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136 G. CAIRNS AND E. GHYS

REMARK 1.4.  Notice that “linearizable” really means “locally lineariz-
able”. We don’t consider the question of global linearizability since, even
under the strongest hypotheses, global linearizability is too much to expect.
For example, the action by conjugation of PSL(2,R) on its universal cover
L,SZ(Q,R) >~ R? is analytic and locally linearizable, by the exponential map of
the Lie algebra, but it is not globally linearizable because it has countably
many fixed points (corresponding to the infinite discrete centre). In fact, even
for algebraic actions, global linearization is not guaranteed [38]. Throughout
this paper we will use the word local to mean “in some neighbourhood of the
origin”. We make the point however that in the case of a locally linearizable
action, each homeomorphism of the action has its own domain on which it is
linearizable, but there may be no common open domain for the entire group.

Note that we could also deal with local group actions; that is, maps P
from some open neighbourhood of (Id,0) € G x R™ to some neighbourhood
of 0 € R”™ which satisfy the same conditions as for actions but only in the
neighbourhood of (Id,0) € G x R™. There would be no essential changes in
what follows.

Our hearty thanks go to Marc Chaperon, Pierre de la Harpe, Arthur
Jones, Alexis Marin, Robert Roussarie, Bruno Sévennec and Thierry Vust
for informing us of useful references and for their comments. The second
author would also like to thank the members of the School of Mathematics
at La Trobe University for their hospitality during his visit to La Trobe.

2. BACKGROUND AND MOTIVATION

The introduction to [21] begins: “The subject of smooth transformation
groups has been strongly influenced by the following two problems: the
smooth linearization problem (Is every smooth action of a compact Lie group
on Euclidean space conjugate to a linear action ?), and the smooth fixed point
problem (Does every smooth action of a compact Lie group on Euclidean
space have a fixed point ?).” Indeed, for compact group actions, one has the
following theorem of Salomon Bochner and Henri Cartan:

BOCHNER-CARTAN THEOREM (see [30, Chap. V, Theorem 1]). For all
k = 1,...,00, every Cr-action of a compact group G on (R™ 0) is
Ck-linearizable.

Proof. For each element g € G, let D(g) denote the differential of the
action of ¢ at the origin. Consider the map F: R" — R™, defined by
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F(x) = / D(9)" ' (9)d
G

where 4 is the normalized Haar measure on G. At the origin, the differential
D(F) is the identity map. So F is a local Ck-diffeomorphism in some
neighbourhood of the origin. For each 7 € G one has

F(h(x)) = /G D(g)™" (gh(x)) dp = /G D(gh™ )™ () d

B / D(h) D(g)~" (9(x)) dps = D(h) (F)) ,
G

for all x € R”. So locally, F conjugates h to its linear part D(h). L]

REMARK 2.1. The same idea shows the following : suppose a group G acts
on (R”,0) by C* diffeomorphisms and contains a finite index subgroup Gy
which is C¥-linearizable. Then the action of G is C*-linearizable. Indeed, we
can assume that the action of Gy is linear and we observe that D(g)~! (g(x))
depends only on the class [g] of g in Go\G. Therefore we can define
F: Rln — RIIY by

Foy= Y D '(9w).

Lg1€GH\G

This F linearizes the action of G.

REMARK 2.2. The above theorem does not hold for C%-actions. Indeed,
here are two examples. First, recall that Bing constructed a continuous
involution of §° whose fixed point set is the “horned sphere” [4] (see
[5] for other examples). Removing one of these fixed points, one obtains
a Z/2Z-action on R*® which is not locally topologically Aconjugate to a linear
action, because the fixed point set is not locally flat.

Secondly, we give a non-linearizable action of S' = SO(2), since we will be
interested in SO(n)-actions later in the paper. Let M be any compact manifold
with the same homotopy type as CP", for some n > 3. By pulhng back the
Hopf fibration S' — $?"*! — CP", one obtains an S'-bundle M — M.
Here M is a compact manifold with the same homotopy type as S?'*!, as
one can see by applying the 5-lemma to the long exact homotopy sequence
of the two fibrations. Hence, by Smale’s proof of the generalized Poincaré
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conjecture [39], M is homeomorphic to S?"+!. Taking the cone of S§2+!
we obtain an S!-action on (R*'*2,0). Locally, in a punctured neighbourhood
of the origin, the orbit space of this action is homeomorphic to M x R.
Now M may be chosen to be not homeomorphic to CP" [15, 29]. Then, by
the h-cobordism theorem [18, Essay 3], M is not h-cobordant to CP" and
consequently M x R is not homeomorphic to CP" x R. Hence the S'-action
is not locally topologically conjugate to a linear action. Indeed, a linear action
of SO(2) on R**% which is free outside the origin is linearly conjugate to
a product of n+ 1 copies of the canonical action of SO(2) on R? and its
local orbit space is homeomorphic to CP" x R.

In fact, for actions of noncompact groups, linearization results date back to
Poincaré’s work on analytic maps [34]. Recall that an element L of GL(m,R)
1s called hyperbolic if all its eigenvalues A;,..., A, have modulus different
from one. One says that L has a resonance if there is some relation of the form
pry— )\]f‘ )\152 y )\fjl where 1 < i < m and the k; are non negative integers
whose sum 1is bigger than 1. In the smooth case, one has the celebrated
Sternberg Theorem :

THEOREM 2.3 ([43]). In a neighbourhood of a fixed point, every C°°-map
whose linear part is hyperbolic and has no resonances is C°°-linearizable.

In the same vein, the Grobman-Hartman theorem says that in a neigh-
bourhood of a hyperbolic fixed point, C!'-maps are topologically linearizable.
See [17, Chap. 6] for a presentation of these results. Sternberg also proved
in [43] that in a neighbourhood of a hyperbolic fixed point, every C*-map
whose linear part has no resonances is C!-linearizable. Here [ depends on the
eigenvalues of the linear part and in general is less that k. According to [41],
for the particular case of maps of the real line, one may take [ = k— 1. Here
“hyperbolic” simply means that the derivative is a dilation (i.e. a linear map
x — ax with |a| # 0, 1). In fact, by [42, Theorem 4], for k > 2 one may take
| = k in this case. According to [12], even for k = 1, this last result is true
but we could not locate a proof in the literature. All linearization results for
maps pass immediately over to the case of flows, due the following lemma
of Sternberg:

LEMMA 2.4 ([42, Lemma 4]). Let k= 1,...,00 and suppose that one
has a Ct-flow ¢' on (R™,0). If ¢* is C*-linearizable for some « # 0, then
¢! is C*-linearizable.
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Proof. Suppose that ¢® is linear. Then set

Foo = / D&Y (') dr

0

and imitate the proof of the Bochner-Cartan Theorem.  []
In particular, this gives the following result, which we will require later.

THEOREM 2.5. Let k=1,...,00 and suppose that one has a C*-flow ¢'
on (R,0) whose linear part D(¢") is a dilation. Then ¢' is C*-linearizable.

According to Guillemin and Sternberg [11], it was Palais and Smale who
suggested extending the Bochner-Cartan theorem to noncompact Lie groups.
Indeed, analytic actions of semi-simple Lie groups are also linearizable, as
proved by Kushnirenko [22], and independently by Guillemin and Sternberg
[11] (see also [10, 20, 24, 26]). In particular, one has:

THEOREM 2.6. Every analytic action of SL(n,R) on (R™,0) is analytically
linearizable.

Proof. The proof that we sketch is slightly simpler that the one given
in [11, 22]. It uses the famous unitary trick but does not use Poincaré’s
linearization theorem. First complexify the analytic SL(n, R)-action to obtain
a local holomorphic action of SL(n,C) on a neighbourhood of the origin in
C". Now restrict this action to the action of SU(n). From the proof of the
Bochner-Cartan theorem, we have on some neighbourhood U of the origin,
a holomorphic map F: (U,0) — (C™,0) such that

F(g(x)) = D(g) (F(x)), for all g € SUn), x€ ¢ (U)NU ,

where D is the differential of the action at the origin. Now fix x € C" and
consider the set '

S = {9 € SL(n,C) : F(g(x)) = D(g) (F(x)), on some neighbourhood of 0} .

This is a complex Lie subgroup of SL(n,C) containing SU(n). So, since
sl(n,C) = su(n)@i.su(n), one has S = SL(n, C). Thus the action of SL(n, C)
1s holomorphically linearizable.

Finally, F' leaves R"™ invariant and hence defines an analytic map which
conjugates the action of SL(n,R) to its linear part.  []
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Here is another important result:

THURSTON’S STABILITY THEOREM ([45]). Let G be a connected Lie group
or a finitely generated discrete group and suppose we have a non-trivial
Cl-action of G on (R™,0). If G acts trivially on the tangent space ToR™,
then H'(G,R) # 0.

REMARK 2.7. In the statement of Thurston’s stability theorem, H*(G, R)
denotes the continuous cohomology; so H'(G,R) is just the space of
continuous homomorphisms from G to R. Since SL(n,R) is a simple Lie
group, one has H' (SL(n, R), R) =0, for all n. For n > 3, SL(n,Z) is a perfect
group [32, Theorem VIL5], and so H'(SL(n,Z),R) = 0. More generally, if T’
is a lattice in SL(n,R), for some n > 3, then I' has Kazhdan’s property T
and so H'(I',R) = 0 (see [50, Theorem 7.1.4 and Corollary 7.1.7]). If T
1s a lattice in SL(2,R), then I' doesn’t have Kazhdan’s property T (see
[25, Proposition 3.1.9]) and H'(I'",R) may be zero or non-zero, depending
upon I'. However, H'(SL(2,Z),R) = 0, as the derived subgroup of SL(2,Z)
has finite index.

Note that the previous theorem can be regarded as a linearization result:
for G = SL(n,R), since H'(G,R) = 0, it says that the action is linearizable
(trivially) if the differential at the origin is trivial.

The main point of this paper is to discuss to what extent the following
theorem of Hermann can be generalized.

THEOREM 2.8 ([13]). Every C*-action of SL(n,R) on (R™ 0) is formally
linearizable.

Before proving this theorem, let us recall some concepts and notation.
Firstly, if i = (i1,..., i), Where iy,...,i, > 0, and if x = (x,...,x,) € R",
then we write |i| = > " i and we denote [[i_, x/ by x'. Now consider a
formal power series

fo) = fix,

where f; € R™ for each i, and supposé: that f has zero constant term (that
is, f(0) = 0). The k™ Taylor polynomial of f is T"f = 3", fix'. We say
that such a formal power series is a formal diffeomorphism of (R™ 0) if T'f
defines a nonsingular linear map on R™. Let ﬁi?f(R’”, 0) denote the group of
formal diffeomorphisms of R™. Note that Taylor expansion defines a natural

homomorphism
x: Diff(R",0) — Diff (R™, 0)
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which is not injective, but is surjective [31, Chap. I, p. 28]. We say that a
group G C Diff(R™,0) is formally linearizable if there exists f € Diff (R™,0)
such that f conjugates x(G) to its linear part.

Proof of Theorem 2.8. Suppose we have a C*°-action
®: SL(n,R) — Diff(R",0).

Let ¢ = yo® and let D: SL(n,R) — GL(m,R) be the linear part of ¢;
that is D is the homomorphism: D(g) = T'¢(g). The proof is an inductive
argument. First set h; = Id € ﬁff(R’”,O). Then for some integer [ > 1
suppose that one has h_; € ]ji?f(R”",O) such that for each g € SL(n,R),
the Taylor polynomial 7'~'(hi_;1$(g)h;_ ;) is linear and equals D(g); that is,
setting g1 = lzl_lqz’)(g)/ll__ll, one has T~ '(g_;) = D(g). Let Ei(g) denote
the homogeneous part of g; of degree [. Clearly E; is a function on SL(n,R)
with values in the space P; of homogeneous polynomials of degree [ with
values in R”. In terms of the group operation in SL(n,R), we have

(1) Ei(gh) = Ei(g) o D(h) + D(g) o Ei(h).
Notice that SL(n,R) acts linearly on P;; explicitly, for each p € P; and each
g € SL(n,R), one sets

g-p=D(gopoD(g™").

So we can consider the cohomology of SL(n,R) with values in P;, twisted

by this action. Now let ¢;(g) = Ej(g) o D(g™") and observe that from (D), ¢
i1s a l-cocycle; that is:

ci(gh) = g.ci(h) + ci(g) .
By Whitehead’s lemma (see for example [14, Chapter VIL6]),
H'(sl(n,R),R™) =0,

and hence by Van Est’s Theorem [49], H! (SL(n R), R’”) = 0. So ¢ is exact.

Thus ¢; = dpy, for some p; € P;; that is, ¢;(g) = ¢ . pi=pi, Ic forall g € SL(n,R).
Consider the polynomlal diffeomorphism 7 = Id +p; € Diff (R™,0). Note that

n~ =1d — p; + terms of order > /.
Consider the conjugation of g; by n. Modulo terms of order > I , one has:
ngin~" = (d+py) o (D(g) + Ei(g)) o (Id —p)
= D(g) — D(g) o pi + E(g) + pi o D(g)

= D(g) — D(g) o pi + ¢;(g) o D(g) + p; o D(g)
= D(g).
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So, setting h; = nh;_;, we have that Tl(hlghl_l) = D(g), for every
g € SL(n,R). By induction, we have elements h; € Bi\ff(Rm,O) such that
Tl(hlghl_l) = D(g) for all [ > 0. Finally set &2 = lim;_, ., ;. This makes
sense in ﬁi?f(Rm, 0) and by construction, 4 formally linearizes the action ®.

3. PREPARATORY RESULTS

First let us make some general comments:

REMARK 3.1. If a Lie group G acts on a topological manifold, then the
restriction of the action to each orbit is a transitive G-action; that is, each orbit
is a homogeneous space G/H for some closed subgroup H C G. In particular,
transitive CC-actions of SL(n,R) are conjugate to analytic SL(n, R)-actions.

REMARK 3.2. Every non-trivial continuous action of SL(n,R) is either
faithful, or factors through a faithful action of PSL(n,R). Indeed, not only
1s SL(n,R) simple as a Lie group (that is, its proper normal subgroups are
discrete), but when n 1s odd it is simple as an abstract group and when # is
even PSL(n,R) = SL(n,R)/{£1} is simple as an abstract group. In particular,
if n is odd, every non-trivial continuous action of SL(n,R) is faithful. If n is
even, non-faithful SL(n, R)-actions are common : see, for example, the adjoint
action of SL(n,R) for n even, or the irreducible SL(2,R)-representation on
R?*! (see Section 5). :

REMARK 3.3.  Every non-trivial C'-action of SL(n,R) on (R" 0) is
faithful. Indeed, the differential at the origin defines a homomorphism
D: SL(n,R) — GL(n,R). In fact, since SL(n,R) is a simple Lie group,
the image of D is contained in SL(n,R). By Thurston’s stability theorem,
D can’t be trivial. So, for dimension reasons, D maps onto SL(n,R). If an
SL(n,R)-action is not faithful, then by the previous Remark, n is even and
the element —1 acts trivially. But then D defines a homomorphism from
PSL(n,R) onto SL(n,R), which is impossible since PSL(n,R) is simple.
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