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a normal subgroup of H then D{7) is in this subgroup (note that there are

finitely many such normal subgroups).
Since D{7) has infinite order (if 7 is non-trivial), (D(7)) has positive

dimension so that it contains a non-trivial one-parameter group. Hence

every non trivial semi-simple element in DÇT) yields a one-parameter group
contained in Ho. We now show that these one-parameter subgroups generate the

connected component of the identity in H. Observe the following elementary
fact : if a family of vectors spans the Lie algebra of a Lie group, then the one-

parameter groups generated by these vectors generate the connected component
of the identity. Therefore, we consider the linear span <£ in the Lie algebra
S) of H of the Lie algebras of all the subgroups (D(7)) for 7 semi-simple.
It is enough to show that (£ S). Note that (£ is certainly non-trivial since

semi-simple elements are Zariski dense in H. Note also that (£ is invariant
under the adjoint action of D(T), hence under the adjoint action of H since

D(T) is Zariski dense in H. It follows that (£ coincides with the product of
some of the simple factors of S). The only possibility is that (£ S) since

otherwise, all the semi-simple D(7) would have some power contained in the

same product of some but not all of the simple factors of H (note that the

algebraic Abelian group (D(7)) has a finite number of connected components).
This implies that all semi-simple elements of D(r) are contained in some non
trivial normal subgroup of H. This is not possible by the following argument.
In the algebraic group H, there is a non-empty open Zariski set consisting
of semi-simple elements which are not contained in any non-trivial normal

subgroup of H. Since DÇT) is Zariski dense in //, it intersects non-trivially
this open set.

It follows that H0 contains the connected component of the identity of
H. Therefore Ho is a semi-simple Lie group of finite index in H. By
Kushnirenko's theorem, we can analytically linearize <f(H) (one also uses

Remark 2.1) and in particular O(F).
Theorem 10.4 is proved.
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