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164 G. CAIRNS AND E. GHYS

10. LINEARIZABILITY OF SL(n,Z)-ACTIONS

The purpose of this section is to prove Theorem 1.2.

THEOREM 10.1.  There are no faithful C'-actions of SL(n,Z) on (R™,0)
for 1 <m < n.

Proof. Suppose we have a faithful C'-action of SL(n,Z) on (R™, 0).
First note that the differential of the action defines a homomorphism
D: SL(n,Z) — GL(m,R). According to a special case of Margulis’ super-
rigidity theorem, proved in [40, Theorem 6], there is a finite index subgroup
I' in SL(n,Z) and a continuous linear representation p: SL(n,R) — GL(m,R)
such that p and D agree on I". For 1 < m < n, there is no such non-trivial
representation p so that we deduce that the restriction of D to I' is trivial.
Again, by a special case of a theorem of Margulis, proved in [40, Theorem 7],
for any finite index subgroup I'" of SL(n,Z), there is no non-trivial homomor-
phism from I' to R. Hence by Thurston’s stability theorem, we deduce that
the action of I' is trivial, contradicting the faithfulness of the action. L]

EXAMPLE 10.2. We now give an example of a non-linearizable C*°-action
of SL(3,Z) on R®. This example is obtained simply by restricting to SL(3,Z)
the action of SL(3,R) on R® given in Section 9. This gives an action with
many discrete orbits because by construction we have an open region where
the stabilizers of the SL(3,R)-action are trivial and SL(3,Z) is discrete in
SL(3,R). But this is impossible for the linearized action, which is the adjoint
representation. To see this, first note that if g € s[(3,R) is diagonal, then
its orbit under SL(3,R) is SL(3,R)/ Stabgy3 ry(g). Now for most diagonal
elements ¢, the stabilizer Stabg; 3 ry(g) 1s just the set of diagonal elements
in SL(3,R), and the action of SL(3,Z) on SL(3,R)/{diagonal matrices}
has a dense orbit if and only if the action of the diagonal matrices on
SL(3,R)/SL(3,Z) has a dense orbit. But this latter condition is true, by
Moore’s ergodicity theorem (see [50, Theorem 2.2.6]). It follows that for the
adjoint representation there is a dense set of non-trivial diagonal elements
whose orbits under SL(3,7Z) are dense in their orbits under SL(3,R) and are
therefore non-discrete.

EXAMPLE 10.3. We now give an example of a non-linearizable C*-action
of SL(2,Z) on R?. Consider the matrices

0 -1 0 -1
S:<1 O> and T_<1 1).
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It is well known that SL(2,Z) is an amalgamated product of the cyclic groups
generated by S and 7 (see for example [36, Chapter 6]). Explicitly :
SL2,Z)=(S,T : $*=T6=1d, §=T°).

Now let f: R — R be the map f(y) =y -+ and replace T by its conjugate
t = F''TF, where F(x,y) = (x,f(y)). We claim that the group G of
diffeomorphisms of R? generated by S and ¢ is isomorphic to SL(2,Z). Indeed

the differential of the action of G defines a homomorphism ¢: G — SL(2,Z)

which takes S to S and ¢ to T. To construct the inverse homomorphism from
SL(2,Z) to G, it suffices to send S to S and T to ¢, and then check the
group relations: but ¢ clearly has order 6 and since f is an odd function, one
has £ = —Id = §2.

Now let P = S~!t. One has P(x,y) = (f~'(x+f(»),f()). In particular,
P(x,0) = (f~'(x),0) and so the x-axis is an invariant line on which P is
a contraction. Hence P cannot be topologically conjugate to its linear part,

: I 1
which is the parabolic matrix S™!T = ( 0 1> .

We now study analytic actions of lattices and prove a linearizability result
analogous to Kushnirenko’s theorem. We state it for general lattices rather
than for the special case of SL(n,Z) since the proof is the same.

THEOREM 10.4. Let 1T be any irreducible lattice in a connected semi-
simple Lie group with finite center, no non-trivial compact factor group and
of rank bigger than 1. Every C%-action of T on (R™,0) is linearizable.

We begin with several lemmas. We fix a lattice I" as in the theorem and
a real analytic action @ of I" on (R™,0).

LEMMA 10.5. The action of T is formally linearizable.

Proof. Margulis has shown that the first cohomoiogy of I' with values
in any finite dimensional linear representation vanishes [27, Chap. IX,
Theorem 6.15]. Hence the proof of Theorem 2.8 applies. [

LEMMA 10.6. Let D be any representation of T in GL(m,C). Then the
traces of all the matrices in the image of D are algebraic numbers.

Proof. This is also a well known corollary of the vanishing of first
cohomology groups. One first remarks that the homomorphism D is rigid;
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that 1s, any other homomorphism close to D on a finite system of generators
is conjugate to D. This again uses the vanishing of H'(T, gl(m,C)) (see
[27, 1bid.]). Then denote by £ the field generated by the traces of all
matrices in D(I'). This is a finitely generated extension of the rationals and
one has to show that it is an algebraic extension. But if this was not the
case, one could deform the embedding ¢ C C by using some non-trivial
Galois automorphism of C. Applying this automorphism to all elements
of D(I'), this would construct a non-trivial deformation of D, which is
impossible. [

LEMMA 10.7. For every « in I' such that D(vy) is semi-simple, the
diffeomorphism ®(+) is analytically linearizable.

Proof. We recall Brjuno’s linearization theorem (see [7, Chapter 11,
Theorem 10] or [28, théoreme 3]). Let f be an analytic diffeomorphism
of (R™,0). Suppose that f is formally linearizable and that the linear part
of f is a semi-simple matrix whose eigenvalues are (Ar,...,A,). If these
eigenvalues satisfy some diophantine condition (€2) described below, then f is
analytically linearizable. For any positive integer k, denote by wy the infimum
of the modulus of non-zero numbers of the form A{'--- Al — 1 where the
q; are integers such that g; > —1, at most one of the ¢; equals —1, and
S".qi < 21, Then the condition (Q) asserts that the series >, 2 %Inw;'
converges. -

According to Lemma 10.5, the diffeomorphism ®(y) is formally lineariz-
able. According to Lemma 10.6, all eigenvalues (\j, ..., \,) of the differential
D(y) of ®(v) at the origin are algebraic numbers. An important theorem of
Baker shows that there is a constant C > 0 such that for all integers k, we
have wy > exp(—Ck) [3, Theorem 3.1]. It follows that the condition (€2) is

satisfied and one can apply Brjuno’s theorem. [

REMARK 10.8. In most cases, the spectrum of D(v) contains many
resonances. Not only the determinant of D(7y) 1s one since there is no
non-trivial homomorphisms from I' to R but there are extra resonances
coming from the structure of linear representations. Suppose for example
that ' = SL(n,7Z) and that @ = D is the restriction to I' of a linear
representation of SL(n, R) in GL(m,R). Then the many integral linear relations
between the weights of this representation provide corresponding multiplicative
relations between the eigenvalues of the matrix D(v). Hence, in order to
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prove the previous lemma, the classical linearization theorem of Siegel is
not sufficient ([28]): one has to use the more powerful theorem of Brjuno
which allows resonances but it was indeed necessary to first prove the formal
linearizability.

Of course, our problem now is that the diffeomorphisms which linearize
the ®(vy) might depend on ~. The difficulty comes again from the resonances
since these imply that the centralizers of D(v) are big inside the group of
analytic diffeomorphisms.

Denote by Diff(R™,0) the group of germs of real analytic diffeomorphisms
of R™ at 0 and by I/)’i?f(R’", 0) the group of formal diffeomorphisms. We can
consider @ as a homomorphism from I' to Diff(R™,0) C Diff(R"™,0). The
linear part D of @ is a homomorphism from I' to GL(m,R).

We can assume that D(I") is infinite. Indeed, if D(I") is finite, the kernel
of D acts trivially by Thurston’s theorem so that the action @ factors through
a finite group and is therefore linearizable.

By Lemma 10.5, there is an element ]? in ﬁiﬁ"(R’”,O) which conjugates
® and D. Let H C GL(m,R) be the Zariski closure of D(I'). According to
[27, 1bid.], H 1s a semi-simple group. Let ¢: H — ]j?f(R’”, 0) be defined by
d(h) = fhf ! so that for v € T, we have ®(y) = ¢(D(v)). If we could show
that ¢(H) C Diff(R™, 0) then we could apply Kushnirenko’s theorem and there
would exist an element f of Diff(R™, 0) such that f¢(H)f~! is contained in
GL(m,R). Since f®(y)f~! = f¢(D(y))f~" the convergent diffeomorphism f
would linearize ®(I") as required.

Therefore, we denote by Hy C H the inverse image of Diff(R”,0) by
¢ and we shall show that Hy = H. Observe first that obviously D(T) is
contained in Hy since qﬁ(D(fy)) = @(vy) is convergent by hypothesis.

For each v in TI', denote by (D(v)) the Zariski closure of the group
generated by D(v) in GL(m,R). We claim that (D(~)) is contained in H, if
D(7) 1s semi-simple.

Indeed, by Lemma 10.7, we know that there is a convergent diffeomorphism
f~ such that f,®(y)f" ' = D(y). The algebraic group consisting of those
elements g of GL(m,R) such that Fv o9y I'= g contains D(v), hence
{D(7)) . It follows that every element of (D(v)) has an image under ¢ which
is conjugate by f, to a linear map so that in particular ¢({D())) consists
of convergent diffeomorphisms and (D(v)) is indeed contained in H, as we
claimed.

Observe that by Remark 2.1 we can replace ' by a subgroup of finite
index. In particular, using Selberg’s lemma, we can assume that D) is
torsion free and, more precisely, that if some power of some D() lies in

P T S S
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a normal subgroup of H then D(vy) is in this subgroup (note that there are
finitely many such normal subgroups).

Since D(y) has infinite order (if + is non-trivial), (D(7)) has positive
dimension so that it contains a non-trivial one-parameter group. Hence
every non trivial semi-simple element in D(I') yields a one-parameter group
contained in Hy. We now show that these one-parameter subgroups generate the
connected component of the identity in H. Observe the following elementary
fact: if a family of vectors spans the Lie algebra of a Lie group, then the one-
parameter groups generated by these vectors generate the connected component
of the identity. Therefore, we consider the linear span ¢ in the Lie algebra
$) of H of the Lie algebras of all the subgroups (D(v)) for + semi-simple.
It is enough to show that € = §. Note that ¢ is certainly non-trivial since
semi-simple elements are Zariski dense in H. Note also that & is invariant
under the adjoint action of D(I"), hence under the adjoint action of H since
D(I") is Zariski dense in H. It follows that & coincides with the product of
some of the simple factors of . The only possibility is that ¢ = ) since
otherwise, all the semi-simple D(7y) would have some power contained in the
same product of some but not all of the simple factors of H (note that the
algebraic Abelian group (D(y)) has a finite number of connected components).
This implies that all semi-simple elements of D(I") are contained in some non
trivial normal subgroup of H. This is not possible by the following argument.
In the algebraic group H, there is a non-empty open Zariski set consisting
of semi-simple elements which are not contained in any non-trivial normal
subgroup of H. Since D(I') is Zariski dense in H, it intersects non-trivially
this open set.

It follows that Hy contains the connected component of the identity of
H. Therefore Hy, is a semi-simple Lie group of finite index in H. By
Kushnirenko’s theorem, we can analytically linearize ¢(H) (one also uses
Remark 2.1) and in particular ®(T").

Theorem 10.4 is proved.
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