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Now consider the orbits of the points # € s[(2,R) under the adjoint
representation of SL(2,R). Notice that since this action leaves K invariant,
the action preserves the spheres K = constant, in Minkowski space R!?.
(Of course, these Minkowski “spheres” are hyperboloids of revolution in R?.
See figure.) So the orbits of the adjoint representation lie in these Minkowski
spheres. In fact, it 1s easy to see that the orbits are precisely the connected
components of these Minkowski spheres. (This is essentially the Jordan
canonical form theorem in dimension 2.) In the case of non-zero parabolic
elements, this means that the orbits are precisely the connected components of
the light-cone minus the origin. Typical stabilizers of the adjoint representation
are :

. 1 0 el 0
hyperbolic case:  Stabg;o r) 0 _1]° + 0 et . t€R
: 0 1 I ¢
parabolic case:  Stabgy» g 00/ + 0 1 :teR

elliptic case: StabSL(zyR) (—Ol (1)> = { <(S:(1);Zt _Czlsntt) e R} .

For every non-zero element & € s[(2,R), the stabilizer Stabg; o ry(h) is (£1
times) the one-parameter subgroup {exp(th): ¢ € R} generated by k. Notice
that if h € s[(2,R) is elliptic (resp. hyperbolic or parabolic), then Stabg2 ry(h)
is a circle (resp. two lines).

6. SL(2,R)-ACTIONS ON R?

By Theorem 3.5, the only homogeneous space of SL(2,R) of dimension 1
on which SL(2,R) acts faithfully is the circle S! equipped with the projective
action. We now examine the homogeneous spaces of SL(2,R) of dimension 2.

LEMMA 6.1. Every faithful transitive action of SL(2,R) on a noncompact

surface is conjugate to one of the following two actions :

: : t 0
a) the c [ act SL(2,R : =~ R?
(a) anonical action on SL(2, )/{(O 1/t> D> 0} = R*\{0},

(b) the canonical action on SL(2,R)/ { (é ;) RS R} =~ R?\ {0}.

Proof.  Of course, the homogeneous spaces of SL(2,R) of dimension 2
are determined by the closed subgroups of SL(2,R) of dimension 1. The
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connected component of a closed subgroup of SL(2,R) of dimension 1 is a
one-parameter subgroup: so it is either hyperbolic parabolic, or elliptic. This
gives the following three homogeneous spaces:

(a) SL(2,R)/ { (é &) t> o} ~ R2\ {0},
(b) SL2,R)/ { (é i) L re R} ~ R2\ {0},

©) SL(2,R)/{<°059 _Si“9> : HGR} ~ R?,

sinf  coséd

Up to a twofold covering, these actions are just the restrictions of the adjoint
representation to the orbits seen in the previous section. Notice however that
in the elliptic case the element —Id acts trivially, and so the action is not
faithful. So this leaves the two required actions.

It remains to show that the homogeneous spaces of the form SL(2,R)/H,
where H is not connected, do not give us any new faithful actions. But it
i1s easy to see that in the hyperbolic case, there are only two possibilities,
corresponding to H having 2 or 4 connected components, and —Id acts
trivially in each case. In the parabolic case, the situation is similar to that of
Part (c) of Theorem 3.5: either —Id acts trivially, or the homogeneous space
is compact. [

We now classify the continuous SL(2,R)-actions on R?. As in the higher
dimensional case, we do this by giving a recipe for constructing examples,
and then prove that this gives a complete list.

First, consider the oriented annulus A = {(r,0) : 1/2 < r < 2}, expressed
in polar coordinates. Note that the above lemma furnishes us with three
faithful transitive actions of SL(2,R) on A. By conjugation by the map
¥: R2\{0} — A defined by o(r,0) = (5%,0), the action (b) on R*\{0}
gives us an action on A which we denote P*. By conjugating this by the
inversion (r,0) — (1/r,0), we obtain another action, which we denote P~ .
In the hyperbolic case (a), the above lemma gives us another action, which
we denote 7H, but it is easy to see that in this case, inversion gives us an
isomorphic action.

Now choose a closed set § C R} and choose a continuous function
T: RF\S — {—1,0,1}. Then one obtains an SL(2,R)-action @5 r on (R?,0)
as follows : taking R} to be the radial coordinate, for each s € S one takes the
circle of radius s to be a one-dimensional orbit, equipped with the canonical
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projective action, and for each connected component C of R;"\S, one takes an
action Pt.P~ or H according to whether T(C) is 1,—1 or O respectively.
It is easy to see that the actions on the two-dimensional orbits agree on their
boundaries with the action on the one-dimensional orbit, so one does indeed
obtain a continuous action.

THEOREM 6.2. Every faithful C%-action of SL(2,R) on (R?,0) is conjugate
to one of the above actions DPgs 1.

Proof. First we linearize the SO(2)-action, using Proposition 3.8. This
shows that the origin is the only zero-dimensional orbit, and that the one-
dimensional orbits are circles centred at the origin. Moreover, from above,
the restricted SL(2,R)-action on the one-dimensional orbits is the canonical
projective action, and the actions on the two-dimensional orbits are each
individually conjugate to either P+, P~ or H. It remains to see that the open
orbits can be glued to their boundaries in a unique manner.

Notice that if x lies in a one-dimensional orbit €, then Stabg; ry(x)
contains a unique one-parameter parabolic subgroup G, of SL(2,R), and
conversely, each one-parameter parabolic subgroup G, fixes a unique pair of
points +x € Q. Inside the orbits of Pt and P, the fixed point sets of the
subgroups G, are radial lines passing from one boundary component of the
annulus to the other component. It follows that each end can be glued to a
circle in precisely two ways which respect the action of the one-parameter
parabolic subgroups. In fact, since —Id commutes with the SL(2, R)-action,
the resulting actions are isomorphic.

Similarly, one treats the hyperbolic two-dimensional orbit of H by
considering the fixed points sets of the one-parameter hyperbolic subgroups of
SL(2,R). If € is a one-dimensional orbit, then each one-parameter hyperbolic
subgroup fixes four points in €. Conversely, each point x € Q is fixed by
a family F, of one-parameter hyperbolic subgroups. For the action H, the
one-parameter hyperbolic subgroups are the stabilizers of the points, and each
one-parameter hyperbolic subgroup has precisely four fixed points. For each
x € Q, the fixed points of the elements of F, define four curves which pass
from one boundary component of the annulus to the other. It is not difficult
to see that a unique SL(2, R)-action results by gluing each end of the annulus
to a circle in such a way as to have continuity of these fixed point sets. [ ]

We now complete the proof of Theorem 1.1.
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THEOREM 6.3. For all k = 1,...,00, every C*-action of SL(2,R) on
(R2,0) is C*-linearizable.

Proof. The proof is essentially the same as that of Theorem 4.2, except
that we require a replacement for Lemma 3.9. Of course, it is not true that
two points of R? lie in the same radial line if and only if they have the
same stabilizer under the SO(2)-action. The idea is to instead use the stable
manifolds of the hyperbolic elements of SL(2,R).

Let ®: SL(2,R) — Diff(R?,0) be our given C!-action. First note that as
in the proof of Theorem 4.2, we may assume that locally the SO(2)-action
is the canonical linear one and that the differential of @ at the origin is the

identity. Now let
—t
. (e 0
= )

and consider the hyperbolic flow ¢’ = ®(h’) on (R?,0). By the stable manifold
theorem (see [17, Theorem 6.2.8 and Theorem 17.4.3]), the stable manifold
So of @' is locally the graph of a C!'-function from (R,0) to (R,0). It
follows that there is a local C'-diffeomorphism of (R?,0) which commutes
with the SO(2)-action and which takes Sy to the x-axis. Conjugating @ by
this diffeomorphism, we may assume that locally Sy is the x-axis. Then by
using Theorem 2.5 we may linearize the action of ¢’ on Sy, with some
local C*-diffeomorphism f of the x-axis and then extend the conjugation to
(R?,0), using Equation (2) of Section 4. The upshot of this is that we may
assume that, at least locally, the SO(2)-action is the canonical one, and the
action of the subgroup H = {h' : t € R} C SL(2,R) is linear on the x-axis.

We will show that the SL(2, R)-action now preserves the radial lines. Let
Rs € SO(2) denote the rotation through angle @ and let f% = Ry i’ R, . Then
clearly the stable manifold Sy of ®(f) is the radial line at angle 6. Now let
g € SL(2,R) and consider £ = ®(g) (Sg). We want to show that X is a radial
line. Clearly X is the stable manifold of the hyperbolic flow ®(gf59™").
Let o denote the angle of the stable line of the hyperbolic one-parameter
group of matrices gf5¢g~'. Then R;'E is the stable manifold £, of the
hyperbolic flow ®(A’), where A" = R;1gftg~'R,. Now the stable line of
the hyperbolic flow A’ is the x-axis; that is A’ is a one-parameter subgroup

—1 b e~! —bsinht
r -
A-exp(t(o 1))—(0 o )

for some b € R. We are required to show that X4 is the x-axis. First notice
that restricted to the x-axis, one has

of the form
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or-o((t ") (4 1)
of(3 )G

since H acts linearly on the x-axis. Hence, since the family of maps

B 1 be=2—1)/2
e(( MR

is equicontinuous in some neighbourhood of the identity, we conclude that 24
is the x-axis, as required.

By the above argument, we may assume that locally the SO(2)-action is
the canonical one and the SL(2, R)-action preserves the radial lines. The proof
is then completed as in the proof of Theorem 4.2. [

7. EXAMPLES OF C%-ACTIONS OF SL(2,R) ON R”™

When m is greater than n there is a plethora of examples of continuous
actions of SL(n,R) on (R™,0). In this section we give some examples in the
case n = 2.

7.1. THE SYMMETRIC PRODUCT. Choose one of the continuous SL(2, R)-
actions on (R?,0) from the previous section. Now consider the associated
SL(2,R)-action on the symmetric product

L R*/%, = C",

where X, is the symmetric group on m letters. Recall that the last identification
associates to an m-tuple of points (x,...,x;) In R? = C the coefficients of
the monic polynomial of degree m in one complex variable whose roots are
the x;. As the original action fixed the origin in R?, so the corresponding
action fixes the origin in R*".

7.2. THE ADJOINT ACTION AT INFINITY. Consider the adjoint action
of SL(2,R) on R?, as discussed in Section 5. Removing the origin and
compactifying the other end, we obtain a CC-action of SL(2,R) on R3,
which we will call the adjoint action at infinity. This action is certainly not
topologically linearizable, since all the orbits now accumulate to the fixed point.

In fact, this action is not topologically conjugate to any C'-action. To see

this, consider the hyperbolic element h = ((1) Ol> . Using the exponential
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