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It follows that after conjugation by F, the SL(n,R)-action commutes with
dilations. Indeed, consider the conjugated SL(n,R)-action. If f € SL(n,R),
x € R* and A > 0, then choose a,b € SO(n) such that ax € At and
bf(\x) € AT . Provided x is sufficiently close to 0, ax and bf(Ax) will lie in
the domain of f. Then bfa~! € H and so

FOx) = b bfa" a(x) = b (bfg ™) Aax)
= b_lx\(bfa—l)a(x) = /\b—l(bfa_l)a(x)
= M(x).

The proof of the theorem is then completed by the following well known
result (cf. [17, Lemma 2.1.4]). [

LEMMA 4.3. Every C' map commuting with dilations is linear.

Proof. Suppose that f is a C'-diffeomorphism of R" which commutes
with dilations. By comparing the differential of A.f and fo A at x we have
Adf|; = Adf|x, for each A > 0 and every x € R". Hence df |x = df|x and
so df is constant on the radial lines. Thus df|, = df|o for all x and so f is
linear. [

5. THE ADJOINT REPRESENTATION OF SL(2,R)

Let us recall some facts concerning the linear representations of SL(2, R).
Let P;(R?) denote the space of real valued homogeneous polynomials, of two
variables, of degree [. As a vector space, P;(R?) = R and the action
of SL(2,R) on R? defines a linear action on P;(R?): up to isomorphism,
this is the (unique) irreducible representation of SL(2,R) in dimension
[+ 1. In dimension 3, there is another useful realization of the polynomial
representation, called the adjoint representation. Notice that the group SL(2, R)
acts by the adjoint representation on its Lie algebra s[(2,R). Of course,
s[(2,R) 1s the space of 2 x 2 real traceless matrices; so as a vector space,
s[(2,R) = R®. The adjoint representation Ad: SL(2,R) — GL(3,R), defined
by

Ad(g): h+ ghg™', Vg€ SL2,R), hesl(2,R),

is an irreducible linear representation. In fact, an explicit equivariant isomor-
phism 1: s5[(2,R) — P>(R?) is obtained by taking (h), as a function of
variables x and y, to be the area of the parallelogram spanned by (x,y) and
h(x,y). That is,
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P <c —a> =by +2axy—cx".
Recall that the Cartan-Killing form K of a semi-simple Lie algebra is a non-
degenerate quadratic form which is invariant under the adjoint representation
of the associated Lie group. For s[(2,R), one has K = —8det. (The Cartan-
Killing form is unique up to constant factor: the factor here of —8 corresponds
to the usual convention K = tr Ad”.) Notice that in particular, K has signature
(—,+,+) and hence determines a Minkowski metric on s[(2,R). The time-
like elements 4 € s[(2,R) (those with deth > 0) are called elliptic elements.
The space-like, resp. light-like, elements (that is, those with deth < O, resp.
deth = 0) are said to be hyperbolic, resp. parabolic. Notice that under 1,
the elliptic elements correspond to quadratics which are irreducible over R,
the hyperbolic elements correspond to products of distinct linear factors, and
the parabolic elements correspond to (£1 times) the squares of linear factors.
Moreover, this equips Minkowski space with a “temporal” orientation: the
parabolic elements which are squares of linear factors belong to the future.

Orbits of the adjoint representation

We denote the exponential map by exp: sl(2,R) — SL(2,R). It is
common to say that g = exph is parabolic, resp. elliptic, resp. hyperbolic,
according to the type of h. The parabolic elements g € SL(2,R) are those
with #%(g) = 4, the elliptic elements have #r*(g) < 4, and the hyperbolic
elements have #*(g) > 4. Notice also that the universal cover §Z(2,R) of
SL(2,R) is also a Lie group. Let us denote the corresponding exponential
map by exp: s[(2,R) — SL(2,R). The kernel of the natural quotient map
§I:(2, R) — SL(2,R) is precisely the image under exp of the elliptic elements
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Now consider the orbits of the points # € s[(2,R) under the adjoint
representation of SL(2,R). Notice that since this action leaves K invariant,
the action preserves the spheres K = constant, in Minkowski space R!?.
(Of course, these Minkowski “spheres” are hyperboloids of revolution in R?.
See figure.) So the orbits of the adjoint representation lie in these Minkowski
spheres. In fact, it 1s easy to see that the orbits are precisely the connected
components of these Minkowski spheres. (This is essentially the Jordan
canonical form theorem in dimension 2.) In the case of non-zero parabolic
elements, this means that the orbits are precisely the connected components of
the light-cone minus the origin. Typical stabilizers of the adjoint representation
are :

. 1 0 el 0
hyperbolic case:  Stabg;o r) 0 _1]° + 0 et . t€R
: 0 1 I ¢
parabolic case:  Stabgy» g 00/ + 0 1 :teR

elliptic case: StabSL(zyR) (—Ol (1)> = { <(S:(1);Zt _Czlsntt) e R} .

For every non-zero element & € s[(2,R), the stabilizer Stabg; o ry(h) is (£1
times) the one-parameter subgroup {exp(th): ¢ € R} generated by k. Notice
that if h € s[(2,R) is elliptic (resp. hyperbolic or parabolic), then Stabg2 ry(h)
is a circle (resp. two lines).

6. SL(2,R)-ACTIONS ON R?

By Theorem 3.5, the only homogeneous space of SL(2,R) of dimension 1
on which SL(2,R) acts faithfully is the circle S! equipped with the projective
action. We now examine the homogeneous spaces of SL(2,R) of dimension 2.

LEMMA 6.1. Every faithful transitive action of SL(2,R) on a noncompact

surface is conjugate to one of the following two actions :

: : t 0
a) the c [ act SL(2,R : =~ R?
(a) anonical action on SL(2, )/{(O 1/t> D> 0} = R*\{0},

(b) the canonical action on SL(2,R)/ { (é ;) RS R} =~ R?\ {0}.

Proof.  Of course, the homogeneous spaces of SL(2,R) of dimension 2
are determined by the closed subgroups of SL(2,R) of dimension 1. The
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