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(1) O contains no points in fix(¢1) Ufix(¢) ; in this case we call O a loop.

(2) O contains exactly two points in fix(¢1) U fix(¢,) ; in this case we call
O an arc and refer to the two fixed points as the ends of the arc.

When the ends of an arc (case (2) above) are not in the same set fix(¢;)
(i=1 or 2) we say the orbit is a through arc.

Proof. Suppose that an orbit O contains a point x of fix(¢1) (say).
Following [GL, (4.5)], write ($1¢2)i = ... 020102 (U factors) and write
xi = (p1¢)ix (for i = 0,1,2,...), so that xo = x etc. Then clearly
O = {xo,x1,...}. If the orbit O is finite, the result is immediate by the
argument in [GL, loc. cit.]. If O is infinite, then two of its elements lie in the
same V -orbit by finiteness, whence there are indices i < j and k € Z such
that VAx; = x;. Acting by ¢; and ¢, it follows that V¥xp = xz; = x, for
some r > 0. Hence x, is fixed by ¢;. It follows, using the same argument as
in [GL, loc. cit.] that O = {xo,...,x,}, which contradicts the infinite nature
of O. U

Notice that the proof of (0.8) shows that any infinite H -orbits must be
loops. Also, if X is finite, V may (and generally will) be trivial.

§1. INVOLUTIONS, DIAGRAMS AND CATEGORIES

We shall consider various categories in this work whose objects are the
non-negative integers Zx>o. The morphisms in these categories are defined in
terms of “diagrams” and their “composition”, whose definition in turn depends
on the notion of a “planar involution” (cf. [GL, §6]). In this section we develop
a calculus of involutions and diagrams; our principal purpose is the definition
of the category D of affine diagrams. These generalise the familiar diagrams
which may be used to define the ordinary Temperley-Lieb algebra T(n).

(1.1) DEFINITION.

(1) A planar involution of the totally ordered set P is a permutation ¢
of P such that ¢? is the identity, ¢ has no fixed points and if x,y € P then
x <y <o) = x < o) < o).

(2) If ¢ and n are non-negative integers, a finite diagram ot — n is a
planar involution ¢, of t#n, where the latter set is defined in (0.6).
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If we visualize t#n as two horizontal lines in the plane as indicated in
(0.6), such a diagram may be represented by a graph with vertex set t#n and
edges (x, ¢(x)) (x € t#n). The planar condition then ensures that this graph
can be drawn without intersections in the convex hull of t#n.

Suppose a: t — n and §: s — t are two finite diagrams with corresponding
planar involutions ¢, and ¢z of t#n and s#t respectively. We identify
sIIn = /(s) Uu(n) with its image in sIItII n using the canonical injection.
Let $a denote the involutory bijection of X = sIItIIn which fixes ¢(s) and
agrees with ¢, in the sense that q~5aoi23 = ip30¢, where iy;: tlIn — sIitlln
denotes the canonical injection. Similarly we obtain the involution 53 whose
fixed point set is u(n). This sets up the situation of (0.8) with V =id.

(1.2) DEFINITION.

(1) With the above notation, let ¢,o3 be the involution of s#n which
interchanges the ends of the arcs (0.8) of H = @a,%ﬁ} on sl tIIn. This
is a planar involution. Define the composition oo 3 of o and (3 to be the
diagram corresponding to this involution.

(2) Maintaining the notation of (1), denote by m(c, #) the number of
loops of H on sIItIIn. Then m(x, ) = x — (s + n)/2 where x is the total
number of orbits.

In terms of the graphical representation of the diagrams, composition
corresponds to placing a graph for o above a graph for [, identifying
corresponding points indexed by vertices in t and deleting the m(c, 3) interior
loops formed. We give an example below.




AFFINE TEMPERLEY-LIEB ALGEBRAS 179

We define the category D of finite diagrams as follows. Its objects are
the non-negative integers. If 7,n € Z>(, the morphisms from ¢ to n are the
finite diagrams «: ¢ — n and composition is as defined in (1.2). The identity
id: + — ¢ interchanges u(i) and /(i) for i € t, in the notation of (0.6).

Next we extend the concept of diagram to the affine case. Let n be a non-
negative integer. Recall from (0.7) that Z x n is ordered lexicographically and
has an automorphism V,. The orbits of V, are represented by the elements
of the subset {0} X n.

(1.3) DEFINITION. Let r and n be non-negative integers. An affine
diagram «:t— n is a pair (g(), p,) where g(a) is a non-negative integer
and ¢, is a planar involution of (Z x t}#(Z x n) which commutes with the
shift V#V, (see (0.7)) and which is such that when ¢g(a) is nonzero, @
preserves the subsets 4(Z x t) and u(Z X n).

An affine diagram «: ¢t — n may be thought of as a graph drawn without
intersections on the surface of a cylinder. The lower and upper boundaries of
the cylinder have vertices which are labelled by ({0} x t) and u({0} x n)
respectively. Each vertex is joined to another one, the joining curve wrapping
around the cylinder a certain number of times, this number being determined
by ¢o; g(c) denotes the number of closed curves which wrap around the
cylinder. The condition that there be no intersections means that if there are
any such curves, no top vertex is joined to a bottom vertex (cf. the definition
above). In practice it is more convenient to lift such graphs to the universal
covering strip of the cylinder, which is the origin of the definition (1.3). We
now explain this in detail.

Draw a rectangle (the “fundamental rectangle”) in the real plane and
extend the horizontal sides indefinitely. Label ¢ points on the lower boundary
(avoiding corners) of the rectangle in the obvious way by £({0} x t) and
n points on the upper boundary by u({O} x m). Then label the translates
of these points in the translates of the fundamental rectangle to the right
and left by #(Z x t) and u(Z x n) in the obvious way. The resulting strip
provides a graphical model for (Z x t)#(Z x n) (see (0.7)). It is covered by
translates of the fundamental rectangle and the shift V = V,#V, moves the
fundamental rectangle one step to the right. An affine diagram is depicted
in this context by an “augmented graph”, drawn without intersections in the
strip. This consists of curves joining distinct vertices which are interchanged
by ¢a, as well as g(a) horizontal curves which stretch along the whole strip,
the latter representing closed curves on the cylinder. This graph must be fixed
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by the translation V. In practice, we draw only the part of the graph in the
fundamental rectangle, which determines it completely due to the invariance
under V. For the sake of simplicity, the lower and upper vertices of the
fundamental rectangle will be labelled in our figures by t and n respectively,
rather than by the more formal /({0} x t) and u({0} x n). We shall also use
this notation in the text when there is no danger of confusion.

The rank || of an affine diagram « is the sum of g() and the number
of vertices £(i,x) or u(i,x) with i < O which are interchanged with vertices
£(,y) or u(j,y) with j > 0. This is the minimum number of intersections
between a graph for o and the left side of the fundamental rectangle.

If an affine diagram « has rank zero, the restriction of the involution ¢,
to the fundamental rectangle of « is a finite diagram which characterises «;
conversely any finite diagram defines a unique affine diagram (by translating
its graph). Thus the finite diagrams from ¢ to n may be thought of as special
cases of affine diagrams.

Our earlier definition (1.2) of composition for finite diagrams extends to
affine diagrams as follows. Let a: t — n and (3: s — ¢ be affine diagrams. As
in the preamble to (1.2), we identify (Z xs)I1(Z xn) = ¢(Z x s)Uu(Z xn) with
its image in the disjoint union (Z xs)II(Z x t)II(Z xn), and we extend ¢, (resp.
¢ ) to an involutory bijection 5@ (resp. 55) of X =(Zxs)II(Z xt)II(Z x n)
with fixed point set ¢(Z x s) (resp. u(Z x m)). Denote by H the group of
permutations of X which 1s generated by gga and qgﬁ. There is an obvious
permutation V of (Z x s) LI (Z x t) I (Z x n) whose restrictions to (Z X s),
(Z. x t) and (Z x n) coincide with the shifts V;, V, and V, of (0.7). This
permutation commutes with %a and (Eﬁ. Therefore V permutes the orbits of
H, and since V has finitely many orbits on X, it has finitely many orbits
on the set of H-orbits. Let x be this number and let y be the number of
H -orbits which are fixed by V. Note that these must be infinite and therefore
will correspond to the “horizontal curves” above. By (0.8), we have two types
of H-orbits on X. Moreover the loops fall into two types, viz. finite and
infinite. These correspond on the cylinder to contractible and incontractible
circuits respectively.

(1.4) DEFINITION. Let a:t— n and f:s — ¢ be affine diagrams and
maintain the above notation. Let m(a, ) :=x —y — (s + n)/2 where x and
y are defined in the preamble above. The composition avo 3 of o and [
is the affine diagram (g(@) + g(8) + ¥y, @aos), Where ¢uop 1s the planar
involution of (Z x s)#(Z x n) which interchanges the ends of arcs (0.8) of H
on (Z xs)I(Z x t)I1(Z x n) (see above).
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A graph for the composition may be obtained in the same way as before by
placing a strip with a graph for « above one for [, identifying corresponding
points labelled by Z x t and deleting the m(«, 5) finite (V -orbits of) loops
formed. In terms of the corresponding graphs drawn on a cylinder, note that
only contractible loops are removed. Interior loops which wrap around the
cylinder remain; they correspond to infinite loops in the strip. Here is an
illustration.

If o: 1 — n is a diagram, o = (g(@), ¢o), its adjoint a*: n — t is given by
a* = (g(a), @ox), where ¢q+ is the planar involution of (Z x n)#(Z x t) which
interchanges elements £(i, ) or u(p,q) with £(’,j') or u(p’,q’) precisely when
¢o interchanges u(i,j) or 4(p,q) with u(i’,j") or 4(p’',q). Geometrically, this
corresponds to reflecting a graph for « in a horizontal line.

The proof of the following lemma is easy and left to the reader.

(I.5) LEMMA. Let a:t — n, B:s — t and v:r — s be (affine)
diagrams. '

(1) The composition «o 3 is a diagram : s — n.

(2) Composition is associative, i.e. we have (o f3) o Y =ao(Bovy) and
m(a, B) +m(ao B,7) = m(B,7) + m(cr, B o).

(3) The finite diagram id: t — t is the identity: aoid = o and id o g =2.

(4) The rank function satisfies |oco 3| < |a|+|8|. Both sides of this inequality
have the same parity.

(5) With the above definition of adjoint, we have (o fB)* = B*oa*.
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In view of (1.5), we may define the category D of affine diagrams. This
has as objects the non-negative integers and the morphisms from »n to m
(n,m € Z>o) are the affine diagrams «: n — m. We shall refer to diagrams
of even (resp. odd) rank as “even” (resp. “odd”).

We now discuss some key examples which play an important role in the
development below. If ¢ is any order preserving permutation of Z X n, there
i1s a diagram : n — n, also denoted by o, defined as follows: o = (0, ¢,),
where ¢, is the involution which interchanges lower vertex #(x) with upper
vertex u(o(x)). For example, take o = 7, where 7, is the permutation of
Z xn (n > 0) which takes each element to the next largest one. The
corresponding diagram 7,: n — n appears below. We shall denote by 7y the
diagram (1,¢,): 0 — O where ¢,, is the unique permutation of the empty

T —

n—1n

Tpin =N 70: 0—=0

Fix an integer n > 2. Let ¢, be the planar involution of (Z X (n—2))}#(Z xn)
defined as follows: ¢, interchanges the upper vertices u(0,n) and u(l,1) =
V(u(0, 1)) and the vertices £(0,7) and u(0,i+ 1) for i=1,2,...,n—2. Let
n = 1n,: n—2 — n be the affine diagram (0, ¢,). Define fo = non* and
fi =T ofyo7™". Note that the f; are all diagrams : n — n and that f;1, = f;.
Graphs for these diagrams are depicted below.

1 Z n—1n v 1+1
1 n—2 1 1+1
Mp:N—23n firn—n

We shall usually use 7 and n without the subscript, relying on the context
to specify it.

Recall that a morphism f: A — B in any category is monic if, for any
object X and morphisms i, j: X — A we have foi=foj=i=].

[
2
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(1.6) LEMMA.
(i) For any diagram o:t — n, the following are equivalent :
(1) « is not monic.
(2) ¢ interchanges some pair of lower vertices.
(3) a = of; for some fi:t—t as above.

(i) The monic diagrams o: n — n are precisely the powers 7' where i € L
and i >0 if n=0.

Proof. (1) = (2): If (2) does not hold, then a” o « is the identity
id: t — ¢t and so « is monic.

(2) = (3): If x < ¢o(x) are lower vertices as close as possible, then
the planar condition ensures that ¢.(x) covers x. Thus if / is defined by
x=£(0,7), then . =« of;.

(3) = (1) : This is immediate.

Part (ii) follows immediately from (i). [

(1.7) DEFINITION. An (affine) diagram p = (g(w), ¢,): t — n is standard
if 1 is monic, g(u) = 0 and ¢,, maps each element of £({0} xt) to u({0} xn).

The image of a diagram «: s — n is the standard diagram constructed as
follows. Let x; < xp < --- < x; be those upper vertices in the fundamental
rectangle of (Z xs)#(Z xn) which ¢, maps to lower vertices and set #(«) :=¢.
We refer to #(a) as the number of through strings of «. Then the image
i(a): t(a) — n 1s defined as the monic diagram i(a) = (0, @i)) Where @i
is the involution which interchanges ¢(0,/) with x; and interchanges upper
vertices whenever ¢, does. Then any diagram « factors uniquely through its
image. Specifically, we have a unique diagram p: s — f(«) such that

(1.7.1) a=Iila)op and p* is monic.

If o is monic then p is also monic whence #(a) = s and p is a power of ;.

A particular case of (1.7.1) which we shall use below relates to the case

s=n.If a:n— n is an affine diagram, there are unique integers #(a), j(c)
and standard diagrams pu,v: t(a) — n such that

(1.7.2) o= [0 Tt{(aC;) ov*.
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(1.8) PROPOSITION. For any positive integer n, the semigroup generated
by the diagrams fi: n — n is the set of non-monic diagrams o:n — n of
even rank.

Proof. If a:n — n is in the semigroup generated by the f;, we note that
a 1s even by Lemma 1.5(5) and not monic by the previous lemma.

We prove the converse by induction on length I(ar) which is defined

by la) = > o |Toao77!|. Let a:n — n be an even and non-
monic diagram. Replacing o by 7/ o oo 7 if necessary, we may as-
sume that o o fy = «, or equivalently that ¢, interchanges the lower

vertices £(0,1) and #4(—1,n). Since « is even, it follows that |a| > 2.
We shall construct below a diagram (: n — n such that I(8) = (o) — 2
and o = (8 ofy. Assuming that (§ is not the identity, it is clear that [
is even and not monic. By induction [ is in the semigroup, and thus so
1S «.

We now construct § leaving it to the reader to verify that one does obtain
a diagram with the properties above. In this proof only, let us say that a vertex
v(i,x) (where v = /¢ or v = u) is negative (for o) if i < 0; v(i,x) is special
if it is negative and ¢,v(i, x) is not negative. For example ¢(—1,n) is special.
CASE 1: If gla) > 0 and #4(—1,n) is the only special lower vertex, let
g(B) = gla) — 1 and ¢z be the involution which interchanges the lower
vertices £(i, 1) and £(i,n) (for all i € Z), and acts as ¢, elsewhere.
CASE 2: Otherwise our hypotheses ensure that there is an even number of
special vertices. Let y be the minimal special vertex excluding #(—1,n). Then
let g(8) = g(a) and take ¢p to be the involution which interchanges #(i, 1)
with Vio ¢o(y), £(i,n) with VT1(y) (for all i € Z) and which elsewhere
agrees with ¢,. [

(1.9) COROLLARY. If t < n are non-negative integers of the same parity,
then the map v pon is a bijection between standard diagrams :t+2 — n
and standard diagrams :t — n of nonzero rank. Here 1 =1n,40:t = t+2 is
the special diagram defined before (1.6) above.

Proof. The map is well defined and injective, so it suffices to show that
it is surjective. If v: ¢ — n is a diagram of nonzero rank, then as in the
previous proof we may construct p: t+2 — n (this is the (8 of the proof of
(1.8)) such that pofy =von* (this replaces a above). In particular, if v is
standard, then g is also standard and v = pon. [
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The result above will be applied later in the following iterated form.

(1.9.1) COROLLARY. Let t < s < n be non-negative integers of the same
parity and define k by s = t+2k. Write n* =153 ... MryaNep2: t — 5. Then
the map | — pon* is a bijection between standard diagrams : s — n and
standard diagrams :t — n of rank > k. Moreover we have |,u ont | = |u|+k.

The final result of this section provides a method of counting the number
of standard diagrams of a given type.

(1.10) DEFINITION. A standard diagram p: ¢t — n determines a partition
of the set u({0} x n) of upper vertices into three parts:

thr(p) = {¢, ) | x € £({0} x B)},
rgt(p) = {x € u({0} x n) \ thr(w) | ¢, (x) < x},
Ift(p) = {x € u({0} x n) \ thr(w) | . (x) > x}.

The names are intended to reflect the facts that any upper vertex either lies
on a “through” arc or is the left or right end of an arc between upper vertices.
We shall sometimes abuse notation by writing i € thr(u) if u(0,i) € thr(w).

(1.11) PROPOSITION. If n, t and k are non-negative integers such that
n=t+ 2k, then the map lft induces a bijection between the set of standard
diagrams |t — n and subsets of cardinality k of u({0} x n).

Proof. We prove by induction on k that a standard diagram u:t — n
is determined by the set 1ft(x). The case £ = 0 is trivial. Replacing u by a
conjugate 7' o MOT,_j if necessary, we may assume that 1ft(x) contains u(0, n)
but not u(0,1). Since ¢, is planar, the inequality ¢, (u(1,1)) < u(0,n) <
u(l,1) < ¢,(u(0,n)) implies ¢,(u(0,n)) = u(1,1). Consequently, u = n, ov
where v: f— n—2 1s the standard diagram 77 ov. By induction v: t — n—2
is determined by the subset Ift(v) = {u(0,x — 1) | u(0,x) € Ift(u), x # n} and
thus u = nowv is determined by Ift(x). The surjectivity of the map Ift is
proved in analogous fashion.  []

(1.12) COROLLARY. Let n,t € LZ>q be integers of the same parity. The

number of standard diagrams o:t — n is ((n_’;) /2) .
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