Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	44 (1998)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	AN ASYMPTOTIC FREIHEITSSATZ FOR FINITELY GENERATED
	GROUPS
Autor:	GROUPS Cherix, Pierre-Alain / SCHAEFFER, Gilles
Autor: Kapitel:	
	Cherix, Pierre-Alain / SCHAEFFER, Gilles

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 06.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

2. SOME DEFINITIONS

First, we recall what Gromov's genericity is.

DEFINITION (Champetier). Consider two integers $k \ge 2$, $l \ge 1$, a set X of k generators and a property P of group presentations with X as generating system and with l relations. For integers $n_1, \ldots, n_l \ge 1$, let $Pr(X, n_1, \ldots, n_l)$ denote the finite set of presentations $\langle X | r_1, \ldots, r_l \rangle$ where r_i is a cyclically reduced relation in the generators of X which is of length $|r_i| = n_i$ $(1 \le i \le l)$.

Then P is said to be generic in the sense of Gromov if the ratio

$$\frac{\#\{\langle X | R \rangle \in Pr(X, n_1, \dots, n_l) | \langle X | R \rangle \text{ satisfies } P\}}{\#Pr(X, n_1, \dots, n_l)}$$

tends to 1 when $\min_{i=1,\ldots,l} n_i \to +\infty$.

For example, being a hyperbolic group is a generic property. This was proved independently by Champetier [5] and Ol'shanskii [13].

One tool we need is small cancellation theory. Let $\langle X | R \rangle$ be a presentation of a group Γ . Denote by R^* the set of cyclic conjugates of elements of R and of their inverses.

DEFINITION 2.1. Let $\Gamma = \langle X | R \rangle$ be a finitely presented group. A *piece* is a prefix u common to at least two distincts elements in R^* (by prefix, we mean every non empty initial part of a word; in particular a word is a particular prefix for itself).

Fix $\lambda \in]0,1[$. The presentation $\langle X \mid R \rangle$ satisfies the small cancellation condition $C'(\lambda)$ if the following inequality holds: $|u| < \lambda |r|$ for every $r \in R^*$ and for every prefix u of r which is a piece.

DEFINITION 2.2. A group $\Gamma = \langle X | R \rangle$ satisfies a *Dehn algorithm* if, for every non trivial reduced word $\omega \in \mathbf{F}_X$ representing 1 in Γ , there exists a prefix u of some word $r \in R^*$ such that u is a subword of ω and $|u| > \frac{1}{2}|r|$.

It is known that groups satisfying the small cancellation condition C'(1/6)also admit a Dehn algorithm (see Theorem 4.4, Chapter V in [11] or Theorem 25 in [14]). On the other hand Gromov proves that groups with a Dehn algorithm are hyperbolic (see [8, Theorem 2.3.D]).

In Proposition 4.1 below, C'(1/6) is one of the conditions which imply that, for some fixed $x_0 \in X$, $X - \{x_0\}$ generates a free subgroup in Γ .

Let $\langle X | R \rangle$ be a presentation with k generators and l relations r_1, \ldots, r_l . G. Arzhantseva and A. Ol'shanskii proved, in [1], that for any fixed $\lambda > 0$,

$$\lim_{d \to +\infty} \frac{\#\{\langle X | R \rangle \text{ with } C'(\lambda) \mid \sum_{i=1}^{l} |r_i| = d, r_i \text{ cyclically reduced}\}}{\#\{\langle X | R \rangle \mid \sum_{i=1}^{l} |r_i| = d, r_i \text{ cyclically reduced}\}} = 1.$$

Unfortunately, even with this result, it is not known if the small cancellation hypothesis is generic, so we need another hypothesis which is generic. Let us recall the definition of Van Kampen diagrams.

DEFINITION 2.3. Let $\omega \in \mathbf{F}_X$ represent the identity in $\Gamma = \langle X | R \rangle$. Then Δ is a *Van Kampen diagram* of ω if Δ is a planar 2-complex for which the 1-skeleton is a graph, each edge of it being labelled by a element of X or X^{-1} such that when we read the labelling of every 2-cell of the complex, we get a word in R^* , and such that the labelling of the border of the complex Δ is the word ω .

For more details about Van Kampen diagrams, see [14], [3] or [11]. We denote by $I(\Delta)$ (resp. $E(\Delta)$ and $\#(\Delta)$) the number of internal edges of Δ (resp. the number of external edges of Δ and the total number of edges of Δ).

DEFINITION 2.4. The *combinatorial area* of a Van Kampen diagram Δ is the number of its 2-cells. We say that Δ is a reduced diagram of ω if it has the minimal combinatorial area among all diagrams representing ω .

For every $\omega \in \mathbf{F}_X$ representing the identity in $\Gamma = \langle X | R \rangle$, the existence of such a reduced diagram of ω is proved in [3].

DEFINITION 2.5. For $0 < \theta < 1$, a finite presentation $\langle X \mid R \rangle$ is said to satisfy the θ -condition, if for every reduced diagram Δ associated with a reduced word ω in \mathbf{F}_X representing the identity in $\langle X \mid R \rangle$, we have $I(\Delta) < \theta \#(\Delta)$.

In [13], Ol'shanskii showed that for every fixed $\theta > 0$, the property of satisfying a θ -condition is generic.

To prove that result, he needed to introduce the following definition.

DEFINITION 2.6. A reduced diagram is *simple* if every edge is contained in the boundary of a 2-cell of the diagram.

It is clear that every reduced diagram of ω is a disjoint union of simple ones linked by bridges, where a bridge is a finite path of edges which are not in the boundary of a 2-cell, and, because the word ω in \mathbf{F}_X is reduced, each bridge links two simple diagrams. In figure 1 the diagram contains three simple diagrams (D1, D2, D3) and two bridges (B1, B2).

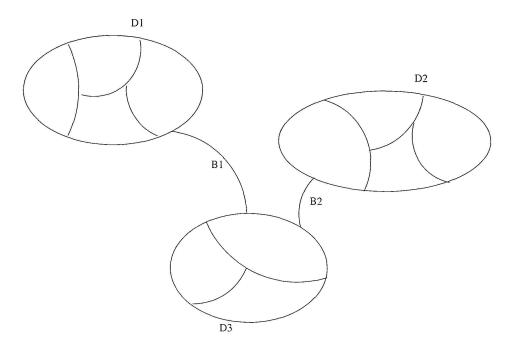


FIGURE 1 A non simple diagram

Let X be a set of generators and $y \in X$. For every reduced word $r \in \mathbf{F}_X$, we denote by $n_y(r)$ the number of occurences of y and y^{-1} in r. For example $n_y(yx^3y^{-2}xy^3) = 6$.

DEFINITION 2.7. Let \mathbf{F}_X be the free group on X with #X = k. For a fixed ϵ with $0 < \epsilon < 1/k$ and $y \in X$, a non trivial reduced word $r \in \mathbf{F}_X$ is (ϵ, y) -balanced if

$$\frac{n_y(r)}{|r|} \ge \epsilon \,.$$

A presentation $\Gamma = \langle X | R \rangle$ is (ϵ, y) -balanced, if every $r \in R$ is (ϵ, y) -balanced.