ > 0
and o = 7. We have thr(v) = {x+1 | x € thr(u),x # s} U{1} and ¢, agrees
with Tog, 07! elsewhere. Hence 3 _y o X =1—s+> (oo, [v] =yl
and /p)(X) = hpy(x). In either case, the coefficient of v in yv equals the
coefficient of v in 7*v and (1) follows.

To complete the proof of the theorem, it remains only to prove (2). Fix a
standard affine diagram v: t — s—2. We consider standard diagrams p:t — s
such that v is the image of n* o i, because these index the terms in the
expression (3.4.1) which contribute to the coefficient of v in n* xv; we shall
show that the sum of these contributions is zero. In the figures below, we
depict the upper edge of the fundamental rectangle of .

Let A denote the coefficient of nowv in v. Let @’ € s be minimal subject
to ' > 1 and ¢,0, (u(0,a")) ¢ u({0} x s). Similarly, let b’ € s be maximal
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subject to &' < s and ¢no, (u(0,0") ¢ u({0} x s). Define a = a'/2 and
b= (s+1—0b")/2. We shall consider four types of diagrams p and compute
the contribution of each type to the coefficient of v in 7" *V separately. Note
that the stipulation that v is the image of 7" o implies that p is determined
completely by the images ¢,,(u(0, 1)) and ¢, (u(0,s)).

CAsE 1: ¢, w0, 1)) = u(—1,s).

) Ja
- N

It follows that thr(y) = thr(v) and p =mnowv. Thus n** pu = (—qg — g~ W
and so the contribution of the term g to the coefficient of v is

(—g — ¢ Hh = —[1214h.

CASE 2:  Suppose ¢, (u(—1,s)) > u(0,1).
Then u(0,s) ¢ thr(x) by planarity. If ¢, u(—1,s)) = u(0,)) (with j > 1),
then ¢, (u(0,1)) = u(0,7) and clearly i <j < a’ since ¢, is planar.

Since n* * u = v, u contributes its own coefficient in v to the coefficient of
v in n* xv. It is easily checked that this coefficient may be expressed as

[HglG =1+ 1)/2]qh
G+ D/21,0/21,

Now the interval u(0,2),u(0,3),...,u(0,a’ —1) is a union of ¢, -orbits.
These form a subforest O of the forest of (3.2)(1) and in this subforest,
the @po, -orbit (u(0,1),u(0,/)) is clearly maximal. Moreover there is an
obvious bijection between the maximal orbits u(0,i,),u(0,7,) (r =1,...,])
of ¢por on u(0,2),u(0,3),...,u(0,a" — 1) and the diagrams p satisfying
the condition ¢, (u(—1,s)) > u(0,1) under which ¢,(u(—1,s)) = u(0,/,).
If (i1,j1), (2,/2),..., (i1,j;) are the possible pairs (i,,j,) as above, listed in
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order of increasing i., then iy = 2, j; = d — 1 and jp + 1 = iy for
k=1,...,1—1. A straightforward induction argument shows that altogether
this family contributes
[a — 1],
laly

h

to the coefficient of v.

CASE 3:  ¢,(0,1) < (—1,s) and 1 ¢ thr(u).
If i=¢,(1,1) and j = ¢,(s), then b’ <i < j since ¢, is planar.

AV i a‘l Ja

RN

This case is the mirror image of case 2, working from the right instead of
the left. Arguing as above, one finds that the total contribution from the u of
this type is

[b - 1]qh
(0],

CASE 4: Otherwise.

We shall see that there are just one or two remaining diagrams. First
assume that the rank of v is nonzero. Then it follows from the planar nature
of nowv and the choice of @ and b’ that ¢, o v interchanges u(0,da’)
and u(i,b’) for some i € Z. Since p is planar, u(0,1),u(0,s) ¢ thr(u),
so that ¢,(u(0,1)) > u(0,1) and ¢,(u(0,s)) < u(0,s) and it follows that
¢, (u(0,1)) = u(0,a’) and ¢, u(0,s)) = u(0,b").

One now computes that this diagram g contributes ([a + b],/([al,[b] )} to
the coefficient of v.

Alternatively, assume that v has rank zero, i.e. is finite. If thr(v) is empty
(in which case t = 0), then 1,s ¢ thr(v) (being empty) and it follows that

p((0, 1)) = u(0,s).
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N\ Ja

AN—

This diagram g contributes x(10)g~*/22'([114/[s/2]p)h = ([a+ble/([al,[blg))h
to the coefficient of v.

Finally assume that thr(v) is nonempty (and v is finite). Then u(0,a’ — 1)
and u(0, ' —1) are the minimum and maximum elements of thr(v) respectively.
Equivalently, #(0,a’) and u(0,b") are the minimum and maximum elements
of thr(nov) respectively. It follows that either u(0, s) € thr(u) (in which case

¢/.L(u(07 l)) = M(O, al))

or u(0,1) € thr(w) (in which case ¢, (u(0,s)) = u(0, b).

Together these two diagrams contribute

asl[]fih+ x(r~1g —bl[l]qh [a+b]qh
[ ]CI [b]q [a]q[b]q
We may now compute the sum of the contributions from all four cases:
[a—1]1, [b—1] [a + b]
—[2], + - 14 ") h=0.
( ! ap [b], lal,[b]q
Thus the coefficient of v in n* % v vanishes and (2) follows. ]

X(7)q

We next prove the following consequence of Theorem (3.4) for the cell
modules of the finite Temperley-Lieb algebras. In discussing these, we think

of t#n as the fundamental rectangle £({0} x t)Uu({0} xn) of (Z x t)#(Z x n)
as explained in the discussion after (1.3).
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(3.5) COROLLARY. Let R be a field with an invertible element q. Let t,s
be non-negative integers of the same parity such that t < s. Then there is a
natural transformation 0: Wy — W, o of T-modules (see (2.2) and (2.11.1))
whose component at n applied to a finite monic diagram v:s — n is given
by

(3.5.1) Ou() = ) h(Qvp

Wi t—s

standard
where h/fi(x) is the polynomial associated in (3.3) to the subforest of F(¢,)
formed by the orbits of ¢, which intersect the fundamental rectangle t#n
non-trivially.

Proof. This result may be established by a computation similar to the
one above. However we shall deduce it from Theorem (3.4). First we give
a different construction for W, . Let ¢t and s be as above and choose
I''k' € Z>p such that ¥ +71' > s and I' = ¢t+k'. Set m =1 +s+ k¥
and z = ¢"/?. Define an embedding ~: T(s) — T%(m) by mapping f,-'to
fi:=fqr for i =1,2,...,s — 1. We say that a monic diagram pu: 0 — m
is distinguished if || = 0 and the involution ¢, does not interchange two
elements of u(l") or two elements of u({m,m—1,...,m—k +1}). There is
a one to one correspondence v between distinguished diagrams p: 0 — m
and standard diagrams v: ¢ — s; p corresponds to v when ¢, interchanges
vertices u(?) and u(j) in u(s) iff ¢, interchanges u(i + /") with u(j + /') in
u(m). This defines p completely, since Ift(x) contains u(l’), so that Ift(u) is
determined, whence g is, by (1.11).

Suppose «: s — s 1is finite and p: O — m 1s standard. Then & o p 1is
distinguished (: 0 — m) only if p is distinguished. Hence the R-submodule M
of Wy .(m) spanned by the non-distinguished standard diagrams p: 0 — m is
invariant under T(s). The T(s)-module Wy ,(m)/M has basis u+M indexed by
distinguished diagrams p: 0 — m, which may be identified using the map
above with the standard diagrams : ¢t — s. This identification may be extended
R-linearly to an isomorphism : Woyz(m)/M — Wi ool(s) of T(s)-modules.

Now Theorem (3.4) provides an explicit natural transformation 6: W, | —
Wo .. The image 0,(id,) = v is given by (3.4.1). Let w = HZ(ids); l.e. W is
the right hand side of (3.5.1) with v = 1d;. Then it is easily checked that the
isomorphism 1) takes v+ M to w. It follows that w is annihilated by any
non-monic finite diagram and consequently, by an argument similar to that
which follows (3.4.2), that the family {6,} of homomorphisms given by (3.5.1) -
defines a natural transformation between the functors W, and W, . (]
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(3.6) COROLLARY. In addition to the hypotheses of the previous corollary,
assume that ¢* has finite order 1 > 1. If t <s <t+2l and s +1 = —2
mod 21, then there is a natural transformation 0: Wy — W, of T-modules
whose component at n is

(3.6.1) 0 ()= > hrw(@vp

po t—s
monic
finite

where hr,)(X) is the polynomial of (3.3) for the forest of (3.2)(1) associated
to the planar involution ¢, .

Proof. Let p:t— s be a monic affine diagram and consider the forest
A of orbits of ¢, which intersect t#s non-trivially, as in (3.5). Let B be the
ideal of A generated by those ¢,,-orbits which contain a lower vertex, and
let C=A\B.If x€B and y € C, then x 2y and x £ y. It follows that

a

ha(x) = hB(X)hC(X)[ }

¢ X

where hs(x), hp(x) and hc(x) are the Laurent polynomials associated by
Proposition (3.3) to the forests A, B and C of cardinality a, b and c =a—>
respectively. Since ¢ < (s —t)/2 < [, the denominator [r!]x of the Gaussian
binomial coefficient does not vanish when we set x equal to ¢ and we have

{a} _ [al,...[b+ 1],
P U TE

If p has nonzero rank, then a = (r+5)/2 + |u| > (t+s)/2+ 1 > b. Since
21 divides s+ ¢+ 2, the numerator vanishes and so hp(,)(q) = ha(g) = 0.

Thus the image 6! (1d) of (3.5.1) actually lies in the submodule Wffg:;(s)
which 1is canonically isomorphic to W,(s). Therefore the right side of
(3.6.1) (with n = s and v = id;) is annihilated by non-monic diagrams,

and so the argument following (3.4.2) shows that (3.6.1) defines a natural
transformation. [

The next result gives an explicit closed formula for the “Jones” or
“augmentation” idempotent in the singular case, i.e. when ¢ is a root of
unity. There are recursive [We] and partial results concerning formulae for

this idempotent, but to our knowledge, the closed formula we give below is
new (see also [Li]).

h
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(3.7) COROLLARY. Assume that q2 has (multiplicative) order | in R. Then
the primitive idempotent (sometimes referred to as the Jones or augmentation

idempotent) e € T(l — 1) which is associated with the trivial representation
of T(l—1) is given by

e=Y hr@(qe

where the sum is over finite diagrams o: 1 —1 — 1 —1 and hp)(x) is the
polynomial associated to the forest of orbits of ¢ .

Proof. It clearly suffices to prove that for any non-identity finite diagram
B:l—1 —1—1, we have e = ex 3 = 0. Now the finite diagrams
a:[l—1— [—1 are in canonical bijection with finite diagrams «’: 0 — 2/—2;
to see this, imagine the line of lower vertices of « rotated clockwise until it is
collinear with the line of upper vertices of «, giving a graph for o’. Moreover
if o, are two finite diagrams :/ — 1 — [ — 1, it is easily verified that

(3.7.1) @B) = B*od

where (* € T(I — 1), regarded as a subalgebra of T(2/ — 2) in the usual
way i.e. as the subalgebra generated by {fi,...,fi—2} € T2l —2). By (3.6),
there is a homomorphism 6: Wy _,(2] — 2) — Wy(2/ — 2) with image the

R-span of ¢ := >, hp@n(g)a’. But under the identification above,

o’ 0—21-2
finite

hro)(q) = hr(g) for any finite diagram «: /—1— [—1. Hence under the
identification, ¢’ corresponds to the element e of the statement. But T(/ — 1)
clearly acts on this image via the trivial representation. By (3.7.1), it follows
that T(/ — 1) acts on Re via the trivial representation as required.  []

(3.8) REMARK. Part of the significance of (3.7) derives from the fact that
the element e is known to generate the radical of Jones’ trace function [J1]
on the Temperley-Lieb algebra T(N) (for any N), T(/— 1) being regarded as
a subalgebra of T(N) as explained in the proof of (3.7) and therefore yields
a presentation of Jones’ projection algebra.

More specifically, Jones (op. cit.) showed that there is a unique trace
tr: T(IN) — R which satisfies (1) = 1 and tr(xf;}) = § ltr(x) for any
element x € T(i) C T(i + 1). This trace defines an Hermitian (or bilinear)
form on T(N), which is known to be degenerate if and only if [ < N +1,
i.e. N > [—1. When the Jones form is degenerate, the element e € TL(I — 1)
generates (as ideal of T(V)) its radical. Jones’ projection algebra Ay g [J1] is
defined as the quotient of T(N) by this ideal; hence we obtain an presentation
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for Ay g by simply adding the relation e = 0 to the usual presentation of the
Temperley-Lieb algebra. For a discussion of other contexts for e, see [MV].

We remark also that it follows from (3.6) (cf. also §5 below) and the
theory of cellular algebras that T(N) is non-semisimple if and only if N > /.
Thus the case N = [— 1 is distinguished as the unique one where T(N) is
semisimple, but the Jones form is degenerate.

(3.9) REMARK concerning the Jones (annular) algebras. Since the Jones
algebra J(n) (see (2.10) above) is a quotient of the algebra T%(n), any
J(n)-module lifts to a T%(n)-module. The W, .(n) which correspond to J(n)-
modules in this way are those where zZ = 1 and ¢ > 0 (2.10). Now the
conditions z2 = ¢° and y = zg~* (where s = t + 2k) of Theorem (3.4)
imply (if # > 0) that z/ = 1 if and only if y* = 1. Hence if z' = 1, the
modules W;.(n) and W, ,(n) of (3.4) may be thought of as J(n)-modules
and the map 6, as a homomorphism of J(n)-modules. If 1 =0, z =¢ and
the order ! of ¢* is finite, then Theorem (3.4) provides a homomorphism
Wsy — Wo o /M: x— x+M where s =2/ -2, y=¢/(=+1) and M is the
module defined in (2.9).

§4. DISCRIMINANTS

(4.1) DEFINITION. Throughout this section R denotes the function field
Q(g) and we consider the affine Temperley-Lieb algebras over the ring
R[z,z7!'] of Laurent polynomials. If 1 < s are non-negative integers of the

same parity define
s
18]k 1= :
135 {(S - Z)/Z:' X

The goal of this section is to compute the discriminant of the bilinear pairing
() Ve Wf,z(n) X WZZ_l(n) — R (n€Zxy).

This is the determinant of the gram matrix G;,(n) with entries (u,v),,
indexed by pairs of standard monic diagrams : t — n of rank (strictly) less
than (s—1)/2. Recall from (2.12) that these diagrams span a T(n)-submodule
W;.(n) of W,.(n) and that these submodules form an increasing filtration
of W,,(n) as s increases. When n < s, we write G;.(n) for this matrix,
because it is then independent of s. Similarly define the gram matrix G; ,(n)
for the pairing ( , ),0: Wf, oln) x W? «(m) — R and let G,(n) denote the éram
matrix of (, );: W,(n) x W,(n) — R with respect to the basis of finite, monic
diagrams. We maintain the standard notation s — ¢t = 2k.
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