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14 P-A. CHERIX AND G. SCHAEFFER
3. ABOUT GENERICITY

LEMMA 3.1. Let X = {x1,...,x,y}. For every 0 < e < 1/(k+ 1), the

ratio
#{r € Fx ||r| = n,r is (¢, y)-balanced}

#{r e Fx||r| = n}

tends to 1 when n tends oo.

Proof. First we want to rephrase the Lemma in terms of generating
functions. Let K be any fixed subset of Fyx and Fx(z,u) be the generating
function defined by

Fx(z,u) =Y "0,
rek
Fk(z,u) strongly depends on the choice of the generator y. However, as y
is fixed throughout the proof and to lighten the notation, we write Fx(z, u)
instead of F, x(z,u).
Defining ¢,; and p,(/) by

Cn,l
Fr,(z,u) = Z er|uny(r) — Z cn,zz”ul and pa(D) = fi_ :
reFy n,l m Cn,m

we have to prove that for every 0 < e < 1/(k+ 1),

Jim > paD=0.
0<i<en
We want to find an analytical form for Fg,(z,u).

It is clear that if K; and K, are disjoint subsets of Fx then Fg,uk,(z,u) =
Fi (z,u) + Fk,(z,u).

Let K;,K, be two subsets of Fy; assume that the map K; X K, — K1K;
defined by (w;,ws) — wiw, is one to one and satisfies |wjw,| = |wi| + |ws]
for w; € K; (where K1K, = {wiwz|w; € K;}); it is also clear that Fg, g, (z, u) =
Fk,(z,u)Fk,(z,u). This can be extended to a finite product of such K;’s.

First we compute the generating functions of some subsets K of Fy.

o Fra(z,u)=1.

e Denote by X' = X — {y}. As there are exactly 2k(2k — 1)"~! reduced
words of length n > 1 in Fx/, we obtain Fi ,_(.y(z,u) = % Set
[z, u) = Fig,, —{e1(z, 1)

e For (y) = {y'|i € Z — {0}}, we have F(z,u) = 2z hecause

. . I—uz
there are exactly 2 elements y= in (y) such that n,(y*) = [y*| = i. Set

h(z,u) = F)(z,u).
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Now we can partition Fy as follows:

Fy = {e} I [Fx — {e}] n];IO I,
where

I, = {wo YW Y Wal Y wy
]ijFX/, w; # e for j # 0 or n, and ij;éO}.
It is easy to check that Fj(z,u) = (f(z,u) + D? h(z, u) (W(z, w)f(z, W) 1. So

we obtain that

Frozu) = 1+ f@u) + Y (Fzu) + 1 hiz,u) (h(z, w) f(z, )"

n>1

h(z, u)(f(z,u) + 1))
1 — h(z, w)f (z,u)
B (14 2)(1 + uz)
1= Qk—Dz—uz(1 4+ 2k+1)z)°
Borrowing notation from [2], let g(z,u) = (1 +2)(1 + zu) and P(z,u) =
1 -QRk—Dz—uz(l1+QRk+1)2)=1—Q2k—1+u)z— 2k+ 1uz®. Then
g(z, u)
P(z, u)
and let r(s) be the root of smallest modulus of P(r(s),e’) = 0 in a small

neighborhood of s = 0. In particular 7(0) = According to [2, (3.1)],
we obtain from [2, Theorem 1] that

= (1 +f(zuw) (1 +

FFX(Zn Ll) =

2k+1

: 1 * 2
lim sup Z pu(k) — ——/ e”! /zdt‘ =0
TR <okt /2T J—oo
- "0 o . 700 00
with p = r((O))7 Ly = AL = n',_((O)) and 02 =no? =n(p? — rr(—é))).
Computing '(0) or easy combinatorial considerations gives u, = =
The actual value of o is here useless.
Now let € < kJ%l and 0 > 0. Let x such that \/T_wf e "2dt < 6.
Then there exists N such that for n > N, en < o/nx + m since € < ;o +1

Therefore, for n > N,

Yok < D> palk)

k<€n k<0',1X‘|",LL”
and there exists N; such that for n > Ny,

Y pay<25. O

k<en
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COROLLARY 3.2. For #X =k, #R=n, xp € X and 0 < ¢ < 1/k fixed,
being (€, xq)-balanced is generic for T = (X|R).

Proof of corollary. We choose n relations at random; by Lemma 3.1,
every r € R 1s generically (e, xg)-balanced, but the conjunction of finitely
many generic properties is also generic. [

4. SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF FREE SUBGROUPS
We first begin by a very easy proposition.

PROPOSITION 4.1. Let I' = (X |R) be a finite presentation, which has
a Dehn algorithm and such that for some y € X every subword u of every
r € R* with |u| > |r|/2 contains either y or y~', then X — {y} generates a
free subgroup in T.

The proof of this proposition will follow from Lemma 4.2 below.

LEMMA 4.2. For (X|R) a finite presentation of a group T" and y € X,
the following are equivalent :

o X —{y} freely generates a free subgroup of T ;

o cvery non trivial element w € Fy, which represents the identity in T,

contains either y or y~!.

Proof. 1) =-2): By contraposition, suppose that there exists a non trivial
reduced element w € Fx_;,y such that @ = e (where w is the canonical
projection of w in I'), then X —{y} does not freely generate a free subgroup
in '

2) = 1):  Let wj,wy € Fy_g1 be two reduced elements such that

w; = wyp € I'. Then wlwz_l =e¢ecTI. So wlwz_l 1S an element of Fx_()
which represents the identity in I'. By hypothesis, this implies w; = w, in
Fyx. Hence X — {y} freely generates a free subgroup in T'. [

Proof of Proposition 4.1. By Lemma 4.2, it is sufficient to show that every
non trivial reduced word on Fy which represents the identity in I" contains
either y or y~!. By assumption, I' = (X |R) satisfies a Dehn algorithm, so
such a word contains at least one half of a relator » in R which contains at
least one occurrence of y or y~!. [
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