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142 G. CAIRNS AND E. GHYS

So, setting h; = nh;_;, we have that Tl(hlghl_l) = D(g), for every
g € SL(n,R). By induction, we have elements h; € Bi\ff(Rm,O) such that
Tl(hlghl_l) = D(g) for all [ > 0. Finally set &2 = lim;_, ., ;. This makes
sense in ﬁi?f(Rm, 0) and by construction, 4 formally linearizes the action ®.

3. PREPARATORY RESULTS

First let us make some general comments:

REMARK 3.1. If a Lie group G acts on a topological manifold, then the
restriction of the action to each orbit is a transitive G-action; that is, each orbit
is a homogeneous space G/H for some closed subgroup H C G. In particular,
transitive CC-actions of SL(n,R) are conjugate to analytic SL(n, R)-actions.

REMARK 3.2. Every non-trivial continuous action of SL(n,R) is either
faithful, or factors through a faithful action of PSL(n,R). Indeed, not only
1s SL(n,R) simple as a Lie group (that is, its proper normal subgroups are
discrete), but when n 1s odd it is simple as an abstract group and when # is
even PSL(n,R) = SL(n,R)/{£1} is simple as an abstract group. In particular,
if n is odd, every non-trivial continuous action of SL(n,R) is faithful. If n is
even, non-faithful SL(n, R)-actions are common : see, for example, the adjoint
action of SL(n,R) for n even, or the irreducible SL(2,R)-representation on
R?*! (see Section 5). :

REMARK 3.3.  Every non-trivial C'-action of SL(n,R) on (R" 0) is
faithful. Indeed, the differential at the origin defines a homomorphism
D: SL(n,R) — GL(n,R). In fact, since SL(n,R) is a simple Lie group,
the image of D is contained in SL(n,R). By Thurston’s stability theorem,
D can’t be trivial. So, for dimension reasons, D maps onto SL(n,R). If an
SL(n,R)-action is not faithful, then by the previous Remark, n is even and
the element —1 acts trivially. But then D defines a homomorphism from
PSL(n,R) onto SL(n,R), which is impossible since PSL(n,R) is simple.
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REMARK 3.4.  Suppose one has a C!-action of SL(n,R) on (R",0). By
the previous Remark, the differential D defines an automorphism of SL(n,R).
Let o be the automorphism of SL(n,R) defined by o(g) = (g~ "), and let T
the automorphism given by conjugation by the matrix

-1 0
R).
( 0 Id,1_1> € GL(n,R)

Recall (see [16, Theorem IX.5]) that the group of outer automorphisms of
SL(n,R) is generated by the involution ¢ if n is odd, and it is the group
of order 4 generated by ¢ and 7 if n is even — except when-n = 2, in

: . : : . . 01
which case ¢ is the inner automorphism generated by conjugation by (—1 o) :

Hence, up to conjugacy by an element of GL(n, R), we may assume that the
differential D is either the identity or the map o.

Part (a) of the following theorem is classical (see [30, Chap. VI, Theo-
rem 2]). Parts (b) and (c) could be deduced from Dynkin’s classification of
maximal subgroups of semi-simple Lie groups [8]; we give a more direct
proof. We treat the case n = 2 of Part (c) in Section 6 below.

THEOREM 3.5.

(a) There is no non-trivial C°-action of SL(n,R) on any topological manifold
of dimension m < n — 1.

(b) Every non-trivial C°-action of SL(n,R) on an (n — 1)-dimensional
connected topological manifold is transitive and is conjugate to the
projective action of SL(n,R) on either S"~! or RP" !,

(c) For n > 3, every transitive C°-action of SL(n,R) on a non-compact
n-dimensional topological manifold is conjugate, after possibly pre-
composing with some automorphism of SL(n,R), to the canonical action

of SL(n,R) on R"\{0} or (R"\{0})/{£1d} = RP"~! x R.

Proof.  (a) Suppose that H is a closed subgroup of SL(n,R) of codimen-
sion m. Consider the restricted SO(n)-action. Choose any Riemannian metric
on the smooth manifold M = SL(n,R)/H and average it by the SO(n)-action.
Then SO(n) acts isometrically, for the averaged metric. But the group of isome-
tries of M has dimension at most m(m + 1)/2, by [19, Theorem I1.3.1]. So

dim SO(n) = (g) < (’";1> |

Hence n < m+ 1, as required.
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(b) Suppose one has a non-trivial CY-action of SL(n,R) on an
(n — 1)-dimensional connected topological manifold M. By (a), this action
is transitive and M = G/H for some closed subgroup H C G. Then the
restricted SO(n)-action gives a compact group of isometries of M of dimen-
sion n(n — 1)/2. It follows from [19, Theorem II.3.1] that M is the round
sphere $"~!, or projective space RP"~!, and the action is the canonical one.

(c) Consider a transitive C°-action of SL(n,R) on an n-dimensional
topological manifold M and let H denote the stabilizer of some point so
that M can be identified with the homogeneous space SL(n,R)/H. We first
deal with the case where H is connected, since the other cases can be reduced
to this by taking a covering of the corresponding homogeneous space. We
begin by showing that the linear action of H C SL(n,R) on R” is reducible
and fixes a line or a hyperplane.

Suppose first by contradiction that the complexified representation of the
Lie algebra $H® C C sl(n, C) is irreducible, where §) denotes the Lie algebra .
of H. By a well known theorem of Lie, the radical of $ ® C preserves
some line in C" and since we assume that § ® C is irreducible, the only
possibility is that this radical is Abelian and acts by homotheties. In other
words, H® C is a reductive algebra. By taking suitable real forms, one would
have a compact subgroup K in SU(n) whose real codimension is n. Now, as
before, one can consider SU(n) as a group of isometries of the n-dimensional
manifold SU(n)/K. This would imply that dimSUn) =n> — 1 < n(n — 1)/2
which is a contradiction.

On the other hand, if $® C C sl(n,C) is a reducible representation, then
H ® C C sl(n,C) is contained (up to conjugacy) in the algebra of matrices
preserving CP x {0} (for some 0 < p < n) which is of codimension p(n—p).
Therefore p(n —p) < n so that p =1 or n — 1. This means that there is a
complex line or a complex hyperplane fixed by $H®C. This line or hyperplane
has to be invariant under complex conjugation; otherwise we would have an
invariant complex subspace of dimension or codimension 2 and this is not
possible since H has codimension exactly n. It follows that H fixes a line
or a hyperplane.

If H fixes a hyperplane, replace it by o(H) where o is the automorphism
of SL(n,R) defined by o(g) = (¢~ !). This amounts to changing the action
of SL(n,R) under consideration by pre-composing with o. So we can assume
that H is contained in the stabilizer H' of the radial half-line AT through the
first vector e; of the canonical basis in R"”. Moreover, H is a codimension
one subgroup of H’.
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By Lie [23] (see also [33, Part II, Chap. 6, Theorem 2.11), the connected
codimension one closed subgroups of H’ are given by homomorphisms (0
from H' to R, Aff, or (some cover of) PSL(2,R), where

Affz{(é 1%) : a>0}

is the group of affine transformations of the line. More precisely, H is (the
component of the identity of) the inverse image by ¢ of a codimension one
subgroup, which is trivial in the case of R, the subgroup of homotheties
(b =0) in the case of Aff and the upper triangular subgroup in the case of
PSL(2,R). It is easy to see that there are no non-trivial homomorphisms of
H' to Aff. There are no non-trivial homomorphisms of H’ to (any cover of)
PSL(2,R), except in the case n = 3. In this special case n = 3, one finds
that H is the restricted upper-triangular group

a b c
I = 0 d e cooa>0
0O 0 f

which gives the compact flag manifold SL(3,R)/U = S3. Finally, up to a
multiplicative constant, there is a unique homomorphism from H’ to R:

(R (A,'j) cH — InA;; € R.

Note that here H = kert is precisely the stabilizer Stabg;(, ry(e;) of e; so
that here SL(n,R)/H is the homogeneous space R"\{0}.

Thus we have dealt with the case where H 1s connected. Suppose that H 1s
not connected, and let Hy be its connected component of the identity. Now H
is a normal subgroup of H, and from above, by conjugation we may take H
to be either the group Stabg;, r) (e1), or the group U. If Hy = Stabg;(, r) (e1),
notice that the normalizer of H, is the stabilizer H' of the radial half-line
AT . Tt follows that H/H, is a discrete subgroup of R. If H/H, is finite,
then H/Hy = +1 and so the quotient space is R"\{0}/{+1d}. If H/H, is
infinite, then it is either infinite cyclic, or infinite cyclic cross Z/2Z, and in
either case the quotient space 1s compact. If Hy = U, the normalizer of Hy is
the full group U of upper-triangular matrices: there are 3 possibilities here,
but in each case we get a compact quotient space.

This completes the proof of the theorem. [

We now describe a useful method of extending an action of a subgroup to
an action of the larger group. This method is very general and variations of it
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appear in various branches of mathematics : “induced module” in representation
theory, “suspension” in dynamical systems, etc. In particular, it was used in
an essential way in Schneider’s classification of analytic SL(2, R)-actions on
surfaces [37]. Suppose that H is a closed subgroup of a Lie group G and
suppose that H acts continuously on a topological space F. So H acts
diagonally on G x F, where ¢ € H C G acts on the first factor by right
translation by ¢g~'. Let E = (G x F)/H denote the quotient space. So E
fibres over the space G/H of left cosets of H, with fibre F. Now notice that
G acts on G X F by left translation on the first factor, and this defines an
action of G on E.

DEFINITION 3.6.  The action of G on E just described is called the
suspension of the action of H on F.

Notice that for such an action, there is a H -invariant subspace F' in E,
which i1s H-equivariantly homeomorphic to F, and which has the property
that Staby(x) = Stabg(x), for all x € F'. Indeed, one can take F’ = 7~ '(H),
where 7: E — G/H is the natural fibration. Given f € F and g € G, let
lg,f] denote the image in E of (g,f) under the quotient map G X FF — E.
Then nlg,f]1 = gH, and F' = {[1,f]:f € F}(SL(n,R)).

Conversely, one has:

LEMMA 3.7. Let H be a closed subgroup of a Lie group G. Suppose
that G acts continuously on a topological space M and that there is a
G-equivariant fibration p: M — G/H. Then the G-action on M is conjugate
to0 the suspension of the action of H on the fibre F = p~'(H). More precisely,
if E=(GXxF)/H, then there is a G-equivariant homeomorphism from M fto
E which projects to the identity map on G/H.

Proof. We define a function ¢: M — E as follows: for each x € M we set

W(x) =g, 01,

where p(x) = gH. Note that this makes sense since ¢~ '(x) € F and the
definition of % (x) doesn’t depend upon the choice of g. By construction, %
is G-equivariant and projects to the identity map on G/H. Finally, it is easy
to see that 1) is a homeomorphism. [

By Remark 2.2, SO(n)-actions of class C% on (R™ 0) are not always
linearizable. Despite this, we have the following result, which was proved for
the cases n < 3 in [30, Chapter V1.6.5] and was conjectured therein for all n.
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PROPOSITION 3.8. Every faithful CC-action of SO(n) on (R",0) is globally
conjugate to the canonical linear action.

Proof. By the proof of Theorem 3.5(a), the orbits of the SO(n)-action have
dimension > n— 1. In fact, there cannot be any SO(n)-orbit of dimension #,
since otherwise it would be all of R"\{0}, which is impossible, by the
compactness of SO(n). By the proof of Theorem 3.5(b), the only SO(n)-
orbits of dimension n — 1 are $"~' and RP""!, and the actions on them
are conjugate to the canonical projective ones. In fact, for n > 3 there can
be no orbit homeomorphic to RP*!, because RP"~! does not embed in R”
[6, Theorem 10.12]. So each orbit of SO(n) is a (n— 1)-dimensional sphere or
a fixed point. It then follows from [30, ibid.] that O is the unique fixed point
and there is a continuous ray -y beginning at O which meets each SO(n)-orbit
exactly once.

First consider the n = 2 case. Note that the SO(2)-action on R2\{0} is
free. Indeed, let g € SO(2) and suppose that x € R*\{0} belongs to the fixed
point set Fix(g) of the action of g on R?. Then Fix(g) contains 0 as well
as the entire orbit of x by SO(2). By Eilenberg’s theorem [9], since ¢ is
orientation preserving, the action of g on R? is topologically conjugate to a
rotation. So, as g has more than one fixed point, we must have Fix(g) = R?.
Hence, as the SO(2)-action on R? is faithful by hypothesis, we have ¢ = Id,
as claimed. Now define the map ¢: R?> — R? by setting

#(hy(0) = h. (g)

for all + € [0,00), h € SO(2), where h acts on the left via the given
SO(2)-action, and on the right by matrix multiplication. By construction, )
conjugates the given SO(2)-action to the canonical linear action.

Now suppose n > 2. Let {e|,...,e,} denote the canonical basis of R”.
Then, as in the proof in [30, ibid.], one may choose the ray ~ to be comprised
of fixed points of the restricted SO(n — 1)-action, where here SO(n—1) is the
subgroup of SO(n) which fixes the first basis vector e;. So for each x € R",
there is a unique number ¢ € [0,00) and an element g € SO(n) such that

x = g(y(1). Moreover, for x € R™\{0}, the element g is unique modulo
SO(n — 1). Consider the fibration

p:x € R"\{0} — g € SOm)/SO(n — 1) 2 §"~ 1.

Clearly p is SO(n)-equivariant. Notice that p~'(SO(n — 1)) = y\{0} ¥R
and the SO(n — 1)-action on this set is trivial. So, by Lemma 3.7, the action
of SO(n) on R™\{0} is conjugate to the action induced by the trivial action

[P N T R S
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of SO(n — 1) on R. That is, it is conjugate to the canonical action of SO(n)
on R"\{0}. It remains to put back the origin. This can obviously be done
equivariantly : one merely needs to verify that it can be done continuously.
However, by averaging the flat metric on R” by the original action of SO(n),
one may assume that the action is distance preserving. Thus, as ¢ tends to 0,
the SO(n)-orbits through () converge uniformly to 0. So the continuity of
the conjugation is clear. [

We will also need the following:

LEMMA 3.9. Let n > 3 and suppose that one has a C°-action of SL(n,R)
on (R",0) such that the restricted action of SO(n) is the canonical linear
action. Then locally the SL(n,R)-action preserves the radial lines.

Proof. The key point is that two points of R” lie in the same radial line if
and only if they have the same stabilizer under the SO(n)-action. Let x,y € R”
lie in the same radial line and let g € SL(n,R). So Stabgo(,)(x) = Stabsom(y)
and we want to show that

Stabsoem (9(x)) = Stabsow) (9()) -

Since the restricted action of SO(n) is the canonical linear action, each
orbit of SL(n,R) in R"\{0} is either a round sphere centred at 0 or a
spherical shell centred at 0. Suppose that our SL(n, R)-action on R” has two
spherical orbits, S; and §; say. By Theorem 3.5(b), the SL(n,R)-action on
each sphere is the projective one. So there is an equivariant homeomorphism
Y: S — S If x € §; and y = ¢¥(x) € S, we have ¢g(y) = w(g(x))
and as it is equivariant, 1 respects the stabilizers of the SO(n)-action. So
Stabsom) (g(y)) = Stabso) (g(x)), as required (and v is just + the radial
projection of S; onto §,).

By continuity, it remains to consider the case where x and y lie in the
same open orbit of SL(n, R) ; that is, suppose y = h(x) for some h € SL(n,R).
For all f € SL(n,R), one has Stabsou(x) = Stabsoe (f(x)) if and only if
fe NormSL(n,R) (Stabso(n)(x)). So h e NormSL(n,R) (Stabgo(n)(x)) and we need
to show that ghg™' € NormgRr)(Stabsow (9(x))). But if G is any group
acting on a space X and H is a subgroup of G, then

g (NormG (StabH(x)) ) ¢! = Normg (g (StabH(x)g‘1 ) )
= Normg (StabH (g(x)) ,

for all x € X and g € G, as we require.
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