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14 P-A. CHERIX AND G. SCHAEFFER

3. About genericity

LEMMA 3.1. Let X {x\,... ,X£,y}. For every 0 < e < l/(k + 1), the

ratio
#{r G Fz I \r\ =n,r is (e,y)-balanced}

#{r e Fx I n}
tends to 1 when n tends oo.

Proof. First we want to rephrase the Lemma in terms of generating
functions. Let K be any fixed subset of and FK(z->u) be the generating
function defined by

FK(z,u) J2zMuny(r)
reK

Fk{z->u) strongly depends on the choice of the generator y. However, as y
is fixed throughout the proof and to lighten the notation, we write FK{z, u)

instead of Fy^K(z, u).

Defining cnj and pn(l) by

Ffx(z,u)=y2 z|r|"%(r) L/ cn,iznul and —
rFx n,l C"'m

we have to prove that for every 0 < e < 1 /(k+ 1),

lim y~]0.
n—*oo z '

0 <l<en

We want to find an analytical form for Ffx(z, u).
It is clear that if K\ and K2 are disjoint subsets of then FKlUK2(z, u) —

FKl(z, u) + FKl(z, u).
Let K\,K2 be two subsets of Fx\ assume that the map K\ x K2 —> K\K2

defined by (uji,lü2) i—> uj\uj2 is one to one and satisfies \oj\uj2\ \lüi \ + \u2\

for cjüi G Ki (where K\K2 {cuiiu2\iUi G AT/}) ; it is also clear that FK]Kl(z, u) —

Fri (z, u)Fk2(Zi u). This can be extended to a finite product of such Kfs.

First we compute the generating functions of some subsets K of Fx-

• F{e}(Z,u) 1.

• Denote by X' X — {y}. As there are exactly 2k(2k — \)n~l reduced

words of length n > 1 in Fx>, we obtain F[Fx/-{e}](z, u) Set

f(z, u) F[¥x,_{e}](z, u).

• For (y) {y11 i G Z — {0}}, we have F(yfz, u) because

there are exactly 2 elements y±l in (y) such that ny(y±l) ly^'l i. Set

h(z, u) Ffy)(z, u).
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Now we can partition Fx as follows :

Fx {e}II[Fx, - {e}] H /„
n>\)

where

In {wo y Ui y'"-' LOn-1 y'n un

I uj e Fj', Uj y e for j ^ 0 or and z)^ 0}

It is easy to check that u)(f(z,u)+ 1 )2 h(z, u)f(z, u))"
1

• So

we obtain that

F¥x(z, u)i + f(z,u) + X (f(z,u)+ l)2 u) u)f(z, u))"'1
n> 1

„ ^ h(z,u)(f1)^
(1 +f(z,u))(1 + ————-J

1 - /z(z, w)/(z, M)

(1 + z)(l + uz)
~

1 - (2k-1 )z- uz(l+ + 1)Z)
'

Borrowing notation from [2], let g(z,u) (1 + z)(l + and P(z,u)
1 - (2k -l)z - uz(l+ (2k + l)z) » 1 - (2k- (2k + 1 Then

c < \9(z,u)Ffx(z,U)——-
u)

and let r{s) be the root of smallest modulus of P(r(s),es) 0 in a small

neighborhood of s 0. In particular r(0) 2FFI • According to [2, (3.1)],

we obtain from [2, Theorem 1] that

lim sup X P"(k)—7== [ e
'272

k<a„x+^„ v00
0

withM=^> Fn nid nr-^ and <r2 mr2 - •

Computing r'(0) or easy combinatorial considerations gives fin ^.
The actual value of a is here useless.

Now let 6 < jrpy and 6 > 0. Let x such that e~*~!2dt < 6.

Then there exists N such that for n > N, en < a^/nx + ^ since e <
Therefore, for n > N,

X PnW ^ X Pn(®
k<en k<crnx+iÂm

and there exists N\ such that for n > A/),

X p»'w~2S- a
k<en



16 P-A. CHERIX AND G. SCHAEFFER

COROLLARY 3.2. For #X k, #R n, xq G X and 0 < e < 1/k fixed,
being (e,xo )-balanced is generic for T (X\ R).

Proof of corollary. We choose n relations at random; by Lemma 3.1,

every r G R is generically (e.xo)-balanced, but the conjunction of finitely
many generic properties is also generic.

4. Some sufficient conditions for the existence of free subgroups

We first begin by a very easy proposition.

PROPOSITION 4.1. Let T (X\R) be a finite presentation, which has

a Dehn algorithm and such that for some y G X every subword u of every
r G R* with \u\ > \r\/2 contains either y or y~l, then X — {y} generates a

free subgroup in T.

The proof of this proposition will follow from Lemma 4.2 below.

LEMMA 4.2. For (X\ R) a finite presentation of a group T and y G X,
the following are equivalent :

• X — {y} freely generates a free subgroup of T ;

• every non trivial element uj G Fx, which represents the identity in T,
contains either y or y_1.

Proof 1) => 2) : By contraposition, suppose that there exists a non trivial
reduced element u G Fx-{y} such that ÜJ — e (where uj is the canonical

projection of co in T), then X — {y} does not freely generate a free subgroup
in r.

2) =^> 1): Let uj\, uj2 G Fx_{};} be two reduced elements such that

0Ü2 G T. Then e G T. So uj\ujfx is an element of Fx-j^}
which represents the identity in T. By hypothesis, this implies cj2 in

FX- Hence X— {y} freely generates a free subgroup in T.

Proof of Proposition 4.1. By Lemma 4.2, it is sufficient to show that every
non trivial reduced word on F^ which represents the identity in T contains

either y or y_1. By assumption, T (X\ R) satisfies a Dehn algorithm, so

such a word contains at least one half of a relator r in R which contains at

least one occurrence of y or y"1.
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