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THE REPRESENTATION THEORY OF
AFFINE TEMPERLEY-LIEB ALGEBRAS

by J.J. GRAHAM and G.I. LEHRER

ABSTRACT. We define a sequence T¢(n) (n =0,1,2,3,...) of infinite dimensional
algebras as the sets of endomorphisms of the objects in a certain category of diagrams.
These algebras are extended versions of the Temperley-Lieb quotients of the affine

Hecke algebras of type A,_;. They have bases consisting of diagrams drawn without
intersections on the surface of a cylinder. Using the methods of cellular algebras, we
construct certain finite dimensional representations of these algebras, which we call
“cell” or “Weyl” modules; these come from “functors on the category of diagrams”
and are therefore constructed simultaneously for all T¢(n).

There are canonical invariant bilinear forms which put pairs of the cell modules in
duality with each other and all the irreducible T“(n)-modules are obtained as quotients
of the cell modules by the radicals of the forms. By determining all homomorphisms
between the cell modules, we are able to determine their decomposition matrices and
from these to deduce the dimensions of all the irreducibles.

We also give explicit formulae for the discriminants of the forms. The representa-
tions we construct may be interpreted as representations of the affine Hecke algebra
of type A; they therefore give explicit results about some of the representations of
the affine Hecke algebra at roots of unity. Our results may also be applied to study
related finite dimensional algebras such as the usual Temperley-Lieb algebra or Jones’
annular algebra. For these, our results concerning discriminants give precise criteria
for semisimplicity as well as a complete discussion of their modular representation
theory, including the determination of the composition factors, with their multiplicities,
of the cell modules. As a by-product of our explicit determination of the homomor-
phisms between the cell modules, we also obtain a closed formula for the Jones (or
augmentation) idempotent of the Temperley-Lieb algebra which yields a presentation
of Jones’ projection algebra when the Jones trace on the Temperley-Lieb algebra is
degenerate.
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§0. INTRODUCTION AND PRELIMINARIES

Let R be a commutative ring and let ¢ € R be an invertible element.
For any integer n > 1 let H,(q) be the Hecke algebra of type A,_;, with

standard generators T,...,T,—; and let H%(¢) D H,(q) be the corresponding
affine Hecke algebra. Thus H¢(g) has generators T},...,T, which satisfy
T, =TT if i —j| > 2 and {i,j} # {1,n}.
(0.1a) i=1,...,n, the subscripts
Tiliga Ti = Tip Tl i being taken mod 7.
and
(0.1b) (T —)(Ti+q~ ) =0.

It is well known that H¢%(g) has an R-basis consisting of elements T,
where w runs over the elements of the affine Weyl group W¢ of type An_
and that H,(q) is the free R-submodule with basis {T,, | w € W}, where W
is the Weyl group of type A,—;. The T,, are defined as follows. Let ry,...,r,
be the set of simple reflections for W¢ which correspond to the 7;. If 4(w)
is the corresponding length function on W¢, for any w € W take a reduced
expression w =r;, ...r;, ({ =4(w)); then T, =T, ...T;,.

For each i = 1,...,n the group W(i) generated by r; and riy; 1S
isomorphic to the symmetric group Sym(3) (where i is taken modulo n).
Thus we may form the quasi-idempotents

0.2) | Ei= ), q“T,
weW()
for i =1,...,n. These satisfy
(0.3) E?=(Y  ¢")E =(1-¢)1-g"E;.
weW ()

Let I¢ = (Ei,...,E,) be the ideal of Hj(q) which is generated by
E{,...,E,. It is well known (cf. e.g. [J1]) that the Temperley-Lieb algebra
T(n) = TL,(6) (where § = —(q¢ +¢~')) may be defined by |

where I, =14 N H,(q) is the ideal of H,(q) generated by E,... E,_;.
Its affine analogue is TL%(6), defined by

(0.5) TLY(6) = HE(q)/1I%.
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In this work we shall study algebras T“(n) which are slightly larger than
TL? (see (2.9) below). They are obtained from 7TL¢ by adding a “twist”
(denoted 7 below). It is these algebras (the T9n)) which we refer to as
the affine Temperlev-Lieb algebras. We shall define the algebras in terms of
what we shall call the Temperley-Lieb category T (see §2 below), whose
objects are the non-negative integers Zso and whose morphisms T¢(n, m)
(n.m € Z>p) are R-linear combinations of “affine diagrams” from n to m
(see (1.3) below). The algebra T9(n) is then just T¢(n.n). We shall show (in
(2.9) below) that the algebras defined in this way contain the Temperley-Lieb
quotients TL? of the affine Hecke algebra (cf. [Ch] or [Lu2]).

If W is any functor from T¢ to the category R-mod of R-modules, then
W(n) is a T(n)-module (for n € Z>p). We shall construct such functors W, -
for each pair (r.2) such that + € Z>o and - is an invertible element of R.
For each such pair (¢.z) we shall define an invariant bilinear form

(. ot Wi x W, -1 —R

which is “generically” non-degenerate. When R is a field, we show that if
rad, - is the radical of { . ),..then L,-:= W,-/rad,- is absolutely irreducible
and all irreducible finite dimensional T%(n)-modules are of this form.

We then give a characterisation of all homomorphisms between the cell
modules (Theorem (3.4) below). This is in some sense the main result of this
paper. as it enables us to determine the decomposition matrices of the cell
modules. Section 4 is concerned with the determination of the discriminants of
the forms ( . ),-. This gives explicit results concerning the semisimplicity of
related finite dimensional algebras. In §5 we give the composition multiplicities
of the components of the cell modules and derive corresponding statements for
the related finite dimensional algebras. In (3.7) we derive, as a by-product of
our explicit determination of the homomorphisms between the cell modules,
a closed formula for the Jones or augmentation idempotent (see [MV], [We]
and [Li]) of the Temperley-Lieb algebra when g is a root of unity. In [MV]
certain coefficients of this idempotent are computed, while in [We] a recursive
formula is given for it. Our formula (see (3.7) below) differs from these by
being explicit and closed, although it only applies when ¢ is a root of unity. It
leads to a presentation of Jones™ projection algebra when the Jones trace on the
Temperley-Lieb algebra is not non-degenerate. This includes those values of
g for which the Temperley-Lieb algebra is not semisimple. Since our algebras
contain quotients of the affine Hecke algebras of type A, their representations
yield representations of the affine Hecke algebras. Hence our results may be
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interpreted as a contribution to the representation theory of these affine Hecke
algebras at roots of unity (see [KL1, KL.2]). Our construction of representations
of the algebras through functors on the category of diagrams may share some
ideas with [FY] or [RT], although we have no heuristic explanation for the fact
that all irreducible representations arise functorially (Theorem (2.8) below).

TOTALLY ORDERED SETS. In order to define the diagrams below, we
introduce some constructions associated with totally ordered sets.

(0.6) If X and Y are totally ordered sets, form a new totally ordered set
X#Y as follows. The underlying set is the disjoint union X I[I Y of X and
Y.Let £: X - XIIY and u: Y — X I1Y denote the canonical injections.
Define the total order by stipulating that (in increasing order) the elements
of (the image) ¢(X) come first in reverse order, followed by the elements of
u(Y) in natural order. Intuitively, X#Y should be imagined as two horizontal
lines in the real affine plane with the elements of X (identified with /(X)) on
the lower line and those of Y (identified with u(Y)) on the upper line. The
ordering i1s given by moving leftwards along the bottom line, then right along
the top. An element of X#Y is said to be lower (or a lower vertex) if it lies
in £(X) and upper (or an upper vertex) if it lies in u(Y).

(0.7) Given any totally ordered set X, form a new totally ordered set with
a distinguished automorphism as follows. Denote by Z x X the set of pairs
(i,x) where i is an integer and x € X and order this set lexicographically:
(i1, x1) < (ip,x) if i1 <ip or i; =i, and x; < x,. Define the automorphism
Vx of ZxX by (i,x) — (+1,x) (i € Z,x € X). If Y is another
totally ordered set, then we may extend the permutations Vx and Vy to
the automorphism Vx#Vy of (Z x X)#(Z x Y), given by £(i,x) — £(i + 1,Xx)
for i in Z and x in X and u(i,y) — u(i+1,y) for i in Z and y in Y. When
there is no danger of confusion, we shall abbreviate Vxy and Vx#Vy to V.

We shall require the following result.

(0.8) LEMMA (cf. [GL, (4.5)]). Let V be a permutation of a set X and
assume that X has finitely many V orbits. Let ¢ and ¢, be involutory
permutations of X which commute with V. Assume that the fixed point sets
fix(¢1) and fix(¢,) are disjoint. Then the orbits O of the subgroup H (of
permutations of X ) generated by ¢; and ¢,, fall into the following mutually -
exclusive classes :
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(1) O contains no points in fix(¢1) Ufix(¢) ; in this case we call O a loop.

(2) O contains exactly two points in fix(¢1) U fix(¢,) ; in this case we call
O an arc and refer to the two fixed points as the ends of the arc.

When the ends of an arc (case (2) above) are not in the same set fix(¢;)
(i=1 or 2) we say the orbit is a through arc.

Proof. Suppose that an orbit O contains a point x of fix(¢1) (say).
Following [GL, (4.5)], write ($1¢2)i = ... 020102 (U factors) and write
xi = (p1¢)ix (for i = 0,1,2,...), so that xo = x etc. Then clearly
O = {xo,x1,...}. If the orbit O is finite, the result is immediate by the
argument in [GL, loc. cit.]. If O is infinite, then two of its elements lie in the
same V -orbit by finiteness, whence there are indices i < j and k € Z such
that VAx; = x;. Acting by ¢; and ¢, it follows that V¥xp = xz; = x, for
some r > 0. Hence x, is fixed by ¢;. It follows, using the same argument as
in [GL, loc. cit.] that O = {xo,...,x,}, which contradicts the infinite nature
of O. U

Notice that the proof of (0.8) shows that any infinite H -orbits must be
loops. Also, if X is finite, V may (and generally will) be trivial.

§1. INVOLUTIONS, DIAGRAMS AND CATEGORIES

We shall consider various categories in this work whose objects are the
non-negative integers Zx>o. The morphisms in these categories are defined in
terms of “diagrams” and their “composition”, whose definition in turn depends
on the notion of a “planar involution” (cf. [GL, §6]). In this section we develop
a calculus of involutions and diagrams; our principal purpose is the definition
of the category D of affine diagrams. These generalise the familiar diagrams
which may be used to define the ordinary Temperley-Lieb algebra T(n).

(1.1) DEFINITION.

(1) A planar involution of the totally ordered set P is a permutation ¢
of P such that ¢? is the identity, ¢ has no fixed points and if x,y € P then
x <y <o) = x < o) < o).

(2) If ¢ and n are non-negative integers, a finite diagram ot — n is a
planar involution ¢, of t#n, where the latter set is defined in (0.6).
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If we visualize t#n as two horizontal lines in the plane as indicated in
(0.6), such a diagram may be represented by a graph with vertex set t#n and
edges (x, ¢(x)) (x € t#n). The planar condition then ensures that this graph
can be drawn without intersections in the convex hull of t#n.

Suppose a: t — n and §: s — t are two finite diagrams with corresponding
planar involutions ¢, and ¢z of t#n and s#t respectively. We identify
sIIn = /(s) Uu(n) with its image in sIItII n using the canonical injection.
Let $a denote the involutory bijection of X = sIItIIn which fixes ¢(s) and
agrees with ¢, in the sense that q~5aoi23 = ip30¢, where iy;: tlIn — sIitlln
denotes the canonical injection. Similarly we obtain the involution 53 whose
fixed point set is u(n). This sets up the situation of (0.8) with V =id.

(1.2) DEFINITION.

(1) With the above notation, let ¢,o3 be the involution of s#n which
interchanges the ends of the arcs (0.8) of H = @a,%ﬁ} on sl tIIn. This
is a planar involution. Define the composition oo 3 of o and (3 to be the
diagram corresponding to this involution.

(2) Maintaining the notation of (1), denote by m(c, #) the number of
loops of H on sIItIIn. Then m(x, ) = x — (s + n)/2 where x is the total
number of orbits.

In terms of the graphical representation of the diagrams, composition
corresponds to placing a graph for o above a graph for [, identifying
corresponding points indexed by vertices in t and deleting the m(c, 3) interior
loops formed. We give an example below.
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We define the category D of finite diagrams as follows. Its objects are
the non-negative integers. If 7,n € Z>(, the morphisms from ¢ to n are the
finite diagrams «: ¢ — n and composition is as defined in (1.2). The identity
id: + — ¢ interchanges u(i) and /(i) for i € t, in the notation of (0.6).

Next we extend the concept of diagram to the affine case. Let n be a non-
negative integer. Recall from (0.7) that Z x n is ordered lexicographically and
has an automorphism V,. The orbits of V, are represented by the elements
of the subset {0} X n.

(1.3) DEFINITION. Let r and n be non-negative integers. An affine
diagram «:t— n is a pair (g(), p,) where g(a) is a non-negative integer
and ¢, is a planar involution of (Z x t}#(Z x n) which commutes with the
shift V#V, (see (0.7)) and which is such that when ¢g(a) is nonzero, @
preserves the subsets 4(Z x t) and u(Z X n).

An affine diagram «: ¢t — n may be thought of as a graph drawn without
intersections on the surface of a cylinder. The lower and upper boundaries of
the cylinder have vertices which are labelled by ({0} x t) and u({0} x n)
respectively. Each vertex is joined to another one, the joining curve wrapping
around the cylinder a certain number of times, this number being determined
by ¢o; g(c) denotes the number of closed curves which wrap around the
cylinder. The condition that there be no intersections means that if there are
any such curves, no top vertex is joined to a bottom vertex (cf. the definition
above). In practice it is more convenient to lift such graphs to the universal
covering strip of the cylinder, which is the origin of the definition (1.3). We
now explain this in detail.

Draw a rectangle (the “fundamental rectangle”) in the real plane and
extend the horizontal sides indefinitely. Label ¢ points on the lower boundary
(avoiding corners) of the rectangle in the obvious way by £({0} x t) and
n points on the upper boundary by u({O} x m). Then label the translates
of these points in the translates of the fundamental rectangle to the right
and left by #(Z x t) and u(Z x n) in the obvious way. The resulting strip
provides a graphical model for (Z x t)#(Z x n) (see (0.7)). It is covered by
translates of the fundamental rectangle and the shift V = V,#V, moves the
fundamental rectangle one step to the right. An affine diagram is depicted
in this context by an “augmented graph”, drawn without intersections in the
strip. This consists of curves joining distinct vertices which are interchanged
by ¢a, as well as g(a) horizontal curves which stretch along the whole strip,
the latter representing closed curves on the cylinder. This graph must be fixed
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by the translation V. In practice, we draw only the part of the graph in the
fundamental rectangle, which determines it completely due to the invariance
under V. For the sake of simplicity, the lower and upper vertices of the
fundamental rectangle will be labelled in our figures by t and n respectively,
rather than by the more formal /({0} x t) and u({0} x n). We shall also use
this notation in the text when there is no danger of confusion.

The rank || of an affine diagram « is the sum of g() and the number
of vertices £(i,x) or u(i,x) with i < O which are interchanged with vertices
£(,y) or u(j,y) with j > 0. This is the minimum number of intersections
between a graph for o and the left side of the fundamental rectangle.

If an affine diagram « has rank zero, the restriction of the involution ¢,
to the fundamental rectangle of « is a finite diagram which characterises «;
conversely any finite diagram defines a unique affine diagram (by translating
its graph). Thus the finite diagrams from ¢ to n may be thought of as special
cases of affine diagrams.

Our earlier definition (1.2) of composition for finite diagrams extends to
affine diagrams as follows. Let a: t — n and (3: s — ¢ be affine diagrams. As
in the preamble to (1.2), we identify (Z xs)I1(Z xn) = ¢(Z x s)Uu(Z xn) with
its image in the disjoint union (Z xs)II(Z x t)II(Z xn), and we extend ¢, (resp.
¢ ) to an involutory bijection 5@ (resp. 55) of X =(Zxs)II(Z xt)II(Z x n)
with fixed point set ¢(Z x s) (resp. u(Z x m)). Denote by H the group of
permutations of X which 1s generated by gga and qgﬁ. There is an obvious
permutation V of (Z x s) LI (Z x t) I (Z x n) whose restrictions to (Z X s),
(Z. x t) and (Z x n) coincide with the shifts V;, V, and V, of (0.7). This
permutation commutes with %a and (Eﬁ. Therefore V permutes the orbits of
H, and since V has finitely many orbits on X, it has finitely many orbits
on the set of H-orbits. Let x be this number and let y be the number of
H -orbits which are fixed by V. Note that these must be infinite and therefore
will correspond to the “horizontal curves” above. By (0.8), we have two types
of H-orbits on X. Moreover the loops fall into two types, viz. finite and
infinite. These correspond on the cylinder to contractible and incontractible
circuits respectively.

(1.4) DEFINITION. Let a:t— n and f:s — ¢ be affine diagrams and
maintain the above notation. Let m(a, ) :=x —y — (s + n)/2 where x and
y are defined in the preamble above. The composition avo 3 of o and [
is the affine diagram (g(@) + g(8) + ¥y, @aos), Where ¢uop 1s the planar
involution of (Z x s)#(Z x n) which interchanges the ends of arcs (0.8) of H
on (Z xs)I(Z x t)I1(Z x n) (see above).
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A graph for the composition may be obtained in the same way as before by
placing a strip with a graph for « above one for [, identifying corresponding
points labelled by Z x t and deleting the m(«, 5) finite (V -orbits of) loops
formed. In terms of the corresponding graphs drawn on a cylinder, note that
only contractible loops are removed. Interior loops which wrap around the
cylinder remain; they correspond to infinite loops in the strip. Here is an
illustration.

If o: 1 — n is a diagram, o = (g(@), ¢o), its adjoint a*: n — t is given by
a* = (g(a), @ox), where ¢q+ is the planar involution of (Z x n)#(Z x t) which
interchanges elements £(i, ) or u(p,q) with £(’,j') or u(p’,q’) precisely when
¢o interchanges u(i,j) or 4(p,q) with u(i’,j") or 4(p’',q). Geometrically, this
corresponds to reflecting a graph for « in a horizontal line.

The proof of the following lemma is easy and left to the reader.

(I.5) LEMMA. Let a:t — n, B:s — t and v:r — s be (affine)
diagrams. '

(1) The composition «o 3 is a diagram : s — n.

(2) Composition is associative, i.e. we have (o f3) o Y =ao(Bovy) and
m(a, B) +m(ao B,7) = m(B,7) + m(cr, B o).

(3) The finite diagram id: t — t is the identity: aoid = o and id o g =2.

(4) The rank function satisfies |oco 3| < |a|+|8|. Both sides of this inequality
have the same parity.

(5) With the above definition of adjoint, we have (o fB)* = B*oa*.
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In view of (1.5), we may define the category D of affine diagrams. This
has as objects the non-negative integers and the morphisms from »n to m
(n,m € Z>o) are the affine diagrams «: n — m. We shall refer to diagrams
of even (resp. odd) rank as “even” (resp. “odd”).

We now discuss some key examples which play an important role in the
development below. If ¢ is any order preserving permutation of Z X n, there
i1s a diagram : n — n, also denoted by o, defined as follows: o = (0, ¢,),
where ¢, is the involution which interchanges lower vertex #(x) with upper
vertex u(o(x)). For example, take o = 7, where 7, is the permutation of
Z xn (n > 0) which takes each element to the next largest one. The
corresponding diagram 7,: n — n appears below. We shall denote by 7y the
diagram (1,¢,): 0 — O where ¢,, is the unique permutation of the empty

T —

n—1n

Tpin =N 70: 0—=0

Fix an integer n > 2. Let ¢, be the planar involution of (Z X (n—2))}#(Z xn)
defined as follows: ¢, interchanges the upper vertices u(0,n) and u(l,1) =
V(u(0, 1)) and the vertices £(0,7) and u(0,i+ 1) for i=1,2,...,n—2. Let
n = 1n,: n—2 — n be the affine diagram (0, ¢,). Define fo = non* and
fi =T ofyo7™". Note that the f; are all diagrams : n — n and that f;1, = f;.
Graphs for these diagrams are depicted below.

1 Z n—1n v 1+1
1 n—2 1 1+1
Mp:N—23n firn—n

We shall usually use 7 and n without the subscript, relying on the context
to specify it.

Recall that a morphism f: A — B in any category is monic if, for any
object X and morphisms i, j: X — A we have foi=foj=i=].

[
2
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(1.6) LEMMA.
(i) For any diagram o:t — n, the following are equivalent :
(1) « is not monic.
(2) ¢ interchanges some pair of lower vertices.
(3) a = of; for some fi:t—t as above.

(i) The monic diagrams o: n — n are precisely the powers 7' where i € L
and i >0 if n=0.

Proof. (1) = (2): If (2) does not hold, then a” o « is the identity
id: t — ¢t and so « is monic.

(2) = (3): If x < ¢o(x) are lower vertices as close as possible, then
the planar condition ensures that ¢.(x) covers x. Thus if / is defined by
x=£(0,7), then . =« of;.

(3) = (1) : This is immediate.

Part (ii) follows immediately from (i). [

(1.7) DEFINITION. An (affine) diagram p = (g(w), ¢,): t — n is standard
if 1 is monic, g(u) = 0 and ¢,, maps each element of £({0} xt) to u({0} xn).

The image of a diagram «: s — n is the standard diagram constructed as
follows. Let x; < xp < --- < x; be those upper vertices in the fundamental
rectangle of (Z xs)#(Z xn) which ¢, maps to lower vertices and set #(«) :=¢.
We refer to #(a) as the number of through strings of «. Then the image
i(a): t(a) — n 1s defined as the monic diagram i(a) = (0, @i)) Where @i
is the involution which interchanges ¢(0,/) with x; and interchanges upper
vertices whenever ¢, does. Then any diagram « factors uniquely through its
image. Specifically, we have a unique diagram p: s — f(«) such that

(1.7.1) a=Iila)op and p* is monic.

If o is monic then p is also monic whence #(a) = s and p is a power of ;.

A particular case of (1.7.1) which we shall use below relates to the case

s=n.If a:n— n is an affine diagram, there are unique integers #(a), j(c)
and standard diagrams pu,v: t(a) — n such that

(1.7.2) o= [0 Tt{(aC;) ov*.
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(1.8) PROPOSITION. For any positive integer n, the semigroup generated
by the diagrams fi: n — n is the set of non-monic diagrams o:n — n of
even rank.

Proof. If a:n — n is in the semigroup generated by the f;, we note that
a 1s even by Lemma 1.5(5) and not monic by the previous lemma.

We prove the converse by induction on length I(ar) which is defined

by la) = > o |Toao77!|. Let a:n — n be an even and non-
monic diagram. Replacing o by 7/ o oo 7 if necessary, we may as-
sume that o o fy = «, or equivalently that ¢, interchanges the lower

vertices £(0,1) and #4(—1,n). Since « is even, it follows that |a| > 2.
We shall construct below a diagram (: n — n such that I(8) = (o) — 2
and o = (8 ofy. Assuming that (§ is not the identity, it is clear that [
is even and not monic. By induction [ is in the semigroup, and thus so
1S «.

We now construct § leaving it to the reader to verify that one does obtain
a diagram with the properties above. In this proof only, let us say that a vertex
v(i,x) (where v = /¢ or v = u) is negative (for o) if i < 0; v(i,x) is special
if it is negative and ¢,v(i, x) is not negative. For example ¢(—1,n) is special.
CASE 1: If gla) > 0 and #4(—1,n) is the only special lower vertex, let
g(B) = gla) — 1 and ¢z be the involution which interchanges the lower
vertices £(i, 1) and £(i,n) (for all i € Z), and acts as ¢, elsewhere.
CASE 2: Otherwise our hypotheses ensure that there is an even number of
special vertices. Let y be the minimal special vertex excluding #(—1,n). Then
let g(8) = g(a) and take ¢p to be the involution which interchanges #(i, 1)
with Vio ¢o(y), £(i,n) with VT1(y) (for all i € Z) and which elsewhere
agrees with ¢,. [

(1.9) COROLLARY. If t < n are non-negative integers of the same parity,
then the map v pon is a bijection between standard diagrams :t+2 — n
and standard diagrams :t — n of nonzero rank. Here 1 =1n,40:t = t+2 is
the special diagram defined before (1.6) above.

Proof. The map is well defined and injective, so it suffices to show that
it is surjective. If v: ¢ — n is a diagram of nonzero rank, then as in the
previous proof we may construct p: t+2 — n (this is the (8 of the proof of
(1.8)) such that pofy =von* (this replaces a above). In particular, if v is
standard, then g is also standard and v = pon. [
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The result above will be applied later in the following iterated form.

(1.9.1) COROLLARY. Let t < s < n be non-negative integers of the same
parity and define k by s = t+2k. Write n* =153 ... MryaNep2: t — 5. Then
the map | — pon* is a bijection between standard diagrams : s — n and
standard diagrams :t — n of rank > k. Moreover we have |,u ont | = |u|+k.

The final result of this section provides a method of counting the number
of standard diagrams of a given type.

(1.10) DEFINITION. A standard diagram p: ¢t — n determines a partition
of the set u({0} x n) of upper vertices into three parts:

thr(p) = {¢, ) | x € £({0} x B)},
rgt(p) = {x € u({0} x n) \ thr(w) | ¢, (x) < x},
Ift(p) = {x € u({0} x n) \ thr(w) | . (x) > x}.

The names are intended to reflect the facts that any upper vertex either lies
on a “through” arc or is the left or right end of an arc between upper vertices.
We shall sometimes abuse notation by writing i € thr(u) if u(0,i) € thr(w).

(1.11) PROPOSITION. If n, t and k are non-negative integers such that
n=t+ 2k, then the map lft induces a bijection between the set of standard
diagrams |t — n and subsets of cardinality k of u({0} x n).

Proof. We prove by induction on k that a standard diagram u:t — n
is determined by the set 1ft(x). The case £ = 0 is trivial. Replacing u by a
conjugate 7' o MOT,_j if necessary, we may assume that 1ft(x) contains u(0, n)
but not u(0,1). Since ¢, is planar, the inequality ¢, (u(1,1)) < u(0,n) <
u(l,1) < ¢,(u(0,n)) implies ¢,(u(0,n)) = u(1,1). Consequently, u = n, ov
where v: f— n—2 1s the standard diagram 77 ov. By induction v: t — n—2
is determined by the subset Ift(v) = {u(0,x — 1) | u(0,x) € Ift(u), x # n} and
thus u = nowv is determined by Ift(x). The surjectivity of the map Ift is
proved in analogous fashion.  []

(1.12) COROLLARY. Let n,t € LZ>q be integers of the same parity. The

number of standard diagrams o:t — n is ((n_’;) /2) .
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§2. CATEGORIES, ALGEBRAS AND CELL REPRESENTATIONS

In this section we shall define the affine Temperley-Lieb algebras as the sets
of endomorphisms in a category T? (the “affine Temperley-Lieb category”)
which is an enrichment of D?, the category of affine diagrams defined in the
last section. We shall construct an uncountable set of representations for these
algebras by defining functors from this category to the category of modules
over a ring R. It will turn out that these functors provide a “complete set”
of representations for the affine Temperley-Lieb algebras. As in the case of
diagrams, we shall begin with the finite case.

(2.1) DEFINITION. Let R be a (commutative, associative, unital) ring with
an invertible element g. Write § = —(q +¢~!). The Temperley-Lieb category
T = Tg, is defined as follows.

(1) The objects are the non-negative integers.

(2) If t,n € Z>p, the morphism set T(z,n) is the free R-module spanned by
finite diagrams :t — n.

(3) The composition of finite diagrams «: ¢t — n and [B:s — ¢ is
af = "*Pao = (—qg— g Y"*Pa o B. Extend bilinearly to define
composition in T.

Since ¢ and R will generally be determined by the context, we shall
usually suppress them.

The Temperley-Lieb algebra T(n) = T(n,n) 1s cellular in the sense of [GL].
It follows that it possesses a family of “cell representations” with canonical
bilinear forms. When R is a field, the heads of this family of modules form
a complete set of irreducibles for the algebra. Suppose W is any functor
: T — R-mod from T to the category R-mod of R-modules. Then for
n € ZLsy, W(n) is clearly a T(n)-module, so that W provides representations
of all the Temperley-Lieb algebras simultaneously. Such functors will therefore
be referred to as representations of the category T, or T-modules (see
(2.3) below). We show next how the cell modules may be constructed from
representations of the category.

(2.2) DEFINITION. Let ¢ be a non-negative integer. The cell representation
W; of T is defined as follows.

(1) For n € Z>o, W;(n) is the free R-submodule generated by monic finite
diagrams p: t — n.
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(2) If s,n €Z>p and a: s —n is a finite diagram, define W, (c): W,(s) —
W,(n) by stipulating that for any finite monic diagram p: !t — S,
W.(a)() = o * ., where

{ ap if oy is monic,
axp = .
0 otherwise. |
Extend this definition using linearity to obtain the required R-module
homomorphism W;(«).
(3) Let (, ), denote the R-bilinear form W (n) x W,(n) — R which takes
monomorphisms p,v:t— n to
(—g — g~ Hy""® if v* oy is monic,
<:LL7 V>I‘ = )
0 otherwise.

(2.3) DEFINITION. A T-module is a functor from the Temperley-Lieb
category to the category of R-modules. Parts (1) and (2) of (2.2) define
T-modules W, (for ¢ € Z>(). The form defined in (3) above is invariant in
the sense that

ok V)i = (@ % ),
and so we obtain further T-modules rad, and L, where rad,(n) is the radical
of this bilinear form and L,(n) = W.(n)/rad,(n). For n € Z>¢, let A(n) =
{teZso|t<n, t=n mod 2} exceptif ¢g+¢ ' =0 and n is nonzero and

even, in which case we exclude O from A(n). The set A(n) parametrises the
nonzero quotients L,(n).

(2.4) THEOREM [GL 2.6, 3.2, 3.4]. Let R be a field and suppose g € R
is nonzero. Let n € L>.

() If t € Z>o, M is a T(n)-submodule of the cell module W,.n) and
s € A(n) (2.3) is such that there exists a nonzero T(n)-homomorphism
fiWyn) — Wi (n)/M, then s >t. If s=t, then f(x) =rx+M for some
nonzero element r in R.

(2) If s € A(n), then the radical of Ws(n) as T(n)-module is rads(n), the
radical of the form (u,v),.

(3) The family Ly(n) indexed by s € A(n) is a complete set of irreducible
T(n)-modules.

We shall now proceed with the affine analogue of (2.4).
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(2.5) DEFINITION. Let R be a (commutative, unital) ring with an invertible
element g. The affine Temperley-Lieb category T*=Tg , 18 defined as follows.

(1) The objects are the non-negative integers.

(2) The morphism set T*(z,n) = Tg (¢,7) is the free R-module spanned by
the affine diagrams : ¢ — n.

(3) Composition is defined as the R-bilinear map which takes diagrams
a:t — n and B:s — t to the product af = 6P o f =
(—q — g~ y"®Pq 0 B, where m(c, B) is defined in (1.4).

As in the case of the Temperley-Lieb category, we shall generally omit
the subscript (R, q).

We leave it to the reader to check that composition is associative (cf.
(1.5)(2)) and that the above definition therefore does make T“ into a category.

We next define the set which will index the representations of the category
T¢ which we shall construct below.

(2.6) DEFINITION. Let A be the quotient of the set of pairs (¢,z) where
¢ is a non-negative integer and z is an invertible element of R by the relation
which identifies (0,z) with (0,z~!) for all nonzero z € R. Fix (¢,z) € A® and
define x = x;.: T, 1) — R as the unique R-algebra homomorphism which
annihilates non-monic diagrams and is given elsewhere by

00— (z +z7 1Y ifr=0,

= if t>0.
The (affine) cell representation W, ; is the functor from T¢ to R-mod defined
as follows.

(1) If »n is a non-negative integer, W, .(n) is the R-module generated by
monic (affine) diagrams p: ¢ — n subject to the relation:

o0 = x;,(0) if o:¢t—t 1s monic.
% X1,2\0 )

(2) There is an obvious R-bilinear action T%(s,n) x W, .(s) — W, .(n) which
takes a diagram «: s — n and monic diagram p: ¢t — s to

0" if o o 14 is monic,
(2.6.1) a* = { K H

0 otherwise.

Then T%(«) is the R-module homomorphism defined by p— a * u.
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The bilinear forms of the finite case are replaced by pairings between
related couples of cell modules, which we now define. Let ( , );. denote
the R-bilinear pairing W, .(n) x W, ,-1(n) — R which takes monic diagrams
w,v:t—n to
X:,:(w*p) if v* o p is monic,

WJMJZ{

0 otherwise.

(2.7) REMARKS. The R-module W, .(n) is a module for the affine
Temperley-Lieb algebra T(n) = T%(n,n). It has a basis of standard diagrams
.t — n, because every monic diagram factors uniquely through its image by
(1.7.1).

The pairing defined by (2.6.1) is invariant under the T9%(n) action (see
(2.3) for the meaning of invariance). Hence we obtain T¢-modules rad;, and
L, . where rad, .(n) is the radical in W, ,(n) of this pairing (i.e. the annihilator
of W,,-i1(n)) and L,.(n) is W,.(n)/rad,.(n).

For n € Z>o, let A’(n) = {(t,z) € A |t < n, t =n mod 2}, with the
pair (0,q) (= (0,47 1)) removed if ¢g> = —1 and n is nonzero and even. This
set parametrises the nonzero T“(n)-modules L, ,(n). To see this, we have only
to show that (, ),. # 0 for (¢,z) € A%(n). Write k = (n—1)/2 and denote by
n* the standard diagram 7,7,_2 ... 7472 t — n. One then verifies easily
that

2.7.1) (n*

)

(—q
{ (Tk)—z ift>0,
xmﬁ—z+zl ifr=0,

l|

(2.7.2) (T, n*)

whence the bilinear pairing
(t,2) = (0,9).

, )iz 18 nonzero unless ¢> = —1 and

(2.8) THEOREM. Let R be a field with ¢ € R a nonzero element. Let n be
a non-negative integer and T%(n) be the affine Temperley-Lieb algebra (2.7).
(1) Let (¢,2) € A? (see (2.7)), let N be a T%(n)-submodule of the cell module
W:.(n) (2.6) and take (s,y) € A%(n). Suppose that f: Wsy(n) — W, ,(n)/N
is a nonzero T%(n)-homomorphism. Then s > t. If s = ¢, then
(s,y) =(t,z) and f(x) =rx+ N for some r in R.
(2) For any (s,y) € A%(n), the radical of Wsy(n) as a T%n)-module is
rad; ().
(3) If R is algebraically closed, then the family Lg(n) indexed by
(s,y) € A(n) is a complete set of distinct irreducible T%(n)-modules.
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Proof. The proofs of (1) and (2) are the same as those of [GL 2.6, 3.2,
3.4], given (1.7.2) and recalling that the bilinear forms ¢,, are non-zero on
the modules under consideration. From (1) and (2) it follows that L, ,(n) is
an (absolutely) irreducible T“(n)-module for any (s,y) € A%(n) and that these
modules are pairwise inequivalent. Let M be an arbitrary finite dimensional
irreducible T%(n)-module; assuming that M # 0 (as we may), we shall show
that M = L,, for some (t,z) € A“. Let t € Z>( be minimal such that
a.m # 0 ( . denoting the module action) for some m € M and «:n — n
with ¢ through strings (i.e. #(a) = t). Since M # 0 such ¢, o and m exist;
fix them for the rest of this proof. We shall find an invertible element z
in R and construct a nonzero homomorphism 0: W, .(n) — M. If g = —1
and (f,z) = (0,¢) for this ¢, then « annihilates W;.(n) when #(a) = O,
contradicting our choice of ¢. Hence if such a € exists, (t,z) € A%n).
Moreover since M is semisimple, 6 factors through its maximal semisimple
quotient, which is L;.(n) by parts (1) and (2). Hence to complete the proof
of (3), it suffices to construct the homomorphism 6 as above. _

Let W,(n) denote the free R-module on the set of monic diagrams
w:t— n. There is a T¢(n)-action on Wt(n) given by

{ ap  1if oo p 1s monic,
o= :
0 otherwise.
Now a = i(a)o p for a unique diagram p: n — ¢ with p* monic (cf.(1.7.1)).
We therefore have a homomorphism f: W;(n) — M of T“(n)-modules given
by f(u) = ¥ (u).m, where Y(u) = pp, with p as above. This map is nonzero
since f(i(a)) # 0. Hence f 1is surjective and there is an element y € W (n)

such that ¥(y).m = m.
Let v:t— n and o: t — ¢t be a pair of monic diagrams. We shall show that

(2.8.1) Y(WY(yo).m = Y(vo).m.

To see this, observe first that any element x of W,(n) may be written
uniquely in the form x = ) ., WXy, where the sum is over the standard
diagrams u: ¢ — n and the x, are in W,(¢). Write y = > ., oy accordingly
and note that since W,(¢) is an abelian algebra, if p o u 1s monic, then pu,
y, and o commute with each other. It follows that

YWpOo) . m = (Wp)pyuop).m= Y (vo)puyup.m
H 2

= Ywa)P(y).m = pvo).m,
which proves (2.8.1).
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Let o, and o, be monic diagrams from ¢ to ¢. Taking v = yo; and
replacing o by o, in (2.8.1), we have

(2.8.2) Yo (o). m=p(yor0z).m.

Hence W,(t) has an action on the subspace V of M consisting of
{Y(yo).m|o € I/IN/,(Z)}, the element o € W,(7) acting via 9 (yo). Since R is
algebraically closed, 1(y7;) has a nonzero eigenvector m’ = Yyo'y.m eV,
with corresponding eigenvalue ¢ (say). Now take (z,z) € A® such that 7 is
as above, z = ¢ if t >0 or ( =z+z ! if r = 0. Define the character
X: VIN/,(I) — R as in (2.6). Then it follows from (2.8.2) that for any element
o e W,(t), we have

Y(yo).m' = x(o)m'.

Moreover for any monic diagram p: ¢t — n, we have

Y(po).m' = p(uoyp(yo’) . m = p(uoa’) . m
= Y(wp(yoo').m = P(wbyoy(yo') .m
= P(wp(yo) . m’
= x(0)p(u) . m" .

It follows that there is a nonzero homomorphism 0: W, .(n) — M of T%n)-
algebras given by 6(u) = ¥(u).m'. This completes the proof of (2.8). [

The relationship between our affine Temperley-Lieb algebras and the
quotient of the Hecke algebra discussed in §0 is explained in the next result.

(2.9) PROPOSITION (cf. [FG]). There is an algebra homomorphism
p: Hi(q) — T%n) (see (0.1)) which takes T; to —f;i —q~ ' for i=1,...,n.
The kernel of p is the ideal I of (0.5), while the image of p is spanned by
non-monic diagrams : n — n of even rank, together with the identity. Thus the
latter diagrams span an algebra which is isomorphic to TL(6) (see (0.5)).

Idea of proof. Write C; = —(T; + ¢~'). Then H%g) is generated as
R-algebra by Cy,...,C, subject to the relations

CiC;=CiC; if [i—j| =2 and (i,)) # (1,n)
C? = 6C;
CiCiy1Ci — Ci = Cip1CiCipy — Ciyy = —q°E;, where E; is as in §0

and the index i is taken modulo 7 in the last equation. One checks easily
that the diagrams f; satisfy these relations with E; replaced by 0, whence
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the indicated map defines a homomorphism of algebras. The kernel contains
the E;, and hence contains /?. The image is the algebra generated by the f;,
which is identified as in the statement of (2.9) by Corollary (1.9). To see that
the kernel is no larger than /¢, we refer the reader to [FGI]. []

The modules W,,(n) and L,.(n) may be regarded as modules for the
subalgebra TL; of T%(n). It is a simple consequence of (2.9) that as TL:-
modules W;, = W,, if t =n or z4+y = 0. Moreover the argument of [GL
2.6] shows that L,, remains irreducible as a 7L -module, unless ¢ = 0 and
722 = —1. In the remaining case, Wy, is the direct sum of two submodules
W(')f . and W, spanned respectively by the even and odd standard diagrams
: 0 — n. If ¢* # —1 these modules have irreducible heads LS” , and Ly,
whose sum is Lo ,. This leads to the following description of the cell modules

and irreducible modules for the algebra TL%.

(2.9.1) COROLLARY. Let Ka(n) be the quotient of A%(n) by the equiva-
lence relation (t,z) = (t,y) if t =n or z= —y, with new points (0,2)" and
(0,2)~ replacing (0,z) € A%n) if n is even and z*> = —1. Then Theorem
(2.8) applies to W,.(n) and L;.(n) regarded as TL:-modules, with Ka(n)
replacing A%(n) and the representations being realised as above.

(2.10) THE JONES ANNULAR ALGEBRAS

The Brauer centraliser algebra i1s the free R-module B(n) generated
by fixed point free (but not necessarily planar) involutions ¢ of n#n with
multiplication defined analogously to (1.2) and (2.1). There is a unique algebra
homomorphism: 1/: T%(n) — B(n) which takes an (affine) diagram «: n — n
to (6)9% times the involution 1, of n#n which interchanges the vertex
£(x) or u(x) with £(y) or u(y) (x,y € n) precisely when ¢, maps £(i,x) or
u(i,x) to £(j,y) or u(j,y) for some i,j € Z. Jones’ annular algebra J(n) is
the image of this algebra homomorphism. This algebra is known to have a
cellular structure [GL]; the associated cell modules are related to those of T¢
as follows. If (¢,z) € A%(n) is such that ¢+ > 0 and z = 1, then the kernel
of 7 annihilates the T¢(n)-module W, .(n), and so we obtain J(n)-modules
W;Z(n) and L, .(n); with the notation of [GL] the first module is (canonically
isomorphic to) the cell representation W(z,z) while the second is its unique
irreducible head L(z,z). The remaining cell representation W(0, 1) of J(n) as
defined in [GL], is the quotient Wy ,(n)/M where M is the image of the map
6,: W 1(n) — Wo 4(n) of Theorem (3.4) below. The unique head L(0,1) of
W(O0,1) 1s Lo 4(n).
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It is therefore clear that the representation theory of the Jones algebra
J(n) is included in the representation theory of our affine algebras. Its cell
representations form a subset of those of T“(n), with one exception.

The (finite) Temperley-Lieb category T is a subcategory of the affine
Temperley-Lieb category T¢. Therefore the cell representations of T¢ give
rise to representations of T by restriction. We complete this section by
describing the structure of the resulting restricted T(n) modules, as well
as some “asymptotic” ones.

(2.11) LEMMA. Let R be a ring with an invertible element g. Consider
the affine Temperley-Lieb category T? = T?e[z.z—l] , over the ring Rlz,z7'] of
Laurent polynomials in an indeterminate z and let t € Z>. Define coefficient

functions r“(x) € R[z,z7 '] of the cell representation W;. by:

where .t — n and v: t — s are standard (affine) diagrams and x € T%(n, s).
If x is a finite diagram o, then the coefficient r“(c) vanishes unless
I=|pl=1v] >0 and vor/ = oy for some i € Z. In this case r(a)z
is a polynomial in R[z*] of degree at most . Furthermore if p and [y are
standard diagrams from t to n, </¢1,u2>,,_72|“"+|“2' also lies in R[z%].

Proof.  Although these statements are staightforward consequences of
Lemma (1.5), we provide the details for the reader’s convenience. Recall that
ok is equal to avo s if this has ¢ through strings, and is zero otherwise. In
the former case, oy =rvo fr,j for some standard v and j € Z, and we have

% = 5m(a,u)yjl/

where y =z if + >0 and y =z4z7! if + = 0. Thus the coefficient ri (o)
vanishes except for this particular standard diagram v, and r#(q) = §m@myJ

We now relate the ranks to j. Since |a| = 0 by (1.5) we have
laop| < |p| and these have the same parity. Since v is standard, we also
have |vo7/| = |j| + |v| whence |j| < |u|— |v| =1 and still both sides have
the same parity. Since the left hand side is nonnegative, so is the right hand
side. Furthermore, r#(c) is an R-linear combination of integer powers of z,
all of which have the parity of j, the smallest of which is —J and the largest
being ;. It follows that r#(c)z' is a polynomial in 22, of degree (j+1)/2 <1,
which proves the first statement.
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Next we compute the bilinear pairing. Let p; and pu,: t — n be standard.
Their scalar product vanishes, unless p; o uy: t — t has ¢ through strings. In
this case we have p3 oy = 7F for some k € Z and

(1, 2 )ryz = E"H 1Dy

where y 1s as above. The proof is now completed as above, bearing in mind
that by (1.5) |k| < |pi|+ |u2| and the two sides have the same parity. [

As a consequence of Lemma (2.11), we may construct T-modules W, g
and W; o, as follows. If n € Z>g, let W, o(n) be the free R-module generated
by standard affine diagrams (see (1.7)) pu:t — n. If a: n — s is a finite
diagram and p:t — n is standard, define

(2.11.1) ok = rb(a)v

where v is as in (2.11) and r¥(a)o 1s the constant term of r/,;‘(oz)zl. Extend
this R-bilinearly to an action of T(n). The module W; ., is constructed.in
analogous fashion using the constant term of r#(a)z~! in R[z72]. One then
has an invariant pairing

(2.11.2) (,)e0: Weo(m) X Wy oo(n) — R

where (u, ) is the constant term of <u,v>t,zz|”'+|“|,

(2.12) THE FINITE TEMPERLEY-LIEB ALGEBRAS

We shall describe how the affine modules are related to the finite modules
of [GL,§6] (see (2.2) above). Let 1 € Z>( and let z be 0, oo, or an invertible
element of R. We construct a filtration of the T-module W;, whose quotients
are cell representations. If s € Z>( 1s such that s =¢ mod 2, then for each
ne sy let W7, (n) be the R-span of the standard affine diagrams u: ¢ — n
of rank |u| < (s —1)/2. This defines an increasing family

0=W.,(n) CW () =Win) CW ) C--- CWL(n) CWF(n) = W,.(n)

of T-submodules of W;.(n) (of course W/, (n) = 0 for s < ¢t and
Wi, (n) = Wi .(n) for s > n). It follows from (1.9.1) that there is an exact
sequence of natural transformations :

(2.12.1) 0— W, — W/ —w,—0

where the left map is inclusion and the right map is given (cf. (1.9.1)) at n
by :
Wit () — Wn): pon® ™% o .
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(2.13) THE TRIVIAL REPRESENTATION OF THE FINITE TEMPERLEY-LIEB
ALGEBRAS

The cell module W,(s) is one-dimensional and will be referred to as the
trivial representation of T(s). Observe that the diagrams f; € T(s) all act as
the zero operator in this representation, whence if e, is the corresponding
idempotent in T(s) (e, exists generically, by generic semisimplicity), then
fixe; =0 =egxf for all i. The idempotent e; is referred to in the literature
(cf. [MV], [We], [Li] and [J3], where e, was first identified) as the Jones, or
augmentation idempotent of T(s). '

(2.14) LEMMA. Let t, s and k be non-negative integers such that
s = t+2k. If x € W,-(s) is annihilated by all finite diagrams o:s — S
except idy, then x is a scalar multiple of es *n"*, where e is defined above
and n* is defined in (1.9.1).

Proof. We may suppose that k > 0, since the case k = 0 is trivial. The
hypothesis implies that Rx is a realization of the trivial representation of T(s),
whence x € e x W, -(s). We shall therefore be done if we show that

(2.14.1) es * W, (s) = Rey x 1" .

Now n* is characterised among the standard diagrams : ¢ — s as the unique
diagram of maximal rank (k). If p:¢ — s is standard and |u| < &, then
p = fi x v, for some standard diagram v:7 — s and i € {1,2,...,s — 1}
because ¢, must interchange two upper vertices in the fundamental rectangle
(recall £ > 0). Hence e;* = es xf; x v = 0, proving (2.14.1) and hence the
lemma. [

§3. HOMOMORPHISMS AND NATURAL TRANSFORMATIONS

For any integer n, define the Gaussian integer [n]; in the function field

Q(x) by

—n

X" —x
- 1—1 X -3 —
[n]x —_—— = X’ 4 n S [—n .

Define the Gaussian x-factorial by

[n!]x = [ndxln — 11k ... [21c[1)x -

For any pair n > k of positive integers, the Gaussian binomial coefficient is
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m _Dhdn =1 dn—kt 1) m 1
kK, KLk - 1. (10 .

These are Laurent polynomials in x, so that we may speak of [Z]q for any

invertible element g of a ring R. If ¢* has finite order /> 1, then [n], = 0
iff / divides n.

(3.1) DEFINITION. A forest is a partially ordered set such that if x <y
and x <z then y <z or z <y.

(3.2) EXAMPLES.

(1) The set of orbits of a planar involution ¢ (of a totally ordered set) is
a forest F(¢) with order defined by: X <Y if X is contained in the convex
hull of Y. For a finite diagram «: ¢t — n, the associated forest for ¢, is
denoted F(a).

(2) For any affine diagram p: ¢t — n, order the set Ift(x) (see (1.10)) by
stipulating that y <x if x <y < ¢,(x) or x < Vy < ¢,(x). This condition
amounts to the requirement that the convex hull of the orbit of x contains
some translate of the orbit of y. The resulting poset is a forest which we
denote by P(u).

The following result 1s well known.
(3.3) PROPOSITION (Stanley [RS]). Let P be a forest of cardinality n;

for y € P denote by hy the number of elements of P which are less than or
equal to y. Then the rational function

is a Laurent polynomial with integer coefficients.

It is possible to strengthen the proofs of [RS (5.3) and (22.1)] to yield
that the coefficients of Ap(x) are actually positive, but we do not require this
here.

The next result, one of the main ones in this work, provides the
homomorphisms between cell modules which enable us to analyse them. For
any affine diagram p: ¢t — s, we sometimes (e.g. in the statement of (3.4))
identify the set u({0} x s) with s in the obvious way, thereby identifying the
sets thr(u), rgt(u) and lft(pu) with subsets of s.
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(3.4) THEOREM. Let R be a ring with an invertible element q. Let t,
s and k be non-negative integers such that t+ 2k =s. Let z € R be such
that 22 = ¢° and set y = zg~*, so that y* = q'. Then there exists a natural
transformation 0: W5y, — W, , of T*-modules (2.5, 2.6) whose component at
n applied to a monic diagram v:s — n is given by:

(34.1) 0:v) = > g7 Mhpy(@) vp

W t—s

standard
where 2i = s(|u| — k) + (s + 1)/2 = > oemrw X> || is the rank (see (1.3)
et seq.) of the affine diagram o and hp(,y(X) is the polynomial associated to
the forest P(u) of (3.2)(2) by (3.3).

Proof. We shall assume without loss of generality that R is the function
field Q(¢'/?) and that s > ¢, the case s = ¢ having been covered in Theorem
(2.8).

To define a natural transformation 6 from W,, to W,., we require, for
each n € Z>(, a homomorphism 0,: W, ,(n) — W, .(n) such that for any pair
n,m of non-negative integers and diagram «: n — m, the following diagram
commutes :

W y(@)
Ws,y(n) — s,y(m)

(3.4.2) e,zl le

Weo(1) —= W, (m)

Now W; ,(s) is a one dimensional R-module with basis id,: s — 5. Write
0s(id;) = v. Taking n=m =s and a = 7, in (3.4.2) we see that

(1) Ts ¥V =YV,

Moreover if we take m = s — 2 and n = s, then W ,(m) = 0 whence
axv =0 for any o € Ts,s — 2). In particular, taking o = n}, we obtain

(2) nixv=0.

It follows that (1) and (2) are necessary conditions for the particular 6 of
(3.4.1) to define a natural transformation. We shall prove (1) and (2) shortly,
but first show that they are sufficient for the proof of the theorem. Suppose
v € W, ,(s) is such that (1) and (2) hold.
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Then v =} cu(q,2)u for certain coefficients c,(q,z) € R. Define 6 by

L t—s
standard
(3.43) On) = ) culg,vp
Wi t—s
standard

for any monic diagram v: s — n. Then (1) implies that the formula (3.4.3)
for 6, defines a unique R-linear map W;,(n) — W, ,(n) for each n; these
maps are clearly T%(n)-module homomorphisms. In order to prove that this
family of maps defines a natural transformation, fix a diagram «: n — m and
standard diagram v:s — n. If aov is also monic, then

ax0,)=a*xW*v)=(a)*xVv=(—q¢—qg Y aov)xv
=(=q—q " (aov) = On(av).

On the other hand, if cxov is not monic, then by Lemma 1.6 there is i € Z>
such that cov =aovofi=Bon* o7~ where = caovo7r'; hence we
have

—1)m(a,u)

ax0,)=(—q—q YN aov)xv=(—qg—q Y Bxntxkv=0

while 6,(a *v) = 6,(0) = 0, proving that the squares (3.4.2) commute. It
follows that @ is a natural transformation if (1) and (2) hold.

We therefore turn to the proof of (1) and (2) for the particular v defined by
(3.4.1). First we establish (1). Let p: t — s be standard, let © be the image of
7o and recall that 7oy = voo for some monic diagram o: t — ¢. Suppose
first that s ¢ thr(u); then o is the identity. Using the abuse of notation
explained after (1.10), we have thr(v) = {x+ 1| x € thr(u)} and ¢, agrees
with 750¢, 07! elsewhere. Hence 3° )% = 14+ cpnn®s (V] = [p]£1
and /hpy(X) = hpg,y(x). Alternatively, assume that s € thr(y). Then ¢ > 0
and o = 7. We have thr(v) = {x+1 | x € thr(u),x # s} U{1} and ¢, agrees
with Tog, 07! elsewhere. Hence 3 _y o X =1—s+> (oo, [v] =yl
and /p)(X) = hpy(x). In either case, the coefficient of v in yv equals the
coefficient of v in 7*v and (1) follows.

To complete the proof of the theorem, it remains only to prove (2). Fix a
standard affine diagram v: t — s—2. We consider standard diagrams p:t — s
such that v is the image of n* o i, because these index the terms in the
expression (3.4.1) which contribute to the coefficient of v in n* xv; we shall
show that the sum of these contributions is zero. In the figures below, we
depict the upper edge of the fundamental rectangle of .

Let A denote the coefficient of nowv in v. Let @’ € s be minimal subject
to ' > 1 and ¢,0, (u(0,a")) ¢ u({0} x s). Similarly, let b’ € s be maximal
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subject to &' < s and ¢no, (u(0,0") ¢ u({0} x s). Define a = a'/2 and
b= (s+1—0b")/2. We shall consider four types of diagrams p and compute
the contribution of each type to the coefficient of v in 7" *V separately. Note
that the stipulation that v is the image of 7" o implies that p is determined
completely by the images ¢,,(u(0, 1)) and ¢, (u(0,s)).

CAsE 1: ¢, w0, 1)) = u(—1,s).

) Ja
- N

It follows that thr(y) = thr(v) and p =mnowv. Thus n** pu = (—qg — g~ W
and so the contribution of the term g to the coefficient of v is

(—g — ¢ Hh = —[1214h.

CASE 2:  Suppose ¢, (u(—1,s)) > u(0,1).
Then u(0,s) ¢ thr(x) by planarity. If ¢, u(—1,s)) = u(0,)) (with j > 1),
then ¢, (u(0,1)) = u(0,7) and clearly i <j < a’ since ¢, is planar.

Since n* * u = v, u contributes its own coefficient in v to the coefficient of
v in n* xv. It is easily checked that this coefficient may be expressed as

[HglG =1+ 1)/2]qh
G+ D/21,0/21,

Now the interval u(0,2),u(0,3),...,u(0,a’ —1) is a union of ¢, -orbits.
These form a subforest O of the forest of (3.2)(1) and in this subforest,
the @po, -orbit (u(0,1),u(0,/)) is clearly maximal. Moreover there is an
obvious bijection between the maximal orbits u(0,i,),u(0,7,) (r =1,...,])
of ¢por on u(0,2),u(0,3),...,u(0,a" — 1) and the diagrams p satisfying
the condition ¢, (u(—1,s)) > u(0,1) under which ¢,(u(—1,s)) = u(0,/,).
If (i1,j1), (2,/2),..., (i1,j;) are the possible pairs (i,,j,) as above, listed in
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order of increasing i., then iy = 2, j; = d — 1 and jp + 1 = iy for
k=1,...,1—1. A straightforward induction argument shows that altogether
this family contributes
[a — 1],
laly

h

to the coefficient of v.

CASE 3:  ¢,(0,1) < (—1,s) and 1 ¢ thr(u).
If i=¢,(1,1) and j = ¢,(s), then b’ <i < j since ¢, is planar.

AV i a‘l Ja

RN

This case is the mirror image of case 2, working from the right instead of
the left. Arguing as above, one finds that the total contribution from the u of
this type is

[b - 1]qh
(0],

CASE 4: Otherwise.

We shall see that there are just one or two remaining diagrams. First
assume that the rank of v is nonzero. Then it follows from the planar nature
of nowv and the choice of @ and b’ that ¢, o v interchanges u(0,da’)
and u(i,b’) for some i € Z. Since p is planar, u(0,1),u(0,s) ¢ thr(u),
so that ¢,(u(0,1)) > u(0,1) and ¢,(u(0,s)) < u(0,s) and it follows that
¢, (u(0,1)) = u(0,a’) and ¢, u(0,s)) = u(0,b").

One now computes that this diagram g contributes ([a + b],/([al,[b] )} to
the coefficient of v.

Alternatively, assume that v has rank zero, i.e. is finite. If thr(v) is empty
(in which case t = 0), then 1,s ¢ thr(v) (being empty) and it follows that

p((0, 1)) = u(0,s).
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N\ Ja

AN—

This diagram g contributes x(10)g~*/22'([114/[s/2]p)h = ([a+ble/([al,[blg))h
to the coefficient of v.

Finally assume that thr(v) is nonempty (and v is finite). Then u(0,a’ — 1)
and u(0, ' —1) are the minimum and maximum elements of thr(v) respectively.
Equivalently, #(0,a’) and u(0,b") are the minimum and maximum elements
of thr(nov) respectively. It follows that either u(0, s) € thr(u) (in which case

¢/.L(u(07 l)) = M(O, al))

or u(0,1) € thr(w) (in which case ¢, (u(0,s)) = u(0, b).

Together these two diagrams contribute

asl[]fih+ x(r~1g —bl[l]qh [a+b]qh
[ ]CI [b]q [a]q[b]q
We may now compute the sum of the contributions from all four cases:
[a—1]1, [b—1] [a + b]
—[2], + - 14 ") h=0.
( ! ap [b], lal,[b]q
Thus the coefficient of v in n* % v vanishes and (2) follows. ]

X(7)q

We next prove the following consequence of Theorem (3.4) for the cell
modules of the finite Temperley-Lieb algebras. In discussing these, we think

of t#n as the fundamental rectangle £({0} x t)Uu({0} xn) of (Z x t)#(Z x n)
as explained in the discussion after (1.3).
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(3.5) COROLLARY. Let R be a field with an invertible element q. Let t,s
be non-negative integers of the same parity such that t < s. Then there is a
natural transformation 0: Wy — W, o of T-modules (see (2.2) and (2.11.1))
whose component at n applied to a finite monic diagram v:s — n is given
by

(3.5.1) Ou() = ) h(Qvp

Wi t—s

standard
where h/fi(x) is the polynomial associated in (3.3) to the subforest of F(¢,)
formed by the orbits of ¢, which intersect the fundamental rectangle t#n
non-trivially.

Proof. This result may be established by a computation similar to the
one above. However we shall deduce it from Theorem (3.4). First we give
a different construction for W, . Let ¢t and s be as above and choose
I''k' € Z>p such that ¥ +71' > s and I' = ¢t+k'. Set m =1 +s+ k¥
and z = ¢"/?. Define an embedding ~: T(s) — T%(m) by mapping f,-'to
fi:=fqr for i =1,2,...,s — 1. We say that a monic diagram pu: 0 — m
is distinguished if || = 0 and the involution ¢, does not interchange two
elements of u(l") or two elements of u({m,m—1,...,m—k +1}). There is
a one to one correspondence v between distinguished diagrams p: 0 — m
and standard diagrams v: ¢ — s; p corresponds to v when ¢, interchanges
vertices u(?) and u(j) in u(s) iff ¢, interchanges u(i + /") with u(j + /') in
u(m). This defines p completely, since Ift(x) contains u(l’), so that Ift(u) is
determined, whence g is, by (1.11).

Suppose «: s — s 1is finite and p: O — m 1s standard. Then & o p 1is
distinguished (: 0 — m) only if p is distinguished. Hence the R-submodule M
of Wy .(m) spanned by the non-distinguished standard diagrams p: 0 — m is
invariant under T(s). The T(s)-module Wy ,(m)/M has basis u+M indexed by
distinguished diagrams p: 0 — m, which may be identified using the map
above with the standard diagrams : ¢t — s. This identification may be extended
R-linearly to an isomorphism : Woyz(m)/M — Wi ool(s) of T(s)-modules.

Now Theorem (3.4) provides an explicit natural transformation 6: W, | —
Wo .. The image 0,(id,) = v is given by (3.4.1). Let w = HZ(ids); l.e. W is
the right hand side of (3.5.1) with v = 1d;. Then it is easily checked that the
isomorphism 1) takes v+ M to w. It follows that w is annihilated by any
non-monic finite diagram and consequently, by an argument similar to that
which follows (3.4.2), that the family {6,} of homomorphisms given by (3.5.1) -
defines a natural transformation between the functors W, and W, . (]
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(3.6) COROLLARY. In addition to the hypotheses of the previous corollary,
assume that ¢* has finite order 1 > 1. If t <s <t+2l and s +1 = —2
mod 21, then there is a natural transformation 0: Wy — W, of T-modules
whose component at n is

(3.6.1) 0 ()= > hrw(@vp

po t—s
monic
finite

where hr,)(X) is the polynomial of (3.3) for the forest of (3.2)(1) associated
to the planar involution ¢, .

Proof. Let p:t— s be a monic affine diagram and consider the forest
A of orbits of ¢, which intersect t#s non-trivially, as in (3.5). Let B be the
ideal of A generated by those ¢,,-orbits which contain a lower vertex, and
let C=A\B.If x€B and y € C, then x 2y and x £ y. It follows that

a

ha(x) = hB(X)hC(X)[ }

¢ X

where hs(x), hp(x) and hc(x) are the Laurent polynomials associated by
Proposition (3.3) to the forests A, B and C of cardinality a, b and c =a—>
respectively. Since ¢ < (s —t)/2 < [, the denominator [r!]x of the Gaussian
binomial coefficient does not vanish when we set x equal to ¢ and we have

{a} _ [al,...[b+ 1],
P U TE

If p has nonzero rank, then a = (r+5)/2 + |u| > (t+s)/2+ 1 > b. Since
21 divides s+ ¢+ 2, the numerator vanishes and so hp(,)(q) = ha(g) = 0.

Thus the image 6! (1d) of (3.5.1) actually lies in the submodule Wffg:;(s)
which 1is canonically isomorphic to W,(s). Therefore the right side of
(3.6.1) (with n = s and v = id;) is annihilated by non-monic diagrams,

and so the argument following (3.4.2) shows that (3.6.1) defines a natural
transformation. [

The next result gives an explicit closed formula for the “Jones” or
“augmentation” idempotent in the singular case, i.e. when ¢ is a root of
unity. There are recursive [We] and partial results concerning formulae for

this idempotent, but to our knowledge, the closed formula we give below is
new (see also [Li]).

h
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(3.7) COROLLARY. Assume that q2 has (multiplicative) order | in R. Then
the primitive idempotent (sometimes referred to as the Jones or augmentation

idempotent) e € T(l — 1) which is associated with the trivial representation
of T(l—1) is given by

e=Y hr@(qe

where the sum is over finite diagrams o: 1 —1 — 1 —1 and hp)(x) is the
polynomial associated to the forest of orbits of ¢ .

Proof. It clearly suffices to prove that for any non-identity finite diagram
B:l—1 —1—1, we have e = ex 3 = 0. Now the finite diagrams
a:[l—1— [—1 are in canonical bijection with finite diagrams «’: 0 — 2/—2;
to see this, imagine the line of lower vertices of « rotated clockwise until it is
collinear with the line of upper vertices of «, giving a graph for o’. Moreover
if o, are two finite diagrams :/ — 1 — [ — 1, it is easily verified that

(3.7.1) @B) = B*od

where (* € T(I — 1), regarded as a subalgebra of T(2/ — 2) in the usual
way i.e. as the subalgebra generated by {fi,...,fi—2} € T2l —2). By (3.6),
there is a homomorphism 6: Wy _,(2] — 2) — Wy(2/ — 2) with image the

R-span of ¢ := >, hp@n(g)a’. But under the identification above,

o’ 0—21-2
finite

hro)(q) = hr(g) for any finite diagram «: /—1— [—1. Hence under the
identification, ¢’ corresponds to the element e of the statement. But T(/ — 1)
clearly acts on this image via the trivial representation. By (3.7.1), it follows
that T(/ — 1) acts on Re via the trivial representation as required.  []

(3.8) REMARK. Part of the significance of (3.7) derives from the fact that
the element e is known to generate the radical of Jones’ trace function [J1]
on the Temperley-Lieb algebra T(N) (for any N), T(/— 1) being regarded as
a subalgebra of T(N) as explained in the proof of (3.7) and therefore yields
a presentation of Jones’ projection algebra.

More specifically, Jones (op. cit.) showed that there is a unique trace
tr: T(IN) — R which satisfies (1) = 1 and tr(xf;}) = § ltr(x) for any
element x € T(i) C T(i + 1). This trace defines an Hermitian (or bilinear)
form on T(N), which is known to be degenerate if and only if [ < N +1,
i.e. N > [—1. When the Jones form is degenerate, the element e € TL(I — 1)
generates (as ideal of T(V)) its radical. Jones’ projection algebra Ay g [J1] is
defined as the quotient of T(N) by this ideal; hence we obtain an presentation
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for Ay g by simply adding the relation e = 0 to the usual presentation of the
Temperley-Lieb algebra. For a discussion of other contexts for e, see [MV].

We remark also that it follows from (3.6) (cf. also §5 below) and the
theory of cellular algebras that T(N) is non-semisimple if and only if N > /.
Thus the case N = [— 1 is distinguished as the unique one where T(N) is
semisimple, but the Jones form is degenerate.

(3.9) REMARK concerning the Jones (annular) algebras. Since the Jones
algebra J(n) (see (2.10) above) is a quotient of the algebra T%(n), any
J(n)-module lifts to a T%(n)-module. The W, .(n) which correspond to J(n)-
modules in this way are those where zZ = 1 and ¢ > 0 (2.10). Now the
conditions z2 = ¢° and y = zg~* (where s = t + 2k) of Theorem (3.4)
imply (if # > 0) that z/ = 1 if and only if y* = 1. Hence if z' = 1, the
modules W;.(n) and W, ,(n) of (3.4) may be thought of as J(n)-modules
and the map 6, as a homomorphism of J(n)-modules. If 1 =0, z =¢ and
the order ! of ¢* is finite, then Theorem (3.4) provides a homomorphism
Wsy — Wo o /M: x— x+M where s =2/ -2, y=¢/(=+1) and M is the
module defined in (2.9).

§4. DISCRIMINANTS

(4.1) DEFINITION. Throughout this section R denotes the function field
Q(g) and we consider the affine Temperley-Lieb algebras over the ring
R[z,z7!'] of Laurent polynomials. If 1 < s are non-negative integers of the

same parity define
s
18]k 1= :
135 {(S - Z)/Z:' X

The goal of this section is to compute the discriminant of the bilinear pairing
() Ve Wf,z(n) X WZZ_l(n) — R (n€Zxy).

This is the determinant of the gram matrix G;,(n) with entries (u,v),,
indexed by pairs of standard monic diagrams : t — n of rank (strictly) less
than (s—1)/2. Recall from (2.12) that these diagrams span a T(n)-submodule
W;.(n) of W,.(n) and that these submodules form an increasing filtration
of W,,(n) as s increases. When n < s, we write G;.(n) for this matrix,
because it is then independent of s. Similarly define the gram matrix G; ,(n)
for the pairing ( , ),0: Wf, oln) x W? «(m) — R and let G,(n) denote the éram
matrix of (, );: W,(n) x W,(n) — R with respect to the basis of finite, monic
diagrams. We maintain the standard notation s — ¢t = 2k.
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Recall from (2.13) that there is an idempotent e; € T(s) associated with
the trivial representation W,(s). Define the element v, € W, ,(s) by

Vs = [t 5] es ¥ = Z et -

Hm. t—s
standard

Note that by (2.14) v, spans the projection of W;.(s) onto the trivial
representation of T(s). We conjecture, but do not require, that the coefficients
(in R = Q(gq)) of the Laurent polynomials e,, in ¢ actually lie in Z>¢[q, g 1.

(4.2) PROPOSITION. With the notation above,

(4.2.1) (Vo) = I[] @-¢-a7+277.

t<r<s
r=t mod 2

Proof. By Lemma (2.11), e,z is a polynomial in R[z*] of degree at most
[ = k— |p|. We shall use Theorem (3.4) to compute the value of ¢, when
z? is specialised to ¢°. Taking n = m = s in (3.4.1), we see that 6(id,) is
annihilated by finite non-monic diagrams «: s — s. It follows from (2.14)
that 6,(idy) is a scalar multiple of the specialisation of v;. The coefficient
of n* in 0,(idy) is easily checked from the formula (3.4.1) to be 1. Since
es * es ¥ ' = e, x nF, we see that the coefficient of 7% in e, * n* is also 1,
whence after specialisation, we have [z;s5],0,(1d;) = v;. Hence e, specialises

to

(4.2.2) q'7 " ey (@It 1,

Similarly, Corollary (3.5) shows that the coefficient of z' in e, 18
(4.2.3) hEw(9)

where /g, (X) 1s as defined in (3.5). ,
Now the statement (4.2) will follow by induction on s from the claim:

(4.2.4) vy = —¢ —q S+ 2 %)V,

We now proceed to establish (4.2.4), using the observations just made. If «
is a finite diagram in T(s — 2), then no a = B on for some finite diagram
B:s — s.If a is not the identity, then (3 is not monic and so «* annihilates
n* * vg. It follows from (2.14) that

77* * Vg = )\Vs_z

for some scalar A in R = Q(q).
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To determine this scalar, we compute the coefficient of 7*~' in 7* * v,
and compare this with the corresponding coefficient [7;5—2], in Vs_2. In the
proof of Theorem (3.4), we enumerated the standard diagrams p:f— s such
that n* o = v = n*~!. We now compute the contribution of each such u to
the coefficient of n*~! in n* v, just as in the proof of (3.4).

In case 1, u =n* and the contribution is

—[214[5 514

to the coefficient of v. Cases 2 and 3 do not arise because a’ = 2 and
b’ = s — 1. There are three possibilities that arise in Case 4. Suppose first
that 1 has nonzero rank, or equivalently that s —2 > ¢; hence ¢,(1) =2 and
¢,.(s) = s—1 as in the proof of (3.4). It follows that |v|—|u| =2 and so e, has
the form rz2+7ro-+r_z~2 for some ry,70,7—> in R = Q(g). We have r_, =1,
by symmetry, r, = [t;5 — 2], by (4.2.3) and ¢’y + 1o + g °r—2 = [2]4l2; 54
by (4.2.2). Thus the contribution of & 1is

(4.2.5) 2 — ¢ —q +z7 D)ty s — 2], + [21,5 5], -

Otherwise we may assume that p is finite, or equivalently that r = s — 2.
If t =0, then ¢, (1) =2 =s and the coefficient e, has the form riz+r_;z™"
for some r;,r_; € R. We have r; =r_; by symmetry and r; = 1 by (4.2.3).
Hence this term contributes x(79)(z+z~!) which is equal to the expression in
(4.2.5). Next suppose = s — 2 > 0. Then either s € thr(x) and ¢,(1) = 2,
or 1 € thr(p) and ¢,(s) = s — 1. In the first case e, = ryz+ r_jz~!
and by symmetry in the second case the coefficient is 7_1z + riz7 . We
have r; =1 and r_; = [s — 1]; by (4.2.3). Hence these terms contribute
X(M)(z + [s — 1,27 4+ x(77 (s — 11,z + z~1) which is also equal to the
expression (4.2.5).

Each of the three possibilities yields the same contribution (4.2.5), from
which it follows that the coefficient of v in n* x v, is A[f;s — 2], where
AN =22~¢ —q*+z 2% The claim (4.2.4), and hence the proposition,
follows. [ |

(4.3) COROLLARY. For non-negative integers t < s of the same parity,
we have the recurrence :

, dim Wg(n)
det G;T*(n) = det G; _(n) det G(n) ([z; 51, ! H (2 —q —q" +z—2)>
1<r<s

=t mod 2

where n € Zxo. This, together with the initial condition detG' _(n) = 1
determines detGj (n) for any n,s,t.
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Proof. Define a basis of W;1*(n) as follows. If pu:¢ — n has rank
(strictly) less than k = (s — ¢)/2, define v, = u. Alternatively, if u:t — n
has rank k&, then (1.9.1) shows that there exists a unique finite monic diagram
p': s — n such that u = p'on®; define v, = p'*v; and note that v, = [t; 5],

mod W7 (n). The discriminant of the pairing (—,—);. with respect to this
basis is therefore
(4.3.1) [£; 5124 W det G2 (n) .

We obtain the recurrence above by computing this discriminant in another
way.
If p:t— s is standard and p # ¥, then

4.3.2) (Vg ez = 0.

Together with the previous proposition, this implies that for any finite diagram
a:rs— s,
(4.3.3) (o vg, vg) . = { slgh b a=1d,
’ 0 otherwise,
where \ = (v,,7%);,, which is given explicitly in (4.2.1).

Let u,v:t— n be standard of rank at most k. If |u| =k and |v| < &,
then

<Vu>V1/>t,z — <Vs> (N/)* * V>t,z =0 |
by (432). If |u| < k and |v| < k, then (v,,V,).. = (u,v),. If
lu| = |v| = k, then (i/,v'), is the coefficient of the identity in /"2’
and so (4.3.3) shows that

(Vi Vo ez = [8 S, (W, V')

Therefore the discriminant of the pairing on Wfff(n) with respect to this
basis is

det G‘;‘,z(n) X det G4(n) ([[; S]qA)dim W,(n) ’

which, taking account of (4.3.1) above, completes the proof of (4.3). ]

(4.4) COROLLARY. With the notation above,

44.1)  detG,(m =detGiom) || @—q —q "+ AW,

<r<s
r=t mod 2

Proof. Comparing the coefficients of the highest power of z=! on both
sides of (4.3) we see that
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(4.4.2) det fogz(n) = det G} o(n) det Gs(n)[1; 51, slim. W)
If we write QO(s) = det Gf,z(n)/ det Gj o(n), then it follows from (4.3) and
(4.4.2) that

Q(S -+ 2) = Q(S) H (Zz — q" _ q_" + 2—2)dim W(m) .

t<r<s
r=t mod 2

This recurrence for Q(s) is easily solved using the fact that Q) = 1. Taking
into account the relation dim W1* = dim W, (n)+dim W, 42 (n)+- - - +dim Wi(n),
which is an easy consequence of (2.12.1), the desired equation (4.4.1)
follows. [

(4.5) COROLLARY. With the notation above,

im W,.(n)
det Gy o(n) [z;r]q>d
det G o(n) = ——>— ] 1 :
eLGiol) detGso(n) - ([S;r]q

r=t mod 2

Proof. The recurrence (4.4.2) shows that

(+3.1) detGro(n) = detGi o) [[  detG.(mle;ry ™™

r>s
r=t mod 2

For (4.4.2) to hold for all s > ¢, we must take det Gi,o(”) to be equal to 1.
Hence

[[ deGin=detGoot [ fssrf™" .

rz2s F>s
r=t mod 2 r=t mod 2

Substituting this into (4.5.1), we obtain the statement. [

(4.6) PROPOSITION. If t < n are non-negative integers of the same parity,
then

det G[,O(l’l) = :tl 5

Proof. Identify (as above) n with u({0} xn). Let k = (n—r)/2. Partially
order the set of cardinality-k subsets of n as follows: if x; <x < --- < x
and y; < y, < --- < y; are sequences of elements of n, we say that
{x;} <{y:} if x; <y; for all j in k.

We claim that if p,v:t — n are standard, then (u,v),0 = O unless
rgt(n) > Ift(v). Furthermore if rgt(p) = Ift(v), then (u,v);0 = 1. That is,
the gram matrix with respect to this pair of ordered bases is triangular with
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diagonal entries all equal to one, whence its determinant is one. Hence the
result will follow from these two claims. ‘

Let pu,v: t — n be standard. Choose graphs for p and v with the property
that each edge crosses the left side of the fundamental rectangle at most once
and recall from section one the construction of a graph for the composition
o = v* o . First suppose that (u,v), 0 # 0; then o = 7~ I#I=I¥l: ¢+ — 7 since
z =0 (cf. (2.11.2)). In this case it is possible to orient the edges of the graphs
of 1 and v in such a way that:

(1) Each lower vertex of u is a source.
(2) Each lower vertex of v is a sink.

(3) Each upper vertex x € u(Z x n) is a source (or sink) in precisely one of
1 and v.

(4) Each edge of p or v which crosses the left side of the fundamental
rectangle is directed from right to left; that is if x,y € u({0} x n) are
such that ¢,(x) = V(y) (resp. ¢,(x) = V(y)) then this edge is directed
from y to x in the graph of u (resp. v).

To see this, observe that the property (4) implies that when the graphs of
p and v* are juxtaposed to form the composition v* oy, the orientations of
their edges match, giving an orientation (i.e. linear ordering) to the (gbu, qb ‘)
orbits on (Z x t) LI (Z x n) LI (Z x t) which are described in the preamble to
(1.4). Conversely, such an ordering on these orbits gives an orientation with
the required properties. We therefore describe such an ordering or orientation
on the orbits which will satisfy the above requirements. If # = 0, orient the
g(o) = || + |v| infinite loops (see preamble to (1.4) — these correspond to
incontractible circuits on the cylinder) from right to left. If # > O, orient each
edge of o (“through string”) from the lower vertex to the upper vertex. Note
that since |v* o u| = [v*| + |u|, all edges of the graphs of p and v* which
cross the left side of the fundamental rectangle are included in the edges of
the graph of o, i.e. lie on the through strings of the composite graph. Thus
only the contractible (finite) loops which are contained in the fundamental
rectangle remain and these may be oriented arbitrarily (say, anti-clockwise).
The properties (1) to (4) are clear. Moreover it is also easy to see that if
such an orientation exists, then o = 7= Ivl=1¥lgince the conditions imply that
lv* o u| = |v*| + |p|. An example is depicted in the diagram opposite.

Let a denote the i-th element of rgt(x), where n is identified with
u({0} x n), etc. Now there are at least i sources of the (directed
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X/

EXAMPLE

The sources of p in n are circled

graph of) p in the interval a C n, because when y € rgt(u) and
y < a, there is precisely one source in the set {y,¢,(y)} Na, by prop-
erty (4) above. Similarly, let b denote the i-th element of Ift(v). Then
the above argument shows that there are at least k — i sinks of v In
{b+1,b+2,...,n} C n and since, by property (2), v has k sinks in
n, there are at most i sinks of v in b. Moreover if the number of
sinks of v in b is precisely i, any arc of v from b € n to an ele-
ment of {b+ 1,b+2,...,n} C n must have sink b, otherwise the num-
ber of sinks of v in {b+ 1,b+2,...,n} C n would be greater than
k — i. Now by property (3), a sink of v is a source of u. Hence if
b > a, the number of sources of x4 which < b is i,so that by the argu-
ment just given, g is a sink of v, hence a source of p. But the num-
ber of sources of p which < g is > i. Hence the number of sources
of u which < b 1s at least i + 1, a contradiction. Hence b < a and so

Ift(v) < rgt(p).

Finally, assume that 1ft(v) = rgt(x). Then in forming the composite v* o,
there are no finite orbits (or contractible loops). For if there were any such
orbit, it would be contained in the fundamental rectangle because of the rank
condition and hence some element of u({0} x n) would be in Ift(v) N Ift(w),
which is impossible. Hence (u,v),0=1. [

As an immediate consequence of (4.4.1) and (4.6), we have

(4.7) COROLLARY. If (t,z) € A and n € Lo, we have

detG;.(n) = + H (22 — —q T+ Z~2)dim Wi (1)

r>t
r=t mod 2
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(4.8) COROLLARY.

(1) If n is an odd positive integer, then Jones’ annular algebra J(n)
(with parameter § = —q — g~ ') is non-semisimple if and only if there exist
distinct odd integers s,t € n such that ¢ = 1.

(2) If n is an even positive integer, then Jones’ annular algebra J(n)
(with parameter 6 = —q — q~"') is non-semisimple if and only if ¢27! =1
or there exist distinct even integers s,t € n such that g% = 1.

Proof. By [GL, 3.8] the algebra is semisimple precisely when the bilinear
pairing ( , );. is non-degenerate on each cell representation (of J(n)); this
condition is equivalent to the vanishing of the determinant detG; .(n), which
by (4.7) immediately yields the stated condition.  []

§5. DECOMPOSITION MATRICES

(5.1) THEOREM. Let R be an algebraically closed field of characteristic
zero and q a nonzero element of R. Let =< be the weakest partial order on
the set A° defined in (2.6) such that (t,z) <X (s,y) if (¢t,z) and (s,y) satisfy
the hypotheses of Theorem (3.4) for q or ¢~ '. If (t,2) € A*, n € Z>o and
(s,y) € A%(n), then the multiplicity of the irreducible T“(n)-module L, (n)
in the cell representation W;,(n) of (2.6) is one if (s,y) = (t,z) and zero
otherwise.

Proof. Let R be a field and g € R. Let p: R[y] — R be the R-algebra
homomorphism defined by y +— ¢ + ¢!, where y is an indeterminate over
R. Suppose W is a free R[y]-module of finite rank with an R[y]-bilinear
foom (, ): W x W — R[y]. If R is regarded as a R[y]-module via the
homomorphism p, the free R-module Wz = R ®g[,; W inherits an R-bilinear
form (, Jg: Wg x Wg — R given by (1 ® x,1 ® y)r = p({x,y)). Choose
R[y]-bases By and B, of W and let G denote the associated gram matrix
of (, ). If this form is nonsingular (i.e. detG # 0), then it may be shown
that the multiplicity of the polynomial y — ¢ — ¢! in the determinant detG
is greater than or equal to the R-dimension of the radical of ( , )z. In fact
if we denote the multiplicity of the polynomial y — ¢ —¢~! in f € R[y] by
mult(f), then

mult(detG) = ) _ dimrad’

where rad’ denotes the image under ¢: W — Wr : w +— 1 ®@ w of the °
R[y]-submodule {w € W | {(w,v) € (y —q — g~ ')'R[y] for any v € W},
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(Since R[y] is a principal ideal domain, row and column operations may be
used to reduce the proof of this fact to the easy case when G is diagonal.)
We shall use this elementary result to give a bound for the dimension of the
radical of the restriction of ( , );. to W] (n).

Let ¢+ < s be non-negative integers of the same parity, n € Z>¢ and assume
the hypotheses of the statement. Consider T(g,; ). We shall compute the
determinant of the gram matrix Gj,(n) as a polynomial in y = x+ x~ 1. Our
first goal is to compute the multiplicity of y — g — ¢~! in this polynomial,
i.e. to compute mult(detG;,(n)). Let [ denote the order of g*. Since [n]y
and [7] are polynomials in y = x +x~' we may speak of the multiplicity

! in these polynomials and it is straightforward that

of y—qg—q~
1 if [# 1,00 and [ divides #,

0 otherwise,

mult [#]y = {

{ 1 if [ # oo and res;(n) < res;(i),
i

and hence mult {nj} = )
« 0 otherwise,

where res;(n) € {0,1,...,/— 1} is determined by res;(n) =n mod .
We next give an expression for mult([£;r]x/[s;r]x). Let r > s have the
same parity as s (or ) and write X = {0,1,...,/— 1}. Then there exist

unique elements k € Z and 7 € X such that r = kI + 7. Let 7 denote the
unique element of X such that k/+7 = +¢ mod 2/; define 5 similarly. Define :

1 if s <7<y,
ery=< -1 ifi<r<s5,
0 otherwise.

The function €/(r) satisfies
(1) @) = €7'(r) = €2 (r)
2) €(r) = —€r) .
It is easy to see that if 0 < ¢ < s < r, then

€/(r) = mult([t; 115 /[s;7]x) -
By Corollary (4.5) and Proposition (4.6), we have
(5.1.1) multdet G o(m) = > () dim W,(n).

r>s
r=t mod 2

If /=00 or s=1t or —t mod 2/, then €(r) = 0 and so the multiplicity
(5.1.1) is zero. For the remainder of this paragraph, assume that / # co and
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s # 4+t mod 2/. Let ' € Z be minimal such that # > s and ¢ £¢r= 0
mod 2/. Let s’ € Z be maximal such that ¥ > s and s’ +s5 = 0 mod 2I.
Then s+21 >t > s > s >t. Now in order to compute mult(det Gf,o(n)), we
partition the sum on the right side of (5.1.1) into three parts:

1) s<r<ys.
Q) ¢ <r<t.
3 <r.

For the terms in the first part, €/(r) = 0. For those in the second part €(r) =
1 and consequently, these terms contribute dim W;ﬁ oM => ., <p dim W,.(n)

to the sum. The terms in the third part have €(r) = —egl, (r) (by properties (1)
and (2) of the function €;(r)) and so these terms contribute mult(det Gg/,’o(n))
to the sum.

It follows that
(5.1.2) mult(det Gf}o(n)) = dim W;:’O(n) — mult(det va//’o(n)) )

Note that equation (5.1.2) should be interpreted as a recurrence relation for
mult(det Gf)o(n)), which together with the initial condition mult(det G;"O(n)) = {j
if n <t¢, determines the multiplicity.

Now fix n € Zx>q. Choose (t,z) € A such that 1t <» and t =n mod 2.
To prove the Theorem, we shall construct a composition series for W, ,(n).

If (¢,z) is maximal in A%(n) (with respect to <), then it follows from
Corollary 4.4 and Proposition 4.6, that rad,.(n) = 0; hence the irreducible
module L,;.(n) coincides with W, .(n) and the statement follows. '

Assume that (z,z) is not a maximal element of A% n) and choose
(s,y) € A%n) such that (s,y) > (¢,z) and s is minimal with respect to
this property. Then the hypotheses of Theorem (3.4) are satisfied (possibly
after replacing ¢ by ¢~ ') and so we have an injective ‘homomorphism
On: Wsy(n) — W, (n) of Tg (n)-modules. The quotient Q = W, .(n)/Im6,
has basis x4+ Im 6, indexed by standard diagrams p:t — n of rank strictly
less than (s—¢)/2. By (2.8), the image of 8, is contained in rad, ,(n), whence
the bilinear form ( , );. descends to Q x Q0 — R; its gram matrix (with
respect to the basis above) is Gf,z(n) and L;.(n) 1s the quotient of Q by its
radical which we denote by rad; ,(n). Consider, for the moment, TR .x- The
multiplicity mult(det G; ,(n)) = mult(det Gf,o(n)) by Corollary (4.4); it follows
from the remarks concerning linear algebra at the beginning of this proof that

(5.1.3) dimrad; ,(n) < mult(det G; o(n)) .
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If the order [ (of ¢?) is infinite, then (s,y) is the unique element of A“
such that (s,y) = (t,z). If [ is finite and s =¢ or —t mod 2/, then (s,y) is
the unique element of A? which covers (t,7). In either case, we saw above
that mult(det Gf,o(n)) =0 and so radi,z(n) = 0. Therefore Q = L;.(n) and the
composition factors of W, .(n) are L,.(n) together with those of W ,(n), as
required.

Assume that [ is finite and s # 4¢ mod 2/. Let s’ and ¢ be as above
and y = ey~! where € = ¢¢™/2 = +1. Then (s',y') is the unique element
of A% such that (s',y") = (¢,z) and (s',y") # (s,y). If s > n, then the
initial condition associated with (5.1.2) shows that mult(det Gf,o(”)) = (0 and
SO radi_,(n) = 0; hence Q = L, -(n) and the statement of (5.1) follows as in
the previous paragraph.

Finally, assume that s’ < n. By Theorem (3.4) (with ¢! replacing
q), there exists an injective T9(n)-homomorphism 6): Wy v (n) — W, .(n).
Thus Ly (n) 1s a composition factor of W, .(n). Arguing by induction in
the poset A, we may assume that Ly v (n) is not a composition factor of
W y(n) =2 Im(8,) since (s',y") ¥ (s,y). It follows that the irreducible module
Ly (n) 1s a composition factor of radﬁ}_,_(n) and we have, using (5.1.3),

dim Ly y(n) < dimrad; () < mult(det G, o(n) .
Arguing as above with (s’,y’) in place of (¢,z) we have
dim Ly () = dim Q' — dim(rad}, , (n)) > dim WY, , (n) — muli(det G, ,(n)).

Now (5.1.2) asserts that the two ends of this chain of inequalities are equal.
Hence we have equality at every step and in particular Ly 4 (n) 1s 1somorphic
to radij_.(n). Thus the composition factors of W, .(n) are L;.(n) (if ¢> #0 or
(t,2) # (0,9)) and Ly ,(n) together with those of W (n), as required. [

(5.2) COROLLARY. Assume the hypotheses and notation of Theorem 5.1
and let J(n) be Jones™ annular algebra (see (2.10)). If (t,z) € A%(n) is such that
t >0 and 7' =1, then the J(n)-module W, -(n) has composition factors L; (n)
indexed by (s,y) € A(n) such that (s,y) >= (t,z). The remaining cell module
Wo,/M (2.10) has composition factors Ly y(n) indexed by (s,y) € A%n) such
that (s,y) = (0,¢) -and (s,y) # (2, 1).

The next result is implicit in [DJ] and may be found in [Ma], [GW]
and [W].
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(5.3) THEOREM. Let R be a field of characteristic zero, let g be a nonzero
element of R and let T(n) = Tg ,(n) be the Temperley-Lieb algebra over R,
with parameter q. If n,t € L>o and s € A(n) (2.3) then the multiplicity of
the irreducible 'T(n)-module Lg(n) in the cell representation W, (n) (2.2) is
one if

(1) s=t, or

(2) q* has finite order |, t+21>s>t and s+t+2=0 mod 2/,

and zero otherwise.

Proof. Adopt the notation of the proof of (5.1). Let # € A(n) and note
that G,;(n) = G§+2(n). If there is no element s € A(n) such that (2) holds,
then the computations above show that mult(det G,(n)) = 0; hence W;(n) is
irreducible and the statement follows. If ¢ has finite order / and s € A(n)
satisfies (2), then Corollary (3.5) provides a nonzero homomorphism of T(n)-
modules 6,: Wy(n) — W,(n). Hence Ly(n) is a composition factor of W,(n)
and we have

dim L;(n) < dimrad,(n) < mult(det G,(n))

as in the previous proof. However,
dim L,(n) = dim W(n) — dimrad,(n) > dim W (n) — mult(det G4(n)) .

Now (5.1.2) again asserts that the ends of this chain of inequalities are equal.
Therefore we have equality at each step and in particular Ly(n) 1s 1somorphic
to rad,(n). [J

(5.4) REMARKS.
(1) The decomposition matrices in Theorems (5.1) and (5.3) are “inde-

pendent of n”; one may therefore speak of the multiplicity of L;, in W,
and of L, in W;.

(2) Since the dimension of W;.(n) is known (1.12), the multiplicities
of (5.1) may be used to give formulae for the dimensions of the irreducible
modules L, ,(n). These formulae are just the inversions of the relations

n
((n—t) /2> =1+ > Iy

(s, ))EA®
(s,y)~(t,2)

where [;,(n) = dimLg,(n). A similar remark applies to the dimensions
of the irreducible modules for the Jones and Temperley-Lieb algebras.
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(3) The proofs of (5.1) and (5.3) yield the radical series of the modules
concerned; L, (n) lies in the k-th layer of W, .(n) if the length of the interval
between (s,y) and (f,z) in A? is k. One might expect the layers of' the radical
series of the cell modules to coincide with the layers (denoted rad’ above) of
some “Jantzen filtration” of the cell representation and its bilinear form (after
scaling the indices).

(4) If the characteristic of R times the order / of g* exceeds the cardinality
of n then Theorems (5.1) and (5.3) remain valid without the restriction that
R have characteristic zero.

(5) As indicated in (2.9.1), all of our results may be interpreted as
statements about the representation theory of TL? ; in particular, they illuminate
a part of the modular representation theory of the affine Hecke algebra H;(g).
One could ask which irreducible representations of the affine Hecke algebra
correspond in the Kazhdan-Lusztig parametrization [KL2] to our L, .. A similar
comment applies to the connection with the work [Gj].
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