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POLYGON SPACES AND GRASSMANNIANS

by Jean-Claude HAUSMANN and Allen KNUTSON *)

ABSTRACT. We study the moduli spaces of polygons in R’ and R’, identify-
ing them with subquotients of 2-Grassmannians using a symplectic version of the
Gel'fand-MacPherson correspondence. We show that the bending flows defined by
Kapovich-Millson arise as a reduction of the Gel'fand-Cetlin system on the Grassman-
nian, and with these determine the pentagon and hexagon spaces up to equivariant
symplectomorphism. Other than invocation of Delzant’s theorem, our proofs are purely
polygon-theoretic in nature.

1. INTRODUCTION

Let "P* be the space of m-gons in R¥ up to translation and positive
homotheties (precise definitions in §2). This space comes with several
structures: an action of O(k), an action of §,, permuting the edges, and
a function £ :"Pk —s R™ taking a polygon p to the lengths of its edges
(once the perimeter of p is fixed). The quotients of mpk by SO, (or Oy)
are the moduli spaces ”’Pi (respectively, "P*). Fixing a reflection in O(k)
provides an involution on ”P* and "P* whose fixed point sets are "P*~! and
mPE=L The goal of this paper is to understand the topology of these various
spaces and the geometric structures that they naturally carry when & = 2 or 3.
They are closely related to more familiar objects (Grassmannians, projective
spaces, Hopf bundles, etc.) The spaces "P*(a) := £~ !(a) of polygons with
given side-lengths a € R™ are of particular interest.

The great miracle occurs when k = 3, because R’ is isomorphic to the
space /H of pure imaginary quaternions, and the 2-sphere in R® is Kihler.
The tools of symplectic geometry can then be used. Most prominent is a

*) Both authors thank the Fonds National Suisse de la Recherche Scientifique for its support.



174 J.-C. HAUSMANN AND A. KNUTSON

symplectic version of the Gel'fand-MacPherson correspondence identifying
the spaces ™P>(a) as symplectic quotients of the Grassmannian of 2-planes
in C™. Earlier occurrences of symplectic geometry in the study of polygon
spaces can be found in [Kl1] and [KM2].

While this paper illustrates many phenomena in symplectic geometry, the
proofs are entirely polygon-theoretic and involve only classical differential
topology. Nonetheless, many of the examples are new, interesting in their own
right and instructive for both fields.

Among our results:

1. The identification of the polygon space ™P? with Go(C™)/(U(1)")
intertwines complex conjugation on the complex Grassmannian (with fixed
point set the real Grassmannian) and spatial reflection on the polygon moduli
space (with fixed point set planar polygons). The fact that 3-dimensional and
planar polygons have the same allowed values of £ is then an illustration of a
theorem of Duistermaat ([Du]). (As is always true, and yet always mysterious,
it is helpful for studying the real case — here planar polygons — to extend
to the complex case — here polygons in R?.)

2. Identification of the densely defined “bending flows” ([K1] and [KM2})
on the polygon spaces with the reduction of the Gel’fand-Cetlin system [GS1]
on the Grassmannian.

3. In some cases, the bending flows are globally defined, and by Delzant’s
reconstruction theory the spaces are equivariantly symplectomorphic to toric
varieties (for instance when m < 6, as noted in [KM2]). We give a precise
description of the moment polytope and so explicitly identify the toric varieties.

Contrary to the usual custom in symplectic reduction, it turned out here to
be more natural to take symplectic quotients by first quotienting the original
manifold by the group, and to then pick out a symplectic leaf of the resulting
Poisson space — the intermediate quotient spaces all have natural polygon-
theoretic interpretations. However, they are never complex; readers wishing a
more geometric-invariant-theoretic construction of these spaces should look at
[KM2].

This paper is structured as follows. Section 2 gives the definitions and
elementary properties of polygon spaces. Sections 3 and 4 relate them to
Grassmannians, and prove some facts about the moment map for the torus
action on the Grassmannian by polygon-theoretic means. In section 4 is also
calculated the exact relation between the Kéhler structures in this paper and
the ones in [KM2]. Section 5 relates the “bending flows” of [Kl] and [KM2]
with the Gel’fand-Cetlin system on the Grassmannian. Section 6 uses this to
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calculate the quadrilateral, pentagon and hexagon spaces. Section 7 lists some
open problems.

The study of the polygon spaces will be pursued in a forthcoming paper
[HK] in which we shall compute the cohomology ring of these spaces.

The first author was incited by Sylvain Cappell to introduce symplectic
geometry in his study of polygon spaces. He is also grateful to Lisa Jeffrey
and Michele Audin for useful conversations. The two authors started this work
at the workshop in symplectic geometry organized in Cambridge by the Isaac
Newton Institute (Fall 1994). The second author would like to thank Richard
Montgomery for teaching him about dual pairs, and Michael Thaddeus for
pointing out the link to moduli spaces of flat connections; also the University
of Geneva for its hospitality while this paper was being written.

2. THE POLYGON SPACES

(2.1) Let V be a real vector space and m a positive integer. Let
"F(V) be the real vector space of all maps p: {1,2,...,m} — V such
that 377 p(j) = 0. An element p € ™F(V) will be regarded as a closed
polygonal path in V

0 o= p(1) e—-e p(1) +p(2) oo - oo Y p(j) =0
j=1
of m steps, or, alternately, as a configuration in V (up to translation) of a
polygon of m sides. We shall call an element p € "F(V) an m-polygon (in
V) and a proper polygon when p(j) # 0 Vj. We use the notation ™F* for
the space ™F(RF).

The group R, of positive homotheties of V acts freely and properly
on "F(V) —{0}. The quotient "P(V) := ("F(V) — {0})/R, then inherits
a structure of smooth manifold diffeomorphic to a sphere. For instance,
"Pk = ("F* — {0})/Ry is diffeomorphic to the sphere SKm-D-1_

(2.2) Suppose now that V is oriented and is a Euclidean space, namely
V' 1s endowed with a scalar product. The group O(V) of isometries of V acts
on ¥*F™ and ™P(V); we define the moduli spaces

"P(V)4 1= SO(V\"P(V) and "P(V):= O(V)\"P(V)

of m-polygons in V, up to similitude (where SO(V) is the identity component
of O(V)). Observe that any orientation preserving isometry h: V. = RX
produces identifications
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"P(V)4 = "PK = SON\"P* and "P(V) = "P* = 0,\"P*.

We shall use the fact that these identifications do not depend on the choice of
h and thus "P(V); and "™P(V), for any Euclidean space V, are canonically
identified with ™P% and "P*.

(2.3) The “degree of improperness” of polygons provides a stratification
@ =E"P(V) C E"P(V) C -+ C Ent"P(V) C E,"P(V) = "P(V)

where .
E"P(V) = {p e "P(V) | t{s] p(s) = O} = m — j}.

The “open stratum” Ejmﬁ(V) — Ej_l’”ﬁ(V) 1S a smooth submanifold of
mﬁ(V) of dimension (j — 1)k — 1 if kK = dimV. The top open stratum
’"ﬁ(V) — Ep_"P(V), open and dense in mP(V), is the space of proper
polygons.

As this stratification is O(V)-invariant, it projects onto stratifications
{E/"PE} and {E/P*} of the moduli spaces (using the canonical identi-
fications of (2.2)). We shall see in §3 that the above stratifications describe
the singular loci of smooth orbifold structures on the spaces ’"75(1/), ’”77i
and "Pk.

(2.4) The map p — |p|:= >, |p(j)| which associates to a polygon p

J
its total perimeter is a norm on "F(V). We denote by S (’”7—" (V)) the sphere

of radius 2 for this norm. Each class in ’”75(V) has a unique representative in
S("F(V)) which gives a topological embedding 2: "P(V) — "F(V) whose
image is S("F(V)). The image by @ of E,_"P(V) is the subset of S("F(V))
where S (’”}" (V)) fails to be a smooth submanifold of "F(V). However, the
restriction of ¢ to each Ej’"jpv(V) — Ej_l”’ﬁ(p is a smooth embedding.

The map E "F(V) — R™ defined by #(p) ::~(]p(1)|, ooy | p(m))) asso-
ciates to a polygon its side-lengths. We define ¢ : "P(V) — R” by £ := lou.
We shall also use the notation #;(p) for |p(i)|. These maps are invariant under

the O(V)-action and thus define maps (always called /)
¢:"Ph —R" and (:"P*—R"

which are smooth on each open stratum.

(2.5) Let 7: V — V be the orthogonal reflection through some
hyperplane II in V. One has the involution p — p:= 7op on "F(V) and
"P(V) whose fixed-point space is naturally "F(II) and "PI1). If h € SO(V),
one has
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Toh = (Tol’loTo/’l—l) ohoT.

S

€SoV)

Hence the involution descends to an involution (still denoted p — p) on ’”PfL.
If 7/ is an orthogonal reflection with respect to another hyperplane IT’, then
the formula 70p’ = (7/07)o7Top shows that the induced involution on ”’Pﬂ"r
does not depend on the choice of 7. The fixed point space of ~ is "P*~ 1.
Observe that = p in "P*.

EXAMPLES

(2.6) Polygons in the line. The space mpl — ”175# is diffeomorphic
to the sphere $”~2. Under this identification, the O;-action becomes the
antipodal map and thus ”P! is a smooth manifold diffeomorphic to RP"~2.
For example, 3Pl ~ S! and 3P! ~ RP!. The stratum E,>P! consists of 3 pairs
of antipodal points and thus E,>P! is a set of 3 points, the three triangles with
one side of length 0. This corresponds to the fact that SCF') is a regular
hexagon and O;\SCF') is a triangle. Actually, the map ¢ : P! — R3
produces homeomorphisms

3731%{(x:)@Z)ERBZo(X—f—)’“I‘Z—_—Z and £x+y+z=0}.

(2.7) Polygons in the plane. Identifying R?> with C, the space "F?
is a complex vector space isomorphic to C"~! and the (free) SO,-action
corresponds to the diagonal Uj-action. As in (2.6) one establishes the
diffeomorphisms

m 7)2 — SZm -3

l l

NVPi = CPm—Z

The above diffeomorphisms conjugate the involutions ¥ with the complex
conjugations of C"~! and CP"~2. Also, the involution * on ™ i coincides
with the residual O, action and therefore "P? is the quotient of CP"2 by
its complex conjugation.

For example, 3P?, the space of planar triangles, is diffeomorphic to the
sphere S°. The singular stratum E2(37SI) is a link of three circles which are
SO, -orbits (therefore, any two of them constitute a Hopf link). The quotient
373_% is identified with CP' and E2(375i) is a set of three points in CP!.
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Finally, 3P? ~ CP!/{z ~ 7} is homeomorphic, via the length-side map ¢, to
the solid triangle

P2 =P L {(n, ;) ER | 4+ =2 and 0<x <1}

with boundary 3P!.

3.  (QUATERNIONS, GRASSMANNIANS
AND STRUCTURES ON THE FULL POLYGON SPACES

(3.1) Let H=C®Cj be the skew-field of quaternions; the space /H of
pure imaginary quaternions is equipped with the orthonormal basis i, j and
k = ij, giving rise to an isometry with R® which turns the pure imaginary part
of the quaternionic multiplication pg into the usual cross product p x g. The
space ™F? is thus identified with "F(JH) which gives rise to the canonical
identifications on the the various moduli spaces (see (2.2)). 4

Recall that the correspondence

n:u-+v— ( M_ E)
—U U

gives an injective R-algebra homomorphism 7 : H — Mx2)(C). This
enables a matrix P € U, to act on the right or on the left on H. It also
identifies the group S> of unit quaternions with SU,.

(3.2) The Hopf map ¢ : H — [H defined by
P(q) = qiq
sends the 3-sphere of radius /7 in H onto the 2-sphere of radius r in IH. (The
formulae given in the original paper by Hopf [Ho, §5] actually correspond to
the map g +— gkg.) The equality ¢(g) = ¢(¢’) occurs if and only if ¢’ = € g.
The map ¢ satisfies the equivariance relation ¢(g-P) = P~!-¢(q)- P. Writing
g =u-+vj with u,v € C, one has

b+ vj) = (@ — jT) i(u + vj) = G + ) u+vj) = i[(u]” — |v]*) + 2av)] .
(3.3) Observe that if g = s+ with 5,7 € R, then ¢(g) = i g*. This plane

R @ R of its images is the fixed point set of the involution a + bj — @ + bj
that will be used later. Its image under ¢ is Ri @ Rk.

(3.4) REMARK. [H, with the Lie bracket [p,q] = pg — gp = 2Im(pg),
is the Lie algebra for the group U;(H) ~ SU, ~ S°. The npairing




POLYGON SPACES AND GRASSMANNIANS 179

(q,q)) — —Re(qq") = (gq,q') identifies TH with its dual. If H~CagC
is endowed with the standard Kihler form, then the map %qb is the moment
map for the Hamiltonian action of U;(H) on H (the factor % can be checked
by restricting the action to the S'-action on C).

(3.5) Let V,(C™) be the space of (m X 2)-matrices

a bl
(Cl,b) = S MI71X2(C)

aﬂ‘l b m

such that |a| = |b| = 1 and (a,b) = 0. V,(C") is the Stiefel manifold
of orthonormal 2-frames in C™. The group U, acts transitively on the left
on V,(C™) producing the diffeomorphism V,(C") = Un/Upn—2. One has
the conjugation on V,(C™) given by (a,b) — (a,b) with fixed-point space
the Stiefel manifold V,(R™) = O,,/O;—> of orthonormal 2-frames in R™.
Finally, the embedding V,(C™) C H" given by (a,b) — (....a, + b, j,...)
intertwines the conjugation on V,(C™) with the involution of (2.5) on H".
One thus gets an embedding V,(R™) C (R @ Rj)".

Using the Hopf map ¢ of (3.2), one defines the smooth map
® : Vo(C") — "F(IH) ~"F> by the formula

D(a, b) := (¢(ar + by j), plaz + baj). .. ., (am + b)) -

The fact that > ¢(a, + b,j) = 0 is equivalent to (a.b) = 0 and |a| = |b].
As la| = |b| = 1, the image of ® is exactly S("F°). By composing
with the projection "F> — {0} — mP3 | one gets a surjective smooth map
®: V,(C") — ™P3. One checks that ®(a.b) = ®(a’.b’) if and only if
(a.b) and (d’.b’) are in the same orbit under the action of the maximal
torus U{" of diagonal matrices in U,. This action is free when none of the
(a;. b;)’s vanishes, namely if and only if ®(a.b) is a proper polygon. As
®(a.b) = P(a,b)", the regtriction of @ to the fixed points gives a smooth
map Pr : Vo(R”") — "P(Ri & Rk) ~ nP2 with analogous properties. We
have thus proved

THEOREM 3.6.A a) The smooth map ® : V,(C") — mP3 induces a
homeomorphism ® : UP\V,(C™) — "P3 such that ®@@,b) = D(a, b)". The

restriction of @ above the space of proper polygons is a smooth principal
Ul -bundle.

R b) The smoot/l map Or : V(R — D2 induces a homeomorphism
Og : OT\Vo(R™) — "P2. The restriction of ®r above the space of proper
planar polygons is a principal O'-covering.
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COROLLARY 3.7. "P3 ~ UM\Up/Un—y and "P* =~ O"\Op/Om-2.

(3.8) Let G(C™) be the Grassmann manifold of 2-planes in C™. The
map V,(C") — G,(C™) which associates to (a,b) the plane generated by
a and b is the projection V,(C™) — V,(C™)/U, (a principal U, bundle),
for the natural right action of U, on V,(C™) C M,,«>(C). This projection is
U -equivariant, equivalent to the projection U,,/Uy—y — Uy/Us X Uy_s.

The map @ : V,(C") — mP3 satisfies
®((a,b)P) = P~ ®(a,b)P for (a,b) € Vo(C"), PE U, .

The conjugation by P being an element of SO(/H), one thus gets a
map (still called ®) from G,(C™) onto mPi. The space ”’Pi has a
smooth structure on the open-dense subset of non-lined polygons (which
1s where the SOs-action was free) and, above this open-dense subset,
the new map @ is smooth. The map @ intertwines the involutions
and so restricts to a map Dr: Go(R™) — "P?, where G,o(R™) is
the Grassmannian of 2-planes in R™. In this case, an intermediate
object is the Grassmannian éz(R’") = S0,,/S0, x SO,,_, of oriented
2-planes in R™ with the smooth map @R(N}z(R’") —— P2 ~ CP™" 2. The
action of U® on V,(C™) descends to an action on G,(C™) which is
no longer effective: its kernel is the diagonal subgroup A of U}, the
center of U,,, isomorphic to U;. The same holds true in the real case,
replacing U; by O; (the diagonal subgroup of OfF 1s also denoted
by A).

Using Theorem 3.6, the reader will easily prove the following

THEOREM 3.9. a) The map ® : Go(C™) — ™P3 induces a homeomor-
phism o : UT\G2(C™) = mP3 such that &)(E, b) = D(a, b)". The restriction
of O above the space of proper non-lined polygons is a smooth principal
(U /A)-bundle.

b) The smooth map Py : éz(R”’) — ’”73_% induces a homeomorphism

(/I\)R : O’i”\(N}z(R’") =, ’”Pi. It is a smooth branched covering and, restricted
above the space of proper polygons, a principal (O'/A)-covering.

¢) The map ®Pr : GR™ — ™P? induces a homeomorphism
®g : OT\G2(R™) =, mP2 The restriction of ® above the space of proper
non-lined polygons is a principal (OF /A)-covering.
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COROLLARY 3.10. One has homeomorphisms between the polygon spaces
and the double cosets

a) "P? = UP\Un/[(Uy X Up—2)
b) ’”73—2{- =~ S(O’{T)\Som/(SOZ X SOm—2)~
C) ;717)2 = 0’1”\0111/(02 X 0171—2)-

(3.11) Example. As in (2.7) the example of planar triangles (m = 3
and k = 2) is interesting. The Stiefel manifold V»(R?) is diffeomorphic to
the unit tangent bundle to S$?, in turn diffeomorphic to SOs. The oriented
Grassmannian G-(R%) can be identified with S? by associating to an oriented
plane its unit normal vector. The smooth map

Dg : §? ~ ég(R3)) — 377i ~ §?

is of degree 4, branched over the 3 points. This map can be visualized as
follows : tesselate R? with equilateral triangles. Divide R? by the subgroup of
isometries which preserve the tesselation and the orientation (it thus preserves
a checkerboard coloring of the triangle tesselation). This quotient is a well
known orbifold structure on S with three branched points. The projection
R®> — §? factors through an octahedron with a chess-board coloring of its
faces. The residual map from this octahedron to S? is our map ®g.

Take the pullback by ®g of the Hopf bundle $* — S?. One gets a map
of degree 4 from some lens space L onto S3, with branched locus the link
formed by three SO, -orbits. The lens space will be doubly covered by SOs.
We thus get the map

@ : SO; ~ V,o(R?) — 3P? ~ §3

of degree 8. Finally, one has G,(R?) ~ RP? and ®y is the quotient of RP2
by the action of O? on each homogeneous coordinate. This quotient is a
2-simplex and one sees again that 3P? is a solid triangle.

_(3.12)  Orbifold structures. The maps </15R and ®g provide, for the spaces
?P? o~ §2"73 and "P3 ~ CP"~2, a smooth orbifold structure. Each point
has a neighbourhood homeomorphic to an open set of the quotient of (R2)*
by a subgroup of Of, where O, acts on each R? via the antipodal map.
Observe that the map ®g is a “small cover” in the sense of [DJ]. The
branched loci are E,,_;"P? and E,—"P% respectively. As for "P? we
have to add the branched locus "P'. The generic points of ’”’731 have a

neighbourhood modelled on the quotient of C"~2 by complex conjugation.
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__Analogously, the map @: G(C") — mP3  gives rise, for the space
mP3, to a smooth complex orbifold structure. By that we mean a space
locally modelled on the quotient of C° by a subgroup of Uj. We define the
space C°("™P3) of smooth maps from "™P> to the reals as the subspace of
C>(G>(C™)) which is invariant by the action of U?".

(3.13) Riemannian and Poisson structures. Let H(m) be the space of
Hermitian (m x m)-matrices, identified with u’ via the pairing

H(m) X oy — R (H,X) |—>é tr(HX) .

This 1dentification turns the co-adjoint action of U, into the conjugation
action on H(m). Consider the map g . Mux2(C) — H(m) given by
¥(a,b) := (a,b) - (a,b)*. One has P(Q - (a,b) - P) = Q - ¥((a,b) - O
for P € Uy and Q € U, and thus C = ‘A{/‘(VZ(C’”)) 1s the U, -orbit
through diag(1,1,0,...,0). This proves that ¥ descends to a diffeomorphism
¥ Gy (CM) = C. ,

The complex vector space M,,«2(C) is endowed with its classical
Hermitian structure (A,B) := tr(AB*), with associated symplectic form
w(,)=—1Im(,). The map ¥ above and the map o M52 (C) — Ho(2)
given by

Bab) = @b @0~ 1)

are moment maps for the Hamiltonian actions of U, and U, respectively.
One has V,(C") = EIV)‘I(O) and thus G,(C™) occurs as symplectic reduction
of the Hermitian vector space M,,«,(C) and thereby inherits a U,,-invariant
Kéhler structure, using, for instance [Ki], §1.7. (Strictly speaking, one deals
in [Ki] with compact Kihler manifolds; to fulfill this condition, one can first
divide M,,%x2(C) — {0} by the diagonal action of C* to put oneself into a
complex projective space.) The residual map ¥ : Go(C™) — C C H(m) is a
moment map for the action of U, on G(C™).

Being thus a Kdhler manifold, G,(C™) is a Riemannian Poisson manifold.
This structure descends to the complex orbifold ™P?3 : the algebra C®(™P?3)
admits a unique Lie bracket so that the projection G,(C™) — ™P3 is a
Poisson map.

(3.14) It is possible to endow with a Poisson structure the space ’”7’771 of
configurations of all m-gons in R?, without fixing the perimeter to 2. It suffices
in the above construction, to replace the U,-reduction G,(C™) = EIv)“l(O) /U,
by the SU;-reduction (N}Z(C’") = &)"1(0) /SU,. The latter is a non-compact
space, the total space of the determinant bundle over G,(C™) with the zero
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section collapsed. The trace function on M,+>(C) descends to G»(C™) and
to the Casimir function “perimeter” on "PP7 .

4 POLYGONS WITH GIVEN SIDES — KAHLER STRUCTURES

We now use the map £ : ’"ﬁk.’”Pi,’”Pk — R™ defined in (2.4). Recall
that ¢(p), for p € mPk is the length of the successive sides of a representative
of r with total perimeter 2.

For o = (¢, . ... o) € R, with >0 oy = 2, we define

nzr]Sk(CE) - ﬁk(a) — {,0 c mﬁk I e(p) _ CY} - mﬁk ’

The space ﬁk(a) is invariant under the action of O;. We define the moduli
spaces

P (@) 1= SO\PH@) = £~ (@) C "P}

and

Pra) == 0\ PX(@) = £ (o) € "PF.

The space ﬁl(a) consists of a finite number of points and is generically
empty. We call o generic if P(a) =@.

THEOREM 4.1. The map p = (o : G,(C") — R is a moment map
for the action of U on G,(C™).

Proof. As seen in (3.13), the moment map ¥ : Go(C") — H(m) for
the y,,,—action on G-,(C™) 1is induced from ¥ Mx2(C) — H(m) given
by W(a.b) := (a.b) - (a.b)*. A moment map p for the action of U} is
obtained by composing ¥ with the projection H(m) — R™ associating to a
matrix its diagonal entries. So, if IT € G,(C™) is generated by a and b with
(a.b) € V,(C™), one has

u(D) = (ar | + b1 am] + b)) = £o®(a, b) . n

A now classic theorem of Atiyah and Guillemin-Sternberg [Au, §111.4.2]
asserts that the image of a moment map for a torus action is a convex polytope
(the moment polytope). The restriction of the moment map to the fixed point
set of an anti-symplectic involution has the same image [Du]. In our case,
one gets these facts directly:

P
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COROLLARY 4.2. The moment map . Go(C") — R™ satisfies
,u(Gz(C’")) = u(Gz(Rm)) = E,,, where Z,, is the hypersimplex

m

En={(x1,... %) ER"|0< x5, <1 and > x=2}.
i=1

Proof. One has Image(y) = Image(f). Further it is manifest that
Image(¥) C Z,,. A proof that Image(¥) = Z,, is actually provided in [KM1],
Lemma 1, or [Ha]. We give here however another argument, for the pleasure
of constructing a continuous section o : Z,, — "P? of £. If m = 3, we have
already mentioned in (2.7) that 3P? is homeomorphic to Z3 via the map /.
Let o € E,,. Define §G; := Z;Zl «; and

r(e):=min{i | ;<1 and Gy > 1}.

The numbers f,,a,,2 — [B,+; form a triple of Z3 and are then the lengths of
a unique triangle 7(a) € *P?, which can be subdivided in the obvious way
to define the element (o) € "P?*(a) (see Figure 1).

%
Oy

. .

FIGURE 1: 7(c)

The continuity of o comes from the fact that if the map r is discontinuous
at some «, the triangle 7(«) is then lined. [

REMARKS. 1) Corollary 4.2 is also a consequence of our stronger re-
sult (5.4).

2) The word “hypersimplex” is introduced in [GM]. Observe that H is
obtained by taking the convex hull of the middle point of each edge of a
standard (m — 1)-simplex.

We also obtain the critical values of p (compare [Ha]):
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PROPOSITION 4.3. The set of critical values of u on G2(C") — Z,, or
G-»(R™) — Z,, consists of those points (xy,...Xy) € E,, safisfying one of the

following conditions :
a) one x; vanishes,
b) one x; is equal to 1;

c) there exist g; = 1 such that Y ,_, ex; =0, with at least two &;’s of
each sign.

REMARK. Points satisfying a) and b) constitute the boundary of =Z,.
Points satisfying c) are “inner walls”. Points satisfying a) correspond to non-
proper polygons. Those satisfying b) or ¢) are non-generic «’s (Condition b)
implies that there exist ¢; = 1 such that Z;“Zl gix; = 0 with all but one ¢;
of the same sign.)

Proof. The critical points of the moment map p are the points of G,(C")
for which the Uf'-action has a stabilizer of dimension bigger than 1. They are
the images of those (2 x m)-matrices in V,(C") for which the (U{" xy, Us)-
action has a non-discrete stabilizer. There are such points whose stabilizer is
contained in U}' x {1} ; they are the matrix with one row vanishing and their
values under g are the points of =, satisfying a). The other points give rise to
points in "P? = Ul /V,(C™) so that the action of U,/{center of U,} ~ SO;
has non discrete stabilizer. Those points are the lined configurations mpl
Their values in =, are the non generic «’s, which are the points in Z,,
satisfying b) or ¢). [

We have proven most of the main result of this section: for generic and
proper o, the space P3(a) is a Kihler sub-quotient of G,(C™).

THEOREM 4.4. For « € int 5, generic, Pi(oe) is a Kdhler manifold
isomorphic to the Kahler reduction U{"\p~Y (). The involution ~ is antiholo-
morphic and P*(a) can be seen as the real part of Pi(a).

Proof. By 4.1, one has P (@) =€) = UM\~ ' (@) and we have seen
in 3.9 that ®(a, b) = D(a. b)". [

We shall now compare the Kihler structure obtained on ?i(a) from
the Grassmannian to that introduced by Klyachko [KI] or Kapovich-Millson
([KM2], §3). Using the standard cross product x and scalar product (.,.) on
R’, these authors put on the sphere S? of radius r the complex structure J
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defined by

1
Jui=—xxv  (vETS
r

and the Kihler metric
A 1 /
A, 0) = —(u,0) = Z(nuxv) (v € TS
r

with associated symplectic form @(u, v) := (Zu x v). Let W(a) := [[-, S%,.
The map §: W, — R® defined by B(z1,...,2m) := Y iy % is the moment
map for the diagonal action of SO; on W,. The space P}r(a) thus occurs
as the symplectic reduction SO3\371(0).

PROPOSITION 4.5. The complex structure J and Kdhler metric h of 4.4

~

compare with those J and h of Kapovich-Millson in the following way :

J=1J and E(u,’u)zélh(u,v).

Proof. Starting from the Hermitian vector space M = M,,,(C) one
sees that P3(a) is obtained by two successive symplectic reductions

G(C™) =D~ (0)/U, and P(a) = UN\p (@)

(we use the notation of §3). One can perform the reductions in the reverse
order. We first get

UMY =[] CP,

where CP! is the quotient of the 3-dimensional sphere
{@,0) € C* | ful’ +|vf* = r}

by the diagonal action of U;. The moment map ®: M — H(2) gives a
a moment map (still called @) from the product of projective spaces into
Ho(2). One has a commutative diagram

H¢
HZICPI - ll oa

5| [E

Ho2) —Y— RO

~

<

where 1 : Ho(2) — R? ~ R x C sends the matrix < _Zu) to (u,2).

M
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To prove Proposition 4.5, it is enough to establish that for all a € CP,‘.,
the tangent map Tuo : T,CP! — Tyn)S; satisfies

T,p(Jv) = JT,¢(w) and ©(Tad(w), Ta0(v)) = 4w(v,Jv).

By U,-equivariance, we can restrict ourselves to a = [/r.0]. The tangent
space T,CP! is identified with {0} x C and one can take v = (0. 1) and
Jv = (0,7). One has ¢(a) = (r,0.0),

T,6(v) = (0,2¢/7,0), Tad(Jv) = (0,0,2/7) = JT,0(v)
and Q(Tang(v),Taqzﬁ(JU)) =4, while w(v.Jv)=1. [

REMARKS

(4.6) The results of this section show that the spaces Pi(a) for generic
o are the symplectic leaves of the Poisson structure on the regular part of
mp3 | or PP given in (3.13) and (3.14).

(4.7) If one works in the pure quaternions /H, the complex structure J
on S? becomes

Joy=L" wer,s’=m).

v
g
The sphere S,z. is a co-adjoint orbit of U;(H) and the Hermitian form w is
the Kirillov—Kostant form (see [Gu, Theorem 1.1]).

(4.8) The isomorphism between the symplectic reductions of the Grass-
mannian G,(C™) and the product of CP!’s that underlies our results 3.9,
4.4 and the proof of 4.5 is a symplectic version of the Gel'fand-MacPherson
correspondence ([GM] and [GGMS]). The fact that this isomorphism comes
from two reductions of M 1s the philosophy of “dual pairs” (see [Mo] and
the references therein).

5. THE GEL'FAND-CETLIN ACTION

On ™F* we have so far defined the length functions £ measuring the

~

distances between successive vertices. We now introduce d : "FfF — R™,

d(p) = (|p(D)], [p(1) + p2)].. ... [Z;" 1,o(i)l) the lengths of the diagonals
connectmg the Vemces to the origin. (Only m — 3 of these functions are new,
as d(p)1 =i €(p)1, a’(p),,, | = é(p),,,, and a’(p)m = 0. Hereafter we write only

¢;.d; and the p is to be understood.)
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As with ¢ , the function d descends to continuous but only generically
smooth functions d on Pk, mPk and ™P*. It is smooth where no d;
vanishes, that is to say the polygon does not return to the origin prematurely.
We call such a polygon P prodigal and call (E(P),d(P)) a prodigal value.
The set of prodigal polygons is open dense in ’"Pf‘,r with complement of
codimension k.

For k = 3, there is in [KM2] (see also [KI], §2.1) introduced an action of
a torus 7™ on prodigal polygons; the ith circle acts by rotating the section
of the polygon formed by the first i edges about the ith diagonal. (When that
diagonal is length zero, there is no well-defined axis about which to rotate,
and indeed the action cannot be extended continuously over this subset.) This
action plainly preserves the level sets of the functions d, but more is true:

THEOREM 5.1 (KM2). On the subspace of prodigal polygons of 731(@),
the function d is a moment map for these “bending flows”. :

One important consequence of this is that the torus action also preserves the
symplectic structure. It does not, seemingly, preserve the Riemannian metric
nor the complex structure (the codimension of the singular set is not even;
see also §6).

These functions /,d lifted to V,(C™) have simple matrix-theoretic inter-

pretations. For (a,b) € V,(C™), i =1,...,m, introduce the truncated matrices
a; by

M; = : . |, the first i rows of (a,b). Then the 2 x 2 matrix
d; b,‘

) L el @b
j=1 \bjl

a;b;

has the eigenvalues

1 i [ 2
: (Z(lajlz IRE: (Z(\aﬂz — |ij2)> +4
j=1 j=1

\

0(D(a, b)) = £(..., ¢ai, b),...) = (.., |al + B,

I
E ajb;
j=1

These are calculable from ¢ and d, since

and
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d(®(a,b)) = |Z¢<aj,b>|

(Z(la;l2~?bjl2>> vaSapl )
j=1 j=1

So Z;Zl ¢; is the sum of the two eigenvalues of M;M;, whereas d; is the
difference. (Note that £, = d; as promised; M;M,’s lesser eigenvalue is 0.)

This (2 x 2)-matrix M;M; has the same nonzero eigenvalues as the 7 X
matrix M;M; . The latter matrix is more relevant in that it is the upper left
i X i submatrix of the m X m matrix (a, b) (a,b)* introduced in section (3.11).

This family of Hamiltonians — the eigenvalues of the upper left submatrices
— has been studied already in [Th] and is called the classical Gel’fand-Cetlin
system (our main reference is [GS1]). The linear relations established above
between them and d.¢ are summed up in the following

THEOREM 5.2. The bending flows on ’”731(04) are the residual torus action
from the Gel'fand-Cetlin system on the Grassmannian G,(C™).

The Gel’fand-Cetlin action on the flag manifold has always been rather
mysterious (at least to us); it is pleasant that in this case it has a natural
geometric interpretation.

The Gel'fand-Cetlin functions {e;;};<; (the jth eigenvalue of the upper
left i x i submatrix) satisfy some linear inequalities that can be established
using the minimax description of eigenvalues [Fr, p. 149]:

€ij S il jrl < €t
For the polygon space functions [,d most of these say 0 < 0; for each
i=0,...,n—1 the nontrivial inequalities are

i+1 i+1

0< d+Z€ < dl+1+22 <d+2€ <d,+1+Z€

But these are transparent in our situation, as they are just the triangle
inequalities !
b1 < di 4 dig
(1) di <Ly +dig
dit1 < Liyy + d
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(The first one, d; < Zi:l ¢,, can be proved inductively from the others
starting from dp = 0.)

In [GS1] 1t is left as an exercise to show that (1) are the only inequalities
satisfied ; equivalently, that every point in the convex polytope I, C R” x R”
defined by them (and dyp = d,, = 0 and ) ,¢; = 2) is realized by some
Hermitian matrix. We show this directly :

THEOREM 5.3. The image of ™P*2? under the map (¢,d) is the whole
polytope T',,.

Proof.  We construct the polygons directly, vertex by vertex — really
establishing that each space ’”75"(@,6) is nonempty (and so its quotient by
SO(k) is as well). We must place each new vertex on the intersection of two
Sk=1°s one of radius diy1 from the origin, the other of radius ¢;;, from the
previous vertex. The inequalities ¢, < d; +d;11 and diy1 < 4y + d; rule
out one S¢~! containing the other; the third inequality d; < £;1 +d;q; rules
out their being separated balls. So they intersect in an S¥=2, a point or the
whole $*~!, anywhere on which we may place the new vertex. [

(5.4) REMARKS

1) While the map ¢ is equivariant with respect to the usual action of
Sn on R™, the map d can only be made equivariant under the involution
[i <= (n —7)], and the polytope I',, is correspondingly less symmetric than

.

the hypersimplex =,,.

2) That the image of (¢,d) is the same when restricted to planar polygons
has the flavor of a more general theorem of Duistermaat [D] on restricting
moment maps to the fixed-point sets of antisymplectic involutions. In fact
Duistermaat’s theorem does not apply directly, because the subset where d is
smooth (and a moment map) is noncompact; in any case we preferred to give
a polygon-theoretic proof.

3) When k£ = 3 Theorem 5.1 guarantees that the bending torus acts
simply transitively on the fiber over an interior point of I',,, making this fiber
a torus U(1)"3 (or O(1)"=* when k = 2). Over a prodigal boundary point
of T',,, the fiber is still a product of 0- or 1-spheres, but fewer of them.

4) Bending around other diagonals than the ones above can be done in the
same way, the moment map lifted to V,(C™) being the difference of the two
eigenvalues of M*M for a corresponding submatrix M of (a,b) € V,(C™).
For instance, we take
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a')b

2 2
M = as b3
aj b4

for the diagonal 8,4 := p(2) + p(3) + p(4). The bending flows around two
diagonals 8, , and 8y, commute if and only if the pairs {p.g} and {'.q'}
intersect or are unlinked in R/mZ.

6. TORIC MANIFOLD STRUCTURES ON ’"Pi (ov) FOR m =4.5.6

In this section, we study examples of P3(a) C mP3 such that the m — 3
diagonal functions ds.....dyu—> : Pi(a) —— R never vanish. The whole space
Pi(a) consists of prodigal polygons and, by §5. the bending flows give an
action of a big (i.e. half-dimensional) torus on Pi(a). By Delzant’s theorem
(see [De], or [Gu, §1]), we can construct from the moment polytope A,
alone a toric manifold which is equivariantly symplectomorphic to the space
Pi(az). This can be achieved also by [DJ,§ 1.5]. though only up to equivariant
diffeomorphism. The latter also gives the real part. the planar polygon space
P>(a), as a 2" 3-sheeted branched cover of A,. We sum up below some
results of these constructions without writing all the details.

Without explicit mention of the confrary, a is supposed to be generic.
Contrary to the previous sections, we do not require that the perimeter of
our polygons 1s 2. It was necessary to fix the perimeter in order to define
the map ( and the value 2 is the natural choice to deal with the map
o :V,(C") — mpk But ™ FX(o) makes sense for any a € R%, and so do
the various moduli spaces "P¥(a), etc. When > a; = 2, the poﬁytope Ay 1S
a slice through the Gel'fand-Cetlin moment polytope T, of §5: for general
a it is a homothetic copy of this section.

(6.1) m =4: The condition which guarantees that d» never vanishes is
Q) # ay or a3 # ay. The space of quadrilaterals *P3 (a) is then a compact
toric manifold of dimension 2, therefore diffeomorphic to CP'. The moment
map d» has image the interval A, := I; NI, where

]1 == ['Ql—az!.al+a2] and [2 = [1&4-&3].Q4+Q3]~

{

The space *P*(a) is RP'. The quadrilateral spaces *P>(a). have long since
been classified (see for instance [Ha]). One has

1 )
D0y, { S'usS' whenl, CLorl, C I |

' otherwise
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Observe also that « is generic if and only if the boundaries of the intervals
I; and I, do not meet.

By the Duistermaat-Heckman Theorem [Gu, §2], the symplectic volume of
“Pia) is equal to the length of A,. We would then obtain the same length
if we had used the other diagonal [p(2) + p(3)|. This produces a statement of
elementary Euclidean geometry: the variation intervals of the two diagonals
of a quadrilateral with given sides in R® are the same length.

(6.2) m = 5: Conditions for which both d, and dz never vanish are
for instance o # a, and ay # as. The space of pentagons SPi(oz) is then
a toric manifold of dimension 4. The moment polytope A, € R* for (dy,d3)
is the intersection of the rectangle I,

Io = [la; — aa| , a1 + ol X [las — aal, as + as]
with the non-compact rectangular region

Qo ={(x,y) € Rs0)’ |x+y>a3 and y>x—a3 and y<x+as}.

0= 0 A
o

NI

¥
— Q| o o+ o,

FIGURE 2: The moment polytope Ag

(see Figure 2). One sees that A, has at most 7 sides. The generic a are
exactly those for which the boundary of €2, contains no corner of I, and
P3 () is then obtained by symplectic blowings up from CP* or §* x §*.
The space of planar polygons *P% () is a closed surface obtained by gluing
4 copies of A, and its Euler characteristic is given by the formula
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x(CP*(a)) = 4 — # (sides of A,)

(see [DJ], Example 1.20) and is orientable if and only if /, C w,. One has
of course x(°Pi(a)) = 2x(°*P*(a)) and P2 () is an orientable surface
(’"Pi(a) is always orientable). The possible cases, depending on the number
of sides of A, are summed up in the following table.

# of sides P () P () P () Ex. of «
3 CP? RP? 52 (2,1,5,1,2)
a) CP2#CP? Klein bottle | 72 (3,2,5,1,2)
4 or
b) 2 x §? T? T°uT? | (3,1,3,1,3)
5 (S2 x SH#CP? | T?#RP? ) (2,1,3,1,2)
6 (S? x S2)#2CP? | T2#2RP? I (2,1,1,1,2)
7 (S2 x SH#3CP2 | T2#3RP? > (4,3,4,3,4)

i A(111v131)1)

FIGURE 3: A,

(6.3) Some embeddings of the regular pentagon o = (1, 1,1,1, 1)
are not prodigal. However none are lined and thus the moduli space
Vo :=>P>(e) is diffeomorphic for small ¢ to V. where Ve :=>P3(a,) and
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ae = (1+¢,1,1,1,14¢). The moment polytope for a. has then 7 sides and
thus Vo ~ V. is diffeomorphic to (S2 x SH)#3CP2 (if k = 2, SPX(a); ~ 4).
The “limit moment polytope” A 1,1,1,1) is shown in Figure 3.

The pre-image in V. of the segments {x = e} NA, and {y = e} NAL
are 2-spheres of symplectic volume proportional to e, by the Duistermaat-
Heckman Theorem. Passing to the limit Vj, these spheres become Lagrangian,
and so cannot be complex. This shows that the action of the bending torus is
not complex — these polygon spaces are only equivariantly symplectomorphic,

not equivariantly isometric, to toric varieties.

(6.4) Any class r € P¥23(a) has a unique representative in p € 573"(04)
with p(5) = (—as5,0,0) and ~(r) := p(1) + p(2) in the half-plane
H = {z = 0,y > 0}. This provides a map v : *P*(e) — H whose
image A, is the intersection R} N R, N’H where R; and R, are the rings

R, :={veR? ‘ o) — | < |v| < a1+t

R2::{UER2||a4—a3[§|v{§a4+a3}.

FIGURE 4: Ay

The idea of reconstructing >P?(c) by gluing copies of Za goes back to
the early works of W. Thurston on planar linkages (see [TW, p.100]). The
relationship with our theory is the following : the domain A, is straightened up
into a PL-polytope A, in R? by the map v — (|v|, |v — (0, as)|) and A, is
just the moment polytope for the bending Hamiltonians 0(p) = |p(1) + p(2)|
and Ox(p) = |p(3) + p(4)].

(6.5) m = 6: The conditions o) # o, and as # ag imply that d, and
d, never vanish. However, one cannot guarantee generically d; #* 0. But we
can replace the d = (dy,d,,d3) by 6 := (01, 0,,03) where
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oy =di = |p(D) +p@)] . 2= |pB3) + p@)] , 85 :=d5 = |p(5) + p(6)|

and guarantee non-vanishing of the &;’s by the generic condition ap;—1 #F Q2.
Observe that 0;0® : Vo(C") — R (i = 1.2.3) are the functions on V,(C™)
given (on (a.b) € Vo(C™)) by the difference of the eigenvalues of the (2x2)-
matrices M} M;, where

= (o 0) we(nn) =0 )
The moment polytope in R? is the intersection of the rectangular parallelepiped
I, = [|a; — az].a; + a2l X [Jou — a3|. s + as] X [|ag — as|. as + 5]
with the region
Qi ={(x.y.00€eR|0<z<x+y. 0<x<y+zand 0<y<x+z}.
The domain Q can be described as the convex hull of the three half-lines
{(0<x=yand z=0}, {0<y=zand x=0}. {0<z=x and y =0}

or the cone R, - =3 on the hypersimplex Z;. The polytope A, has then at
most 9 facets. The length-system a is generic when the boundary of € does
not contain corners of [,. As 6 is even, the regular hexagon is not generic:
6pl(1.....1) contains 10 elements.

(6.6) The bending flows O occuring in (6.4) and 6 admit the following
generalization. For m = 2n — 1 or 2n, we define the even-step map
e : Mk — "Fk by e(p) (i) = p(2i — 1) + p(2i) taking e(p) (n) := p(m)

if m is odd. We also call e the induced maps mpk _€, npk mpk LN ”Pi

and "P* < Pk We call p € "F* even generic if e(p) is a proper
polygon. Above the space of proper polygons, the map e is a smooth
locally trivial bundle whose fiber is a product of (k — 1)-spheres. Define
0= (0.....0,) : "F* — R" by O := foe. The map O gives the side
lengths of the new polygon e(p). It is always continuous and smooth when
e(p) 1s a proper polygon. As the map e is a submersion on even-generic
polygons, the critical values of 0 are the same as those of £, the walls of 4.3.
As for the map ¢, the map O can be defined on each "P*(«). Call o € R™
even generic if "PX() only consists of even-generic polygons. For instance,
a is even-generic if iy # ay; for all i. When k=3, 9 is a moment map
for the corresponding bending action of 7" defined on even-generic polygons.

Restrict to "P3(a); for an even-generic «. Define the right-angled
polytope
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n
o = H[lazi — i1, 0 + Q1]
i=1

and consider the convex polytope A, C R”

. { InNRy-ZE) when m = 2n
Tl NRy -E)N{x, =|p(m)|} whenm=2n—-1

PROPOSITION 6.7. 1) The image of O : "P*(a), — R" is the whole
polytope A, .

2) If x € A, is a regular value of 0, the even-step map e induces, for
m = 3, a symplectomorphism from the symplectic reduction T"\O~'(x) onto

”Pi(x). []

7. REMARKS AND OPEN PROBLEMS

(7.1) Is there an octonionic version of Section 3 ? Alternately, are there
U;(H) bendings in dimension 5 (like the U,(C) bending flows in dimension 3
and U;(R) flippings in dimension 2)?

(7.2) Observe that the inclusion ™P* C "P*! becomes a bijection when
k > m — 1 (triangles are always planar, etc.). In what ways are these spaces
mPm=1 more natural than the unstable ones ?

(7.3) The m-polygons whose first diagonal is of a given length forms
a sphere bundle over a space of (m — 1)-polygons. (For k = 3 this is just
symplectic reduction by the first bending circle.) This gives an inductive way
to construct the space of m-polygons by gluing together (sphere bundles over)
the spaces of (m — 1)-polygons; it would require identification of these sphere
bundles, which in k& = 3 might be done using the Duistermaat-Heckman
theorem (where the circle bundle is determined by its Euler class).

Alternately one might work out the fibers of the whole map d of section 5.
Unfortunately in dimensions above 3 these are always singular (at, in particular,
the planar polygons).

(7.4) In [KM1] and [Wa] there are presented “wall-crossing arguments”
for identifying the spaces "™P2?(c). It would be nice to relate these to a
combination of [Du] and the paper [GS2], which presents its own wall-crossing
arguments for any symplectic reduction by a torus.
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(7.5) A space of great interest nowadays is the moduli space of flat SU(2)
connections on a punctured Riemann sphere — in the language of this paper,
geodesic polygons in §° (rather than R?). The spaces here can be seen as
limiting versions where the radius of % goes to infinity. We do not know how
to adapt the Gel’fand-MacPherson correspondence to this case; one definite
complication is that it is no longer the symmetric group but the braid group
which permutes the edges, and that action is not complex.

(7.6) By averaging the Riemannian metric with respect to the bending
torus, one can deform the complex structure on a space of prodigal polygons
to that of the corresponding toric variety. Is the original complex structure
that of a toric variety (not just in the same deformation class) ?
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