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2. SOME DEFINITIONS
First, we recall what Gromov’s genericity 1s.

DEFINITION (Champetier). Consider two integers k > 2, [ > 1, aset X
of k generators and a property P of group presentations with X as generating
system and with [ relations. For integers ny,...,n > 1, let Pr(X,ni,...,n)
denote the finite set of presentations (X |ri,...,r;) where r; is a cyclically
reduced relation in the generators of X which is of length |r;| = n; (1 < i <1).

Then P is said to be generic in the sense of Gromov if the ratio

#{(X|R) € Pr(X,ny,...,m)| (X|R) satisfies P}

7

tends to 1 when min n; — +00.
i=1,...,l

For example, being a hyperbolic group is a generic property. This was
proved independently by Champetier [5] and Ol’shanskii [13].

One tool we need is small cancellation theory. Let (X|R) be a presentation
of a group I'. Denote by R* the set of cyclic conjugates of elements of R
and of their inverses.

DEFINITION 2.1. Let T" = (X|R) be a finitely presented group. A piece
is a prefix u common to at least two distincts elements in R* (by prefix,
we mean every non empty initial part of a word; in particular a word 1s a
particular prefix for itself).

Fix A €]0,1[. The presentation (X | R) satisfies the small cancellation
condition C'()) if the following inequality holds: |u| < A|r| for every r € R*
and for every prefix u of r which is a piece.

DEFINITION 2.2. A group I' = (X|R) satisfies a Dehn algorithm if, for
every non ftrivial reduced word w € Fy representing 1 in I, there exists a
prefix u of some word r € R* such that u is a subword of w and |u| > L|r|.

It is known that groups satisfying the small cancellation condition C'(1/6)
also admit a Dehn algorithm (see Theorem 4.4, Chapter V in [11] or
Theorem 25 in [14]). On the other hand Gromov proves that groups with
a Dehn algorithm are hyperbolic (see [8, Theorem 2.3.D]).

In Proposition 4.1 below, C'(1/6) is one of the conditions which imply
that, for some fixed xo € X, X — {xo} generates a free subgroup in T.
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~ Let (X|R) be a presentation with k generators and [ relations ri,..., 7.
G. Arzhantseva and A. Olshanskii proved, in [1], that for any fixed A > 0,

. #{(X|R) with C'()\) | S |rl =d, r cyclically reduced} '
im ~
d—+oo #{(X|R) | Zle ri| =d, r; cyclically reduced}

Unfortunately, even with this result, it is not known if the small cancellation
hypothesis is generic, so we need another hypothesis which is generic. Let us
recall the definition of Van Kampen diagrams.

DEFINITION 2.3. Let w € Fy represent the identity in I' = (X|R). Then
A is a Van Kampen diagram of w if A is a planar 2-complex for which the
]-skeleton is a graph, each edge of it being labelled by a element of X or
X~! such that when we read the labelling of every 2-cell of the complex, we
get a word in R*, and such that the labelling of the border of the complex
A 1s the word w.

For more details about Van Kampen diagrams, see [14], [3] or [11]. We
denote by I(A) (resp. E(A) and #(A)) the number of internal edges of A (resp.
the number of external edges of A and the total number of edges of A).

DEFINITION 2.4. The combinatorial area of a Van Kampen diagram A is
the number of its 2-cells. We say that A 1s a reduced diagram of w if it has
the minimal combinatorial area among all diagrams representing w.

For every w € Fy representing the identity in I' = (X|R), the existence
of such a reduced diagram of w is proved in [3].

DEFINITION 2.5. For 0 < 6 < 1, a finite presentation (X | R) is said
to satisfy the @0-condition, if for every reduced diagram A associated with
a reduced word w in Fx representing the identity in (X | R), we have
I(A) < 0#(A).

In [13], Ol'shanskii showed that for every fixed 6 > 0, the property of
satisfying a € -condition is generic.
To prove that result, he needed to introduce the following definition.

DEFINITION 2.6. A reduced diagram is simple if every edge 1s contained
in the boundary of a 2-cell of the diagram.
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It is clear that every reduced diagram of w is a disjoint union of simple
ones linked by bridges, where a bridge is a finite path of edges which are
not in the boundary of a 2-cell, and, because the word w in Fyx is reduced,
each bridge links two simple diagrams. In figure 1 the diagram contains three
simple diagrams (D1, D2, D3) and two bridges (B1, B2).

Dl

Bl

D3

FIGURE 1

A non simple diagram

Let X be a set of generators and y € X. For every reduced word r € Fy,

we denote by n,(r) the number of occurences of y and y~! in r. For example
n_‘.(yx3y—2xy3 ) =6.

DEFINITION 2.7. Let Fx be the free group on X with #X = k. For a
fixed € with 0 < e < 1/k and y € X, a non trivial reduced word r Fy is
(e, y)-balanced if

ny(r)

7]

> €.

A presentation I = (X |R) is (e,y)-balanced, if every r € R is (e,y)-
balanced.
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