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186 J.J. GRAHAM AND G.I. LEHRER
§2. CATEGORIES, ALGEBRAS AND CELL REPRESENTATIONS

In this section we shall define the affine Temperley-Lieb algebras as the sets
of endomorphisms in a category T? (the “affine Temperley-Lieb category”)
which is an enrichment of D?, the category of affine diagrams defined in the
last section. We shall construct an uncountable set of representations for these
algebras by defining functors from this category to the category of modules
over a ring R. It will turn out that these functors provide a “complete set”
of representations for the affine Temperley-Lieb algebras. As in the case of
diagrams, we shall begin with the finite case.

(2.1) DEFINITION. Let R be a (commutative, associative, unital) ring with
an invertible element g. Write § = —(q +¢~!). The Temperley-Lieb category
T = Tg, is defined as follows.

(1) The objects are the non-negative integers.

(2) If t,n € Z>p, the morphism set T(z,n) is the free R-module spanned by
finite diagrams :t — n.

(3) The composition of finite diagrams «: ¢t — n and [B:s — ¢ is
af = "*Pao = (—qg— g Y"*Pa o B. Extend bilinearly to define
composition in T.

Since ¢ and R will generally be determined by the context, we shall
usually suppress them.

The Temperley-Lieb algebra T(n) = T(n,n) 1s cellular in the sense of [GL].
It follows that it possesses a family of “cell representations” with canonical
bilinear forms. When R is a field, the heads of this family of modules form
a complete set of irreducibles for the algebra. Suppose W is any functor
: T — R-mod from T to the category R-mod of R-modules. Then for
n € ZLsy, W(n) is clearly a T(n)-module, so that W provides representations
of all the Temperley-Lieb algebras simultaneously. Such functors will therefore
be referred to as representations of the category T, or T-modules (see
(2.3) below). We show next how the cell modules may be constructed from
representations of the category.

(2.2) DEFINITION. Let ¢ be a non-negative integer. The cell representation
W; of T is defined as follows.

(1) For n € Z>o, W;(n) is the free R-submodule generated by monic finite
diagrams p: t — n.
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(2) If s,n €Z>p and a: s —n is a finite diagram, define W, (c): W,(s) —
W,(n) by stipulating that for any finite monic diagram p: !t — S,
W.(a)() = o * ., where

{ ap if oy is monic,
axp = .
0 otherwise. |
Extend this definition using linearity to obtain the required R-module
homomorphism W;(«).
(3) Let (, ), denote the R-bilinear form W (n) x W,(n) — R which takes
monomorphisms p,v:t— n to
(—g — g~ Hy""® if v* oy is monic,
<:LL7 V>I‘ = )
0 otherwise.

(2.3) DEFINITION. A T-module is a functor from the Temperley-Lieb
category to the category of R-modules. Parts (1) and (2) of (2.2) define
T-modules W, (for ¢ € Z>(). The form defined in (3) above is invariant in
the sense that

ok V)i = (@ % ),
and so we obtain further T-modules rad, and L, where rad,(n) is the radical
of this bilinear form and L,(n) = W.(n)/rad,(n). For n € Z>¢, let A(n) =
{teZso|t<n, t=n mod 2} exceptif ¢g+¢ ' =0 and n is nonzero and

even, in which case we exclude O from A(n). The set A(n) parametrises the
nonzero quotients L,(n).

(2.4) THEOREM [GL 2.6, 3.2, 3.4]. Let R be a field and suppose g € R
is nonzero. Let n € L>.

() If t € Z>o, M is a T(n)-submodule of the cell module W,.n) and
s € A(n) (2.3) is such that there exists a nonzero T(n)-homomorphism
fiWyn) — Wi (n)/M, then s >t. If s=t, then f(x) =rx+M for some
nonzero element r in R.

(2) If s € A(n), then the radical of Ws(n) as T(n)-module is rads(n), the
radical of the form (u,v),.

(3) The family Ly(n) indexed by s € A(n) is a complete set of irreducible
T(n)-modules.

We shall now proceed with the affine analogue of (2.4).
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(2.5) DEFINITION. Let R be a (commutative, unital) ring with an invertible
element g. The affine Temperley-Lieb category T*=Tg , 18 defined as follows.

(1) The objects are the non-negative integers.

(2) The morphism set T*(z,n) = Tg (¢,7) is the free R-module spanned by
the affine diagrams : ¢ — n.

(3) Composition is defined as the R-bilinear map which takes diagrams
a:t — n and B:s — t to the product af = 6P o f =
(—q — g~ y"®Pq 0 B, where m(c, B) is defined in (1.4).

As in the case of the Temperley-Lieb category, we shall generally omit
the subscript (R, q).

We leave it to the reader to check that composition is associative (cf.
(1.5)(2)) and that the above definition therefore does make T“ into a category.

We next define the set which will index the representations of the category
T¢ which we shall construct below.

(2.6) DEFINITION. Let A be the quotient of the set of pairs (¢,z) where
¢ is a non-negative integer and z is an invertible element of R by the relation
which identifies (0,z) with (0,z~!) for all nonzero z € R. Fix (¢,z) € A® and
define x = x;.: T, 1) — R as the unique R-algebra homomorphism which
annihilates non-monic diagrams and is given elsewhere by

00— (z +z7 1Y ifr=0,

= if t>0.
The (affine) cell representation W, ; is the functor from T¢ to R-mod defined
as follows.

(1) If »n is a non-negative integer, W, .(n) is the R-module generated by
monic (affine) diagrams p: ¢ — n subject to the relation:

o0 = x;,(0) if o:¢t—t 1s monic.
% X1,2\0 )

(2) There is an obvious R-bilinear action T%(s,n) x W, .(s) — W, .(n) which
takes a diagram «: s — n and monic diagram p: ¢t — s to

0" if o o 14 is monic,
(2.6.1) a* = { K H

0 otherwise.

Then T%(«) is the R-module homomorphism defined by p— a * u.
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The bilinear forms of the finite case are replaced by pairings between
related couples of cell modules, which we now define. Let ( , );. denote
the R-bilinear pairing W, .(n) x W, ,-1(n) — R which takes monic diagrams
w,v:t—n to
X:,:(w*p) if v* o p is monic,

WJMJZ{

0 otherwise.

(2.7) REMARKS. The R-module W, .(n) is a module for the affine
Temperley-Lieb algebra T(n) = T%(n,n). It has a basis of standard diagrams
.t — n, because every monic diagram factors uniquely through its image by
(1.7.1).

The pairing defined by (2.6.1) is invariant under the T9%(n) action (see
(2.3) for the meaning of invariance). Hence we obtain T¢-modules rad;, and
L, . where rad, .(n) is the radical in W, ,(n) of this pairing (i.e. the annihilator
of W,,-i1(n)) and L,.(n) is W,.(n)/rad,.(n).

For n € Z>o, let A’(n) = {(t,z) € A |t < n, t =n mod 2}, with the
pair (0,q) (= (0,47 1)) removed if ¢g> = —1 and n is nonzero and even. This
set parametrises the nonzero T“(n)-modules L, ,(n). To see this, we have only
to show that (, ),. # 0 for (¢,z) € A%(n). Write k = (n—1)/2 and denote by
n* the standard diagram 7,7,_2 ... 7472 t — n. One then verifies easily
that

2.7.1) (n*

)

(—q
{ (Tk)—z ift>0,
xmﬁ—z+zl ifr=0,

l|

(2.7.2) (T, n*)

whence the bilinear pairing
(t,2) = (0,9).

, )iz 18 nonzero unless ¢> = —1 and

(2.8) THEOREM. Let R be a field with ¢ € R a nonzero element. Let n be
a non-negative integer and T%(n) be the affine Temperley-Lieb algebra (2.7).
(1) Let (¢,2) € A? (see (2.7)), let N be a T%(n)-submodule of the cell module
W:.(n) (2.6) and take (s,y) € A%(n). Suppose that f: Wsy(n) — W, ,(n)/N
is a nonzero T%(n)-homomorphism. Then s > t. If s = ¢, then
(s,y) =(t,z) and f(x) =rx+ N for some r in R.
(2) For any (s,y) € A%(n), the radical of Wsy(n) as a T%n)-module is
rad; ().
(3) If R is algebraically closed, then the family Lg(n) indexed by
(s,y) € A(n) is a complete set of distinct irreducible T%(n)-modules.
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Proof. The proofs of (1) and (2) are the same as those of [GL 2.6, 3.2,
3.4], given (1.7.2) and recalling that the bilinear forms ¢,, are non-zero on
the modules under consideration. From (1) and (2) it follows that L, ,(n) is
an (absolutely) irreducible T“(n)-module for any (s,y) € A%(n) and that these
modules are pairwise inequivalent. Let M be an arbitrary finite dimensional
irreducible T%(n)-module; assuming that M # 0 (as we may), we shall show
that M = L,, for some (t,z) € A“. Let t € Z>( be minimal such that
a.m # 0 ( . denoting the module action) for some m € M and «:n — n
with ¢ through strings (i.e. #(a) = t). Since M # 0 such ¢, o and m exist;
fix them for the rest of this proof. We shall find an invertible element z
in R and construct a nonzero homomorphism 0: W, .(n) — M. If g = —1
and (f,z) = (0,¢) for this ¢, then « annihilates W;.(n) when #(a) = O,
contradicting our choice of ¢. Hence if such a € exists, (t,z) € A%n).
Moreover since M is semisimple, 6 factors through its maximal semisimple
quotient, which is L;.(n) by parts (1) and (2). Hence to complete the proof
of (3), it suffices to construct the homomorphism 6 as above. _

Let W,(n) denote the free R-module on the set of monic diagrams
w:t— n. There is a T¢(n)-action on Wt(n) given by

{ ap  1if oo p 1s monic,
o= :
0 otherwise.
Now a = i(a)o p for a unique diagram p: n — ¢ with p* monic (cf.(1.7.1)).
We therefore have a homomorphism f: W;(n) — M of T“(n)-modules given
by f(u) = ¥ (u).m, where Y(u) = pp, with p as above. This map is nonzero
since f(i(a)) # 0. Hence f 1is surjective and there is an element y € W (n)

such that ¥(y).m = m.
Let v:t— n and o: t — ¢t be a pair of monic diagrams. We shall show that

(2.8.1) Y(WY(yo).m = Y(vo).m.

To see this, observe first that any element x of W,(n) may be written
uniquely in the form x = ) ., WXy, where the sum is over the standard
diagrams u: ¢ — n and the x, are in W,(¢). Write y = > ., oy accordingly
and note that since W,(¢) is an abelian algebra, if p o u 1s monic, then pu,
y, and o commute with each other. It follows that

YWpOo) . m = (Wp)pyuop).m= Y (vo)puyup.m
H 2

= Ywa)P(y).m = pvo).m,
which proves (2.8.1).
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Let o, and o, be monic diagrams from ¢ to ¢. Taking v = yo; and
replacing o by o, in (2.8.1), we have

(2.8.2) Yo (o). m=p(yor0z).m.

Hence W,(t) has an action on the subspace V of M consisting of
{Y(yo).m|o € I/IN/,(Z)}, the element o € W,(7) acting via 9 (yo). Since R is
algebraically closed, 1(y7;) has a nonzero eigenvector m’ = Yyo'y.m eV,
with corresponding eigenvalue ¢ (say). Now take (z,z) € A® such that 7 is
as above, z = ¢ if t >0 or ( =z+z ! if r = 0. Define the character
X: VIN/,(I) — R as in (2.6). Then it follows from (2.8.2) that for any element
o e W,(t), we have

Y(yo).m' = x(o)m'.

Moreover for any monic diagram p: ¢t — n, we have

Y(po).m' = p(uoyp(yo’) . m = p(uoa’) . m
= Y(wp(yoo').m = P(wbyoy(yo') .m
= P(wp(yo) . m’
= x(0)p(u) . m" .

It follows that there is a nonzero homomorphism 0: W, .(n) — M of T%n)-
algebras given by 6(u) = ¥(u).m'. This completes the proof of (2.8). [

The relationship between our affine Temperley-Lieb algebras and the
quotient of the Hecke algebra discussed in §0 is explained in the next result.

(2.9) PROPOSITION (cf. [FG]). There is an algebra homomorphism
p: Hi(q) — T%n) (see (0.1)) which takes T; to —f;i —q~ ' for i=1,...,n.
The kernel of p is the ideal I of (0.5), while the image of p is spanned by
non-monic diagrams : n — n of even rank, together with the identity. Thus the
latter diagrams span an algebra which is isomorphic to TL(6) (see (0.5)).

Idea of proof. Write C; = —(T; + ¢~'). Then H%g) is generated as
R-algebra by Cy,...,C, subject to the relations

CiC;=CiC; if [i—j| =2 and (i,)) # (1,n)
C? = 6C;
CiCiy1Ci — Ci = Cip1CiCipy — Ciyy = —q°E;, where E; is as in §0

and the index i is taken modulo 7 in the last equation. One checks easily
that the diagrams f; satisfy these relations with E; replaced by 0, whence
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the indicated map defines a homomorphism of algebras. The kernel contains
the E;, and hence contains /?. The image is the algebra generated by the f;,
which is identified as in the statement of (2.9) by Corollary (1.9). To see that
the kernel is no larger than /¢, we refer the reader to [FGI]. []

The modules W,,(n) and L,.(n) may be regarded as modules for the
subalgebra TL; of T%(n). It is a simple consequence of (2.9) that as TL:-
modules W;, = W,, if t =n or z4+y = 0. Moreover the argument of [GL
2.6] shows that L,, remains irreducible as a 7L -module, unless ¢ = 0 and
722 = —1. In the remaining case, Wy, is the direct sum of two submodules
W(')f . and W, spanned respectively by the even and odd standard diagrams
: 0 — n. If ¢* # —1 these modules have irreducible heads LS” , and Ly,
whose sum is Lo ,. This leads to the following description of the cell modules

and irreducible modules for the algebra TL%.

(2.9.1) COROLLARY. Let Ka(n) be the quotient of A%(n) by the equiva-
lence relation (t,z) = (t,y) if t =n or z= —y, with new points (0,2)" and
(0,2)~ replacing (0,z) € A%n) if n is even and z*> = —1. Then Theorem
(2.8) applies to W,.(n) and L;.(n) regarded as TL:-modules, with Ka(n)
replacing A%(n) and the representations being realised as above.

(2.10) THE JONES ANNULAR ALGEBRAS

The Brauer centraliser algebra i1s the free R-module B(n) generated
by fixed point free (but not necessarily planar) involutions ¢ of n#n with
multiplication defined analogously to (1.2) and (2.1). There is a unique algebra
homomorphism: 1/: T%(n) — B(n) which takes an (affine) diagram «: n — n
to (6)9% times the involution 1, of n#n which interchanges the vertex
£(x) or u(x) with £(y) or u(y) (x,y € n) precisely when ¢, maps £(i,x) or
u(i,x) to £(j,y) or u(j,y) for some i,j € Z. Jones’ annular algebra J(n) is
the image of this algebra homomorphism. This algebra is known to have a
cellular structure [GL]; the associated cell modules are related to those of T¢
as follows. If (¢,z) € A%(n) is such that ¢+ > 0 and z = 1, then the kernel
of 7 annihilates the T¢(n)-module W, .(n), and so we obtain J(n)-modules
W;Z(n) and L, .(n); with the notation of [GL] the first module is (canonically
isomorphic to) the cell representation W(z,z) while the second is its unique
irreducible head L(z,z). The remaining cell representation W(0, 1) of J(n) as
defined in [GL], is the quotient Wy ,(n)/M where M is the image of the map
6,: W 1(n) — Wo 4(n) of Theorem (3.4) below. The unique head L(0,1) of
W(O0,1) 1s Lo 4(n).
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It is therefore clear that the representation theory of the Jones algebra
J(n) is included in the representation theory of our affine algebras. Its cell
representations form a subset of those of T“(n), with one exception.

The (finite) Temperley-Lieb category T is a subcategory of the affine
Temperley-Lieb category T¢. Therefore the cell representations of T¢ give
rise to representations of T by restriction. We complete this section by
describing the structure of the resulting restricted T(n) modules, as well
as some “asymptotic” ones.

(2.11) LEMMA. Let R be a ring with an invertible element g. Consider
the affine Temperley-Lieb category T? = T?e[z.z—l] , over the ring Rlz,z7'] of
Laurent polynomials in an indeterminate z and let t € Z>. Define coefficient

functions r“(x) € R[z,z7 '] of the cell representation W;. by:

where .t — n and v: t — s are standard (affine) diagrams and x € T%(n, s).
If x is a finite diagram o, then the coefficient r“(c) vanishes unless
I=|pl=1v] >0 and vor/ = oy for some i € Z. In this case r(a)z
is a polynomial in R[z*] of degree at most . Furthermore if p and [y are
standard diagrams from t to n, </¢1,u2>,,_72|“"+|“2' also lies in R[z%].

Proof.  Although these statements are staightforward consequences of
Lemma (1.5), we provide the details for the reader’s convenience. Recall that
ok is equal to avo s if this has ¢ through strings, and is zero otherwise. In
the former case, oy =rvo fr,j for some standard v and j € Z, and we have

% = 5m(a,u)yjl/

where y =z if + >0 and y =z4z7! if + = 0. Thus the coefficient ri (o)
vanishes except for this particular standard diagram v, and r#(q) = §m@myJ

We now relate the ranks to j. Since |a| = 0 by (1.5) we have
laop| < |p| and these have the same parity. Since v is standard, we also
have |vo7/| = |j| + |v| whence |j| < |u|— |v| =1 and still both sides have
the same parity. Since the left hand side is nonnegative, so is the right hand
side. Furthermore, r#(c) is an R-linear combination of integer powers of z,
all of which have the parity of j, the smallest of which is —J and the largest
being ;. It follows that r#(c)z' is a polynomial in 22, of degree (j+1)/2 <1,
which proves the first statement.
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Next we compute the bilinear pairing. Let p; and pu,: t — n be standard.
Their scalar product vanishes, unless p; o uy: t — t has ¢ through strings. In
this case we have p3 oy = 7F for some k € Z and

(1, 2 )ryz = E"H 1Dy

where y 1s as above. The proof is now completed as above, bearing in mind
that by (1.5) |k| < |pi|+ |u2| and the two sides have the same parity. [

As a consequence of Lemma (2.11), we may construct T-modules W, g
and W; o, as follows. If n € Z>g, let W, o(n) be the free R-module generated
by standard affine diagrams (see (1.7)) pu:t — n. If a: n — s is a finite
diagram and p:t — n is standard, define

(2.11.1) ok = rb(a)v

where v is as in (2.11) and r¥(a)o 1s the constant term of r/,;‘(oz)zl. Extend
this R-bilinearly to an action of T(n). The module W; ., is constructed.in
analogous fashion using the constant term of r#(a)z~! in R[z72]. One then
has an invariant pairing

(2.11.2) (,)e0: Weo(m) X Wy oo(n) — R

where (u, ) is the constant term of <u,v>t,zz|”'+|“|,

(2.12) THE FINITE TEMPERLEY-LIEB ALGEBRAS

We shall describe how the affine modules are related to the finite modules
of [GL,§6] (see (2.2) above). Let 1 € Z>( and let z be 0, oo, or an invertible
element of R. We construct a filtration of the T-module W;, whose quotients
are cell representations. If s € Z>( 1s such that s =¢ mod 2, then for each
ne sy let W7, (n) be the R-span of the standard affine diagrams u: ¢ — n
of rank |u| < (s —1)/2. This defines an increasing family

0=W.,(n) CW () =Win) CW ) C--- CWL(n) CWF(n) = W,.(n)

of T-submodules of W;.(n) (of course W/, (n) = 0 for s < ¢t and
Wi, (n) = Wi .(n) for s > n). It follows from (1.9.1) that there is an exact
sequence of natural transformations :

(2.12.1) 0— W, — W/ —w,—0

where the left map is inclusion and the right map is given (cf. (1.9.1)) at n
by :
Wit () — Wn): pon® ™% o .
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(2.13) THE TRIVIAL REPRESENTATION OF THE FINITE TEMPERLEY-LIEB
ALGEBRAS

The cell module W,(s) is one-dimensional and will be referred to as the
trivial representation of T(s). Observe that the diagrams f; € T(s) all act as
the zero operator in this representation, whence if e, is the corresponding
idempotent in T(s) (e, exists generically, by generic semisimplicity), then
fixe; =0 =egxf for all i. The idempotent e; is referred to in the literature
(cf. [MV], [We], [Li] and [J3], where e, was first identified) as the Jones, or
augmentation idempotent of T(s). '

(2.14) LEMMA. Let t, s and k be non-negative integers such that
s = t+2k. If x € W,-(s) is annihilated by all finite diagrams o:s — S
except idy, then x is a scalar multiple of es *n"*, where e is defined above
and n* is defined in (1.9.1).

Proof. We may suppose that k > 0, since the case k = 0 is trivial. The
hypothesis implies that Rx is a realization of the trivial representation of T(s),
whence x € e x W, -(s). We shall therefore be done if we show that

(2.14.1) es * W, (s) = Rey x 1" .

Now n* is characterised among the standard diagrams : ¢ — s as the unique
diagram of maximal rank (k). If p:¢ — s is standard and |u| < &, then
p = fi x v, for some standard diagram v:7 — s and i € {1,2,...,s — 1}
because ¢, must interchange two upper vertices in the fundamental rectangle
(recall £ > 0). Hence e;* = es xf; x v = 0, proving (2.14.1) and hence the
lemma. [

§3. HOMOMORPHISMS AND NATURAL TRANSFORMATIONS

For any integer n, define the Gaussian integer [n]; in the function field

Q(x) by

—n

X" —x
- 1—1 X -3 —
[n]x —_—— = X’ 4 n S [—n .

Define the Gaussian x-factorial by

[n!]x = [ndxln — 11k ... [21c[1)x -

For any pair n > k of positive integers, the Gaussian binomial coefficient is
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