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It follows that after conjugation by F, the SL(n, R)-action commutes with

dilations. Indeed, consider the conjugated SL(n, R)-action. If / G SL(n, R),

x G Rn and À > 0, then choose a,b G SO(n) such that ax G A+ and

bf(Xx) G À+. Provided x is sufficiently close to 0, ax and bf(Xx) will lie in

the domain of /. Then bfa~x G H and so

/(Ax) b~lbfa~la(Ax) ••• b~l(bfg~]) Xa(x)

b~l X(bfa~l) a{x) — Xb~l(bfa~l) a(x)

YM •

The proof of the theorem is then completed by the following well known

result (cf. [17, Lemma 2.1.4]).

LEMMA 4.3. Eveij C1 map commuting with dilations is linear.

Proof. Suppose that / is a C^diffeomorphism of R" which commutes

with dilations. By comparing the differential of A./ and / o A at x we have

Xdf\x Xdf\\x, for each A > 0 and every x G R". Hence df\x df\\x and

so df is constant on the radial lines. Thus df\x df\o for all x and so / is

linear.

5. The adjoint representation of SL(2,R)

Let us recall some facts concerning the linear representations of SL(2,R).
Let P/(R2) denote the space of real valued homogeneous polynomials, of two
variables, of degree /. As a vector space, P/(R2) R/+1, and the action

of SL(2, R) on R2 defines a linear action on P/(R2) : up to isomorphism,
this is the (unique) irreducible representation of SL(2, R) in dimension
I + 1. In dimension 3, there is another useful realization of the polynomial
representation, called the adjoint representation. Notice that the group SL(2, R)
acts by the adjoint representation on its Lie algebra 34(2, R). Of course,
31(2,R) is the space of 2 x 2 real traceless matrices; so as a vector space,

s[(2,R) R3. The adjoint representation Ad: SL(2,R) —* GL(3,R), defined

by

Ad(g) : h » ghg~\ Wg £ SL(2, R), h £ *1(2, R),
is an irreducible linear representation. In fact, an explicit equivariant isomorphism

£4(2, R) P2(R2) is obtained by taking /(/i), as a function of
variables x and y, to be the area of the parallelogram spanned by (x,y) and

h(x.y). That is,
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by2 + 2axy — cx2

Recall that the Cartan-Killing form K of a semi-simple Lie algebra is a non-

degenerate quadratic form which is invariant under the adjoint representation
of the associated Lie group. For 51(2, R), one has K —8det. (The Cartan-

Killing form is unique up to constant factor: the factor here of —8 corresponds
to the usual convention K tr Ad2.) Notice that in particular, K has signature

(—,+,+) and hence determines a Minkowski metric on 51(2, R). The timelike

elements h G 51(2, R) (those with det h > 0) are called elliptic elements.

The space-like, resp. light-like, elements (that is, those with det h < 0, resp.
det h 0) are said to be hyperbolic, resp. parabolic. Notice that under
the elliptic elements correspond to quadratics which are irreducible over R,
the hyperbolic elements correspond to products of distinct linear factors, and

the parabolic elements correspond to (±1 times) the squares of linear factors.

Moreover, this equips Minkowski space with a "temporal" orientation : the

parabolic elements which are squares of linear factors belong to the future.

We denote the exponential map by exp: 51(2, R) 5L(2,R). It is

common to say that g exp h is parabolic, resp. elliptic, resp. hyperbolic,

according to the type of h. The parabolic elements g G SL(2, R) are those

with tr2{g) 4, the elliptic elements have tr2(g) < 4, and the hyperbolic
elements have tr2{g) > 4. Notice also that the universal cover SL(2, R) of
SL(2,R) is also a Lie group. Let us denote the corresponding exponential

map by éxp: 51(2, R) —> SL(2,R). The kernel of the natural quotient map

SL(2,R) SL(2,R) is precisely the image under éxp of the elliptic elements

Orbits of the adjoint representation
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Now consider the orbits of the points h G 51(2, R) under the adjoint
representation of SL{2, R). Notice that since this action leaves K invariant,
the action preserves the spheres K constant, in Minkowski space R1'2.

(Of course, these Minkowski "spheres" are hyperboloids of revolution in R3.

See figure.) So the orbits of the adjoint representation lie in these Minkowski
spheres. In fact, it is easy to see that the orbits are precisely the connected

components of these Minkowski spheres. (This is essentially the Jordan

canonical form theorem in dimension 2.) In the case of non-zero parabolic
elements, this means that the orbits are precisely the connected components of
the light-cone minus the origin. Typical stabilizers of the adjoint representation
are :

hyperbolic case: StabSL(2)R) ^ ^ ^ j± : G r|
parabolic case : StabSL(2jR) ^ ^ |± ^ Q : r g Rj

elliptic case : StabSL(2>R)
° M / (cosf ~sinG

f e R)
V -1 0 Jsint cost J J

For every non-zero element h G sl(2,R), the stabilizer Stabsi(2iR)(/z) is (±1
times) the one-parameter subgroup {exp (thG R} generated by h. Notice
that if h G sl(2,R)is elliptic (resp. hyperbolic or parabolic), then StabS£(2jR)(/r)
is a circle (resp. two lines).

6. SL(2,R)-ACTIONSON R2

By Theorem 3.5, the only homogeneous space of SL(2. R) of dimension 1

on which SL(2,R) acts faithfully is the circle 5' equipped with the projective
action. We now examine the homogeneous spaces of SL(2, R) of dimension 2.

Lemma 6.1. Every faithful transitive action of 2, R) on a noncompact
surface is conjugate to one of the following two actions :

(a) the canonical action on SL(2,R)/ j^ : oj R2\{0},

(b) the canonical action on SL(2,R)/|^q Q:tGR| R2\{0}.

Proof Of course, the homogeneous spaces of SL(2, R) of dimension 2
are determined by the closed subgroups of SL(2,R) of dimension 1. The
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