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2. Some definitions

First, we recall what Gromov's genericity is.

Definition (Champetier). Consider two integers k > 2, I > 1, a set X

of & generators and a property P of group presentations with X as generating

system and with / relations. For integers /?],.... /// > 1, let Pr(X ^..... n/)

denote the finite set of presentations (X | r\%..., r{) where r\ is a cyclically

reduced relation in the generators of X which is of length |rf| =* m 1 < / < Z).

Then P is said to be generic in the sense of Gromov if the ratio

#{(X\R) £ Pr(X,nu.. Mn/) | (X[P) satisfies P}
#Pr(X,m~~~

tends to 1 when min w; —>• Too.

For example, being a hyperbolic group is a generic property. This was

proved independently by Champetier [5] and Ol'shanskii [13].

One tool we need is small cancellation theory. Let (X\R) be a presentation

of a group r. Denote by P* the set of cyclic conjugates of elements of R

and of their inverses.

Definition 2.1. Let r (X\R) be a finitely presented group. A piece
is a prefix u common to at least two distincts elements in P* (by prefix,
we mean every non empty initial part of a word; in particular a word is a

particular prefix for itself).
Fix À £]0,1[. The presentation (X \ R) satisfies the small cancellation

condition C'(X) if the following inequality holds: \u\ < A|r| for every r G R*

and for every prefix u of r which is a piece.

Definition 2.2. A group T (X\ R) satisfies a Dehn algorithm if, for
every non trivial reduced word to £ Fx representing 1 in T, there exists a

prefix u of some word r £ P* such that m is a subword of cu and \u\ > ^\r\.

It is known that groups satisfying the small cancellation condition C'{ 1/6)
also admit a Dehn algorithm (see Theorem 4.4, Chapter V in [11] or
Theorem 25 in [14]). On the other hand Gromov proves that groups with
a Dehn algorithm are hyperbolic (see [8, Theorem 2.3.D]).

In Proposition 4.1 below, C/(l/6) is one of the conditions which imply
that, for some fixed x0 £ X, X — {x0} generates a free subgroup in F.
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Let (X\R) be a presentation with k generators and I relations ri,... ,77.
G. Arzhantseva and A. Ol'shanskii proved, in [1], that for any fixed À > 0,

#{(X\R) with C'(À) I Xw=i lri'l —^5 ri cyclically reduced}
^

d^+co #{(X\R) I Yl\=\ Iri\ ~ n cyclically reduced}

Unfortunately, even with this result, it is not known if the small cancellation

hypothesis is generic, so we need another hypothesis which is generic. Let us

recall the definition of Van Kampen diagrams.

Definition 2.3. Let tu G Fx represent the identity in T (X\R). Then
À is a Van Kampen diagram of uj if A is a planar 2-complex for which the

1-skeleton is a graph, each edge of it being labelled by a element of X or
X~l such that when we read the labelling of every 2-cell of the complex, we
get a word in 7?*, and such that the labelling of the border of the complex
À is the word tu.

For more details about Van Kampen diagrams, see [14], [3] or [11]. We

denote by 1(A) (resp. E(A) and #(A)) the number of internal edges of A (resp.
the number of external edges of À and the total number of edges of A).

DEFINITION 2.4. The combinatorial area of a Van Kampen diagram A is

the number of its 2-cells. We say that A is a reduced diagram of uj if it has

the minimal combinatorial area among all diagrams representing to.

For every uj G Fx representing the identity in T {X | R), the existence

of such a reduced diagram of uj is proved in [3].

Definition 2.5. For 0 < 9 < 1, a finite presentation (X |/?) is said

to satisfy the 9-condition, if for every reduced diagram A associated with
a reduced word uj in representing the identity in (X | R), we have

1(A) < 6 #(A).

In [13], OFshanskii showed that for every fixed 9 > 0, the property of
satisfying a 9 -condition is generic.

To prove that result, he needed to introduce the following definition.

DEFINITION 2.6. A reduced diagram is simple if every edge is contained

in the boundary of a 2-cell of the diagram.
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It is clear that every reduced diagram of u is a disjoint union of simple

ones linked by bridges, where a bridge is a finite path of edges which are

not in the boundary of a 2-cell, and, because the word to in is reduced,
each bridge links two simple diagrams. In figure 1 the diagram contains three

simple diagrams (Dl, D2, D3) and two bridges (Bl, B2).

D1

D3

Figure 1

A non simple diagram

Let X be a set of generators and y G X. For every reduced word r G Fx,
we denote by ny(r) the number of occurences of y and y_1 in r. For example
ny(yx3y~2xy3) 6.

Definition 2.7. Let Fx be the free group on X with #X k. For a
fixed 6 with 0 < e < 1 /k and y G X, a non trivial reduced word r eFx is
(e.y)-balanced if

Mr) > e

A presentation T (X \ R) is (e,y)-balanced, if every r e R is (e:y)~
balanced.
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