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7.4. Coning actions on spheres. If one has a non-trivial SL(2, R)-action

on Sm, then taking the cone in the obvious sense, one obtains an SL(2.R)-
action on (Rm+1.0). We claim that such actions cannot be conjugate to C1

actions. Indeed, actions defined by coning have invariant spheres around 0.

If a C1 diffeomorphism has a family of invariant topological spheres around

the origin, it cannot have any stable manifold so that all the eigenvalues of its

differential at the origin have modulus one. No non-trivial linear representation

of SL(2. R) has the property that all eigenvalues of all elements have modulus

one. So, if the action under consideration was C1 the differential at the origin
would be trivial : this is a contradiction with Thurston's stability theorem.

There are many interesting actions of SL(2. R) on spheres. Compactifying
the actions of Section 6 gives examples on S2. An action on S3 was given in
Example 7.3. Notice also that if one has actions of SL(2.R) on Sp and Sq,

then there is an associated action of SL(2. R) on their join Sp * Sq Sp+q+l.

Finally we remark that many interesting actions of SL(n, R) on spheres,

for n > 3, can be found in the papers of Fuichi Uchida (see for example

[46, 47, 48]).

8. A C°° -ACTION of 5L(2,R) which is not linearizable

Here we give a variation of the Guillemin-Sternberg example a C00-action
of the Lie algebra si(2. R) on R3 which is not linearizable. The action we give
below integrates to a C°° non-linearizable SL(2, R)-action. It is obtained by
deforming the adjoint action of 51,(2. R) on its Lie algebra. The constructed
action is clearly non-linearizable since it has an orbit of dimension 3.

By differentiation, the adjoint action of SL{2, R) defines a Lie algebra £
(isomorphic to s((2.R)) of vector fields on R3. This algebra can be explicitly
computed as follows: choose an element h G 31(2,R), take its exponential
exp h, and compute the derivative of the adjoint map Ad(exp(th)) at t 0.
A convenient basis for g is :

Here R is the derivative of Ad (exp(t h)) where

commutator relations are :

[X, Y] -R: [R: X] 7. [R, Y\ -X.



160 G. CAIRNS AND É. GHYS

The idea is now to deform this action by adding in a component in the

direction of the radial vector field:

d d d
r — Xx~ + ztt •

ox oy oz

We don't change R, but we set X X -f/r, F Y -f gr, for some functions

/ and g and we want to impose the same relations as before :

[X, F] « -R, [.R, X] - F, [R, Y] -X.
Since r commutes with X, Y and R, this requires

(3) R(f) g

(4) R{g) -f
(5) X(g) - Y(f) +fx(g) - gt(f) 0.

Equations (3) and (4) give R2f +/ 0, which suggests that one looks for
functions of the form

f(x, y, z) xA(z,+ y2),

for some function A: R2 R. Then g(x,y,z) —yA(z, \A2 +y2) and

equation (5) gives

X(yA) + Y(xA) 0

This has the smooth solution

A(z v) - aA
ZyyZ-j V) _

V2

where a: R —>• R is any C°°-function which is zero on R~. It follows that
for each choice of a, the vector fields

X X + xA(z, -\A2 + Y Y - yA(z, \/x2 + y2)t, and i?

generate a Lie algebra 21 isomorphic to 51(2, R). By choosing <2 to be a

bounded function, we guarantee that the elements of 21 are complete vector
fields. Indeed, take a Riemannian metric on R3 which, outside the unit ball,
is g(x,y,Z)/\A2 + y2 + ' where denotes the standard Euclidean metric.
This defines a complete Riemannian metric, with respect to which the elements

of 21 are bounded. Hence, by [1, Proposition 2.1.21] for example, the elements

of 21 are complete. By integration, we consequently obtain a smooth action of
the universal cover of SL(2, R) whose orbits are those of 21. In fact, since we
haven't changed the definition of R, this gives a smooth action of SL(2, R)
whose orbits are those of 21.
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Notice that the vector fields X, Y, R are linearly independent wherever

a 7^ 0. Indeed, putting v xr + y2, one has :

It follows that if the function a is non-zero on R+, then the set of hyperbolic

points in sf(2,R) constitute a single orbit under the new action of SL(2,R).
Since no linear action of SL(2,R) in R3 has an orbit of dimension 3, we

conclude that our new action of SL(2, R) is not linearizable. Note that outside

the open orbit, this action coincides with the adjoint linear action.

In order to motivate the construction that we shall present in the next

section, we now present another way of describing the non-linearizable action

that we just constructed. Consider the subgroup Diag of SL(2, R) of diagonal
matrices and consider the trivial action of Diag on the positive line R+. It is

easy to see that the suspension of this action is conjugate to the adjoint action

of SL(2, R) outside the invariant cone in R3. Now, since Diag is isomorphic
to R x Z/2Z, it is easy to let Diag act non-trivially on R+ and the new

suspension will provide a new action of SL(2,R). If the new action of Diag
extends to R+ and is sufficiently flat at 0, this action of SL(2. R) can be

equivariantly glued to the invariant cone and provides non-linearizable smooth
actions of SL(2. R) on (R3,0).

9. A C00-ACTION OF SL(3, R) WHICH IS NOT LINEARIZABLE

We start with the adjoint action of SL(3, R) on its Lie algebra sl(3. R) R8.
Denote by Diag the subgroup of 51,(3, R) of diagonal matrices. This group
is isomorphic to R2 x (Z/2Z)2. Let diag C *[(3,R) denote the 2-dimensional
subalgebra consisting of diagonal matrices. The Weyl group, which is in this
case the symmetric group on 3 letters, acts linearly on diag by permutation of
the axis. The orbit of any point in diag under the adjoint action is a properly
embedded submanifold of s[(3,R) which intersects diag on some orbit of
the Weyl group. Let C be a Weyl chamber in diag, for example the region
consisting of diagonal matrices (Ai,A2,à3) with Ai < A2 < A3. This is a
fundamental domain for the action of the Weyl group.

V —y x 0

« —(v2 - zr) v2A(z, v) — (v2 — z2) a(v2 — z2)
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