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THE LOCAL LINEARIZATION PROBLEM
FOR SMOOTH SL(n)-ACTIONS

by Grant CAIRNS and Etienne GHYS

ABSTRACT. This paper considers SL(n, R)-actions on Euclidean space fixing the
origin. We show that all C'-actions on R”" are linearizable. We give C°°-actions
of SL(2,R) on R’ and of SL(3,R) on R® which are not linearizable. We classify
the CP-actions of SL(n,R) on R”. Finally, the paper concludes with a study of the
linearizability of SL(n,Z)-actions.

RESUME. Dans cet article, on considere les actions de SL(n,R) sur I’espace
euclidien qui fixent I’origine. On montre que les actions C' sur R”" sont linéarisables.
On donne des actions C*° de SL(2,R) sur R’ et de SL(3,R) sur R® qui ne sont pas
linéarisables. On classifie les actions C° de SL(n,R) sur R". L’article s’achéve par
une étude de la linéarisabilité des actions de SL(n,Z).

1. INTRODUCTION

If a group G acts smoothly on a manifold M, fixing some point x € M,
then the differential of the action induces a linear action in the tangent space
T'M to M at x. The classical linearization problem is to determine whether
the action of G on M is locally conjugate to its linear action on 7.M. In
other words, is the action linearizable around x ? In this paper we restrict
ourselves largely to actions of SL(n,R) on R™ fixing the origin: for brevity,
we will simply say that SL(n, R) acts on (R™,0).
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134 G. CAIRNS AND E. GHYS

One of our results is:

THEOREM 1.1. For all n > 1 and for all k=1,...,00, every C*-action
of SL(n,R) on (R",0) is C*-linearizable.

This result is not entirely unexpected. Indeed, D’Ambra and Gromov
remarked that for actions of all semi-simple groups: “at least in the C*"-case
(and probably in the C*°-case as well) the action is linearizable” [2, p. 98].
This was one of the main motivations of this present work. However, in [11],
Guillemin and Sternberg gave an example of a C®-action of the Lie algebra
s5[(2,R) on R3 which is not linearizable (but which does not integrate to an
action of SL(2,R)). They remarked : “(the linearization theorem) is false in the
C°° case unless some restrictions are placed on the algebra. What restrictions
1s unclear at present, but it seems that the algebra s[(2, R) has to be singled
out for special attention”. Indeed, we show in Section 8 that Guillemin and
Sternberg’s example can be modified to give an action which integrates to
a C*-action of the group SL(2,R) on R® which is not linearizable (even
topologically). However, the moral of our results is that linearizability is not
so much a function of the algebra or the group, but of the dimension in which
it acts. To further this claim, we give an example, in Section 9 below, of a
C>-action of SL(3,R) on R® which is also non-linearizable.

The paper is organized as follows. To put our results in context, we begin
in Section 2 by recalling various classical linearization theorems. We state
the linearization theorems of Bochner-Cartan, Sternberg and Kushnirenko, and
we give proofs of the Bochner-Cartan theorem and Kushnirenko’s theorem,
since they are quite short. We recall Thurston’s stability theorem, which we
use repeatedly in this paper. We also give a proof of Hermann’s result that
smooth SL(n,R)-actions are formally linearizable.

In Section 3 we establish some preparatory results. In particular, we recall
the notion of suspension (or induction). This 1s a procedure whereby, for a
subgroup H of a group G and an action of A on a space M, one extends the
action to an action of G on a bigger space M’ D M such that for each x € M
the stabilizer of x under the action of G coincides with the stabilizer of x
under the original action of H. We then use this suspension procedure to prove
two results which we require later in the paper, concerning SO(n)-actions.

The study of SL(n,R) actions of R" is done in two parts. The case
n > 3 is treated in Section 4. We prove part of Theorem 1.1 here, and in
the continuous case, we give an explicit recipe for constructing all C°-actions
on R": see Theorem 4.1.
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In Section 5, we pause to recall some details of the adjoint representation
of SL(2,R) on its Lie algebra. Then in Section 6 we treat the linearizability
of smooth SL(2, R)-actions on R? and the classification of C%-actions on R?.
Actions of SL(2,R) on R™ for m > 2 are quite prolific. We give several
examples in Section 7. Then in Section 8 we give our variation of Guillemin
and Sternberg’s example. By using the method of suspension we show, in
Section 9, that one can construct a non-linearizable C*°-action of SL(3,R)
on R®. This is also constructed from the adjoint representation.

The paper concludes in Section 10 with a study of the linearizability of
SL(n,Z)-actions (and more generally of lattices in semi-simple groups). We
show 1n particular:

THEOREM 1.2.

(a) For no values of n and m with n > m, are there any faithful C'-actions
of SL(n,Z) on (R™0).

(b) There is a C*®-action of SL(3,Z) on (R® 0) which is not topologically
linearizable.

(c) There is a C¥-action of SL(2,Z) on (R?,0) which is not linearizable.

(d) For all n > 2 and m > 2, every C%-action of SL(n,Z) on (R",0) is
C“-linearizable.

Throughout this paper, by a “C-action” we mean an action by C*-diffeo-
morphisms which is continuous in the C*-topology. To fix ideas, we make the
following explicit definition :

DEFINITION 1.3.  Consider a C'-action @ of a group G on (R™,0) and
simply denote by g(x) the action of the element ¢ € G on the point x € R™.
For g € G, let D(g) € GL(m,R) denote the differential of the diffeomorphism
x = g(x) at the origin. Then @ is linearizable if there are open neighbourhoods
U,V of the origin, and a homeomorphism F: (U,0) — (V,0), such that for
each g € G the maps

x— F(g(F7'(x))) and x— D(g)(x)

have the same germ at the origin. If ® and F are C* (resp. C*°, resp. C¥)
then we say that the action is C*- (resp. C*°-, resp. C“-) linearizable.
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REMARK 1.4.  Notice that “linearizable” really means “locally lineariz-
able”. We don’t consider the question of global linearizability since, even
under the strongest hypotheses, global linearizability is too much to expect.
For example, the action by conjugation of PSL(2,R) on its universal cover
L,SZ(Q,R) >~ R? is analytic and locally linearizable, by the exponential map of
the Lie algebra, but it is not globally linearizable because it has countably
many fixed points (corresponding to the infinite discrete centre). In fact, even
for algebraic actions, global linearization is not guaranteed [38]. Throughout
this paper we will use the word local to mean “in some neighbourhood of the
origin”. We make the point however that in the case of a locally linearizable
action, each homeomorphism of the action has its own domain on which it is
linearizable, but there may be no common open domain for the entire group.

Note that we could also deal with local group actions; that is, maps P
from some open neighbourhood of (Id,0) € G x R™ to some neighbourhood
of 0 € R”™ which satisfy the same conditions as for actions but only in the
neighbourhood of (Id,0) € G x R™. There would be no essential changes in
what follows.

Our hearty thanks go to Marc Chaperon, Pierre de la Harpe, Arthur
Jones, Alexis Marin, Robert Roussarie, Bruno Sévennec and Thierry Vust
for informing us of useful references and for their comments. The second
author would also like to thank the members of the School of Mathematics
at La Trobe University for their hospitality during his visit to La Trobe.

2. BACKGROUND AND MOTIVATION

The introduction to [21] begins: “The subject of smooth transformation
groups has been strongly influenced by the following two problems: the
smooth linearization problem (Is every smooth action of a compact Lie group
on Euclidean space conjugate to a linear action ?), and the smooth fixed point
problem (Does every smooth action of a compact Lie group on Euclidean
space have a fixed point ?).” Indeed, for compact group actions, one has the
following theorem of Salomon Bochner and Henri Cartan:

BOCHNER-CARTAN THEOREM (see [30, Chap. V, Theorem 1]). For all
k = 1,...,00, every Cr-action of a compact group G on (R™ 0) is
Ck-linearizable.

Proof. For each element g € G, let D(g) denote the differential of the
action of ¢ at the origin. Consider the map F: R" — R™, defined by
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F(x) = / D(9)" ' (9)d
G

where 4 is the normalized Haar measure on G. At the origin, the differential
D(F) is the identity map. So F is a local Ck-diffeomorphism in some
neighbourhood of the origin. For each 7 € G one has

F(h(x)) = /G D(g)™" (gh(x)) dp = /G D(gh™ )™ () d

B / D(h) D(g)~" (9(x)) dps = D(h) (F)) ,
G

for all x € R”. So locally, F conjugates h to its linear part D(h). L]

REMARK 2.1. The same idea shows the following : suppose a group G acts
on (R”,0) by C* diffeomorphisms and contains a finite index subgroup Gy
which is C¥-linearizable. Then the action of G is C*-linearizable. Indeed, we
can assume that the action of Gy is linear and we observe that D(g)~! (g(x))
depends only on the class [g] of g in Go\G. Therefore we can define
F: Rln — RIIY by

Foy= Y D '(9w).

Lg1€GH\G

This F linearizes the action of G.

REMARK 2.2. The above theorem does not hold for C%-actions. Indeed,
here are two examples. First, recall that Bing constructed a continuous
involution of §° whose fixed point set is the “horned sphere” [4] (see
[5] for other examples). Removing one of these fixed points, one obtains
a Z/2Z-action on R*® which is not locally topologically Aconjugate to a linear
action, because the fixed point set is not locally flat.

Secondly, we give a non-linearizable action of S' = SO(2), since we will be
interested in SO(n)-actions later in the paper. Let M be any compact manifold
with the same homotopy type as CP", for some n > 3. By pulhng back the
Hopf fibration S' — $?"*! — CP", one obtains an S'-bundle M — M.
Here M is a compact manifold with the same homotopy type as S?'*!, as
one can see by applying the 5-lemma to the long exact homotopy sequence
of the two fibrations. Hence, by Smale’s proof of the generalized Poincaré
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conjecture [39], M is homeomorphic to S?"+!. Taking the cone of S§2+!
we obtain an S!-action on (R*'*2,0). Locally, in a punctured neighbourhood
of the origin, the orbit space of this action is homeomorphic to M x R.
Now M may be chosen to be not homeomorphic to CP" [15, 29]. Then, by
the h-cobordism theorem [18, Essay 3], M is not h-cobordant to CP" and
consequently M x R is not homeomorphic to CP" x R. Hence the S'-action
is not locally topologically conjugate to a linear action. Indeed, a linear action
of SO(2) on R**% which is free outside the origin is linearly conjugate to
a product of n+ 1 copies of the canonical action of SO(2) on R? and its
local orbit space is homeomorphic to CP" x R.

In fact, for actions of noncompact groups, linearization results date back to
Poincaré’s work on analytic maps [34]. Recall that an element L of GL(m,R)
1s called hyperbolic if all its eigenvalues A;,..., A, have modulus different
from one. One says that L has a resonance if there is some relation of the form
pry— )\]f‘ )\152 y )\fjl where 1 < i < m and the k; are non negative integers
whose sum 1is bigger than 1. In the smooth case, one has the celebrated
Sternberg Theorem :

THEOREM 2.3 ([43]). In a neighbourhood of a fixed point, every C°°-map
whose linear part is hyperbolic and has no resonances is C°°-linearizable.

In the same vein, the Grobman-Hartman theorem says that in a neigh-
bourhood of a hyperbolic fixed point, C!'-maps are topologically linearizable.
See [17, Chap. 6] for a presentation of these results. Sternberg also proved
in [43] that in a neighbourhood of a hyperbolic fixed point, every C*-map
whose linear part has no resonances is C!-linearizable. Here [ depends on the
eigenvalues of the linear part and in general is less that k. According to [41],
for the particular case of maps of the real line, one may take [ = k— 1. Here
“hyperbolic” simply means that the derivative is a dilation (i.e. a linear map
x — ax with |a| # 0, 1). In fact, by [42, Theorem 4], for k > 2 one may take
| = k in this case. According to [12], even for k = 1, this last result is true
but we could not locate a proof in the literature. All linearization results for
maps pass immediately over to the case of flows, due the following lemma
of Sternberg:

LEMMA 2.4 ([42, Lemma 4]). Let k= 1,...,00 and suppose that one
has a Ct-flow ¢' on (R™,0). If ¢* is C*-linearizable for some « # 0, then
¢! is C*-linearizable.
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Proof. Suppose that ¢® is linear. Then set

Foo = / D&Y (') dr

0

and imitate the proof of the Bochner-Cartan Theorem.  []
In particular, this gives the following result, which we will require later.

THEOREM 2.5. Let k=1,...,00 and suppose that one has a C*-flow ¢'
on (R,0) whose linear part D(¢") is a dilation. Then ¢' is C*-linearizable.

According to Guillemin and Sternberg [11], it was Palais and Smale who
suggested extending the Bochner-Cartan theorem to noncompact Lie groups.
Indeed, analytic actions of semi-simple Lie groups are also linearizable, as
proved by Kushnirenko [22], and independently by Guillemin and Sternberg
[11] (see also [10, 20, 24, 26]). In particular, one has:

THEOREM 2.6. Every analytic action of SL(n,R) on (R™,0) is analytically
linearizable.

Proof. The proof that we sketch is slightly simpler that the one given
in [11, 22]. It uses the famous unitary trick but does not use Poincaré’s
linearization theorem. First complexify the analytic SL(n, R)-action to obtain
a local holomorphic action of SL(n,C) on a neighbourhood of the origin in
C". Now restrict this action to the action of SU(n). From the proof of the
Bochner-Cartan theorem, we have on some neighbourhood U of the origin,
a holomorphic map F: (U,0) — (C™,0) such that

F(g(x)) = D(g) (F(x)), for all g € SUn), x€ ¢ (U)NU ,

where D is the differential of the action at the origin. Now fix x € C" and
consider the set '

S = {9 € SL(n,C) : F(g(x)) = D(g) (F(x)), on some neighbourhood of 0} .

This is a complex Lie subgroup of SL(n,C) containing SU(n). So, since
sl(n,C) = su(n)@i.su(n), one has S = SL(n, C). Thus the action of SL(n, C)
1s holomorphically linearizable.

Finally, F' leaves R"™ invariant and hence defines an analytic map which
conjugates the action of SL(n,R) to its linear part.  []
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Here is another important result:

THURSTON’S STABILITY THEOREM ([45]). Let G be a connected Lie group
or a finitely generated discrete group and suppose we have a non-trivial
Cl-action of G on (R™,0). If G acts trivially on the tangent space ToR™,
then H'(G,R) # 0.

REMARK 2.7. In the statement of Thurston’s stability theorem, H*(G, R)
denotes the continuous cohomology; so H'(G,R) is just the space of
continuous homomorphisms from G to R. Since SL(n,R) is a simple Lie
group, one has H' (SL(n, R), R) =0, for all n. For n > 3, SL(n,Z) is a perfect
group [32, Theorem VIL5], and so H'(SL(n,Z),R) = 0. More generally, if T’
is a lattice in SL(n,R), for some n > 3, then I' has Kazhdan’s property T
and so H'(I',R) = 0 (see [50, Theorem 7.1.4 and Corollary 7.1.7]). If T
1s a lattice in SL(2,R), then I' doesn’t have Kazhdan’s property T (see
[25, Proposition 3.1.9]) and H'(I'",R) may be zero or non-zero, depending
upon I'. However, H'(SL(2,Z),R) = 0, as the derived subgroup of SL(2,Z)
has finite index.

Note that the previous theorem can be regarded as a linearization result:
for G = SL(n,R), since H'(G,R) = 0, it says that the action is linearizable
(trivially) if the differential at the origin is trivial.

The main point of this paper is to discuss to what extent the following
theorem of Hermann can be generalized.

THEOREM 2.8 ([13]). Every C*-action of SL(n,R) on (R™ 0) is formally
linearizable.

Before proving this theorem, let us recall some concepts and notation.
Firstly, if i = (i1,..., i), Where iy,...,i, > 0, and if x = (x,...,x,) € R",
then we write |i| = > " i and we denote [[i_, x/ by x'. Now consider a
formal power series

fo) = fix,

where f; € R™ for each i, and supposé: that f has zero constant term (that
is, f(0) = 0). The k™ Taylor polynomial of f is T"f = 3", fix'. We say
that such a formal power series is a formal diffeomorphism of (R™ 0) if T'f
defines a nonsingular linear map on R™. Let ﬁi?f(R’”, 0) denote the group of
formal diffeomorphisms of R™. Note that Taylor expansion defines a natural

homomorphism
x: Diff(R",0) — Diff (R™, 0)
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which is not injective, but is surjective [31, Chap. I, p. 28]. We say that a
group G C Diff(R™,0) is formally linearizable if there exists f € Diff (R™,0)
such that f conjugates x(G) to its linear part.

Proof of Theorem 2.8. Suppose we have a C*°-action
®: SL(n,R) — Diff(R",0).

Let ¢ = yo® and let D: SL(n,R) — GL(m,R) be the linear part of ¢;
that is D is the homomorphism: D(g) = T'¢(g). The proof is an inductive
argument. First set h; = Id € ﬁff(R’”,O). Then for some integer [ > 1
suppose that one has h_; € ]ji?f(R”",O) such that for each g € SL(n,R),
the Taylor polynomial 7'~'(hi_;1$(g)h;_ ;) is linear and equals D(g); that is,
setting g1 = lzl_lqz’)(g)/ll__ll, one has T~ '(g_;) = D(g). Let Ei(g) denote
the homogeneous part of g; of degree [. Clearly E; is a function on SL(n,R)
with values in the space P; of homogeneous polynomials of degree [ with
values in R”. In terms of the group operation in SL(n,R), we have

(1) Ei(gh) = Ei(g) o D(h) + D(g) o Ei(h).
Notice that SL(n,R) acts linearly on P;; explicitly, for each p € P; and each
g € SL(n,R), one sets

g-p=D(gopoD(g™").

So we can consider the cohomology of SL(n,R) with values in P;, twisted

by this action. Now let ¢;(g) = Ej(g) o D(g™") and observe that from (D), ¢
i1s a l-cocycle; that is:

ci(gh) = g.ci(h) + ci(g) .
By Whitehead’s lemma (see for example [14, Chapter VIL6]),
H'(sl(n,R),R™) =0,

and hence by Van Est’s Theorem [49], H! (SL(n R), R’”) = 0. So ¢ is exact.

Thus ¢; = dpy, for some p; € P;; that is, ¢;(g) = ¢ . pi=pi, Ic forall g € SL(n,R).
Consider the polynomlal diffeomorphism 7 = Id +p; € Diff (R™,0). Note that

n~ =1d — p; + terms of order > /.
Consider the conjugation of g; by n. Modulo terms of order > I , one has:
ngin~" = (d+py) o (D(g) + Ei(g)) o (Id —p)
= D(g) — D(g) o pi + E(g) + pi o D(g)

= D(g) — D(g) o pi + ¢;(g) o D(g) + p; o D(g)
= D(g).
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So, setting h; = nh;_;, we have that Tl(hlghl_l) = D(g), for every
g € SL(n,R). By induction, we have elements h; € Bi\ff(Rm,O) such that
Tl(hlghl_l) = D(g) for all [ > 0. Finally set &2 = lim;_, ., ;. This makes
sense in ﬁi?f(Rm, 0) and by construction, 4 formally linearizes the action ®.

3. PREPARATORY RESULTS

First let us make some general comments:

REMARK 3.1. If a Lie group G acts on a topological manifold, then the
restriction of the action to each orbit is a transitive G-action; that is, each orbit
is a homogeneous space G/H for some closed subgroup H C G. In particular,
transitive CC-actions of SL(n,R) are conjugate to analytic SL(n, R)-actions.

REMARK 3.2. Every non-trivial continuous action of SL(n,R) is either
faithful, or factors through a faithful action of PSL(n,R). Indeed, not only
1s SL(n,R) simple as a Lie group (that is, its proper normal subgroups are
discrete), but when n 1s odd it is simple as an abstract group and when # is
even PSL(n,R) = SL(n,R)/{£1} is simple as an abstract group. In particular,
if n is odd, every non-trivial continuous action of SL(n,R) is faithful. If n is
even, non-faithful SL(n, R)-actions are common : see, for example, the adjoint
action of SL(n,R) for n even, or the irreducible SL(2,R)-representation on
R?*! (see Section 5). :

REMARK 3.3.  Every non-trivial C'-action of SL(n,R) on (R" 0) is
faithful. Indeed, the differential at the origin defines a homomorphism
D: SL(n,R) — GL(n,R). In fact, since SL(n,R) is a simple Lie group,
the image of D is contained in SL(n,R). By Thurston’s stability theorem,
D can’t be trivial. So, for dimension reasons, D maps onto SL(n,R). If an
SL(n,R)-action is not faithful, then by the previous Remark, n is even and
the element —1 acts trivially. But then D defines a homomorphism from
PSL(n,R) onto SL(n,R), which is impossible since PSL(n,R) is simple.
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REMARK 3.4.  Suppose one has a C!-action of SL(n,R) on (R",0). By
the previous Remark, the differential D defines an automorphism of SL(n,R).
Let o be the automorphism of SL(n,R) defined by o(g) = (g~ "), and let T
the automorphism given by conjugation by the matrix

-1 0
R).
( 0 Id,1_1> € GL(n,R)

Recall (see [16, Theorem IX.5]) that the group of outer automorphisms of
SL(n,R) is generated by the involution ¢ if n is odd, and it is the group
of order 4 generated by ¢ and 7 if n is even — except when-n = 2, in

: . : : . . 01
which case ¢ is the inner automorphism generated by conjugation by (—1 o) :

Hence, up to conjugacy by an element of GL(n, R), we may assume that the
differential D is either the identity or the map o.

Part (a) of the following theorem is classical (see [30, Chap. VI, Theo-
rem 2]). Parts (b) and (c) could be deduced from Dynkin’s classification of
maximal subgroups of semi-simple Lie groups [8]; we give a more direct
proof. We treat the case n = 2 of Part (c) in Section 6 below.

THEOREM 3.5.

(a) There is no non-trivial C°-action of SL(n,R) on any topological manifold
of dimension m < n — 1.

(b) Every non-trivial C°-action of SL(n,R) on an (n — 1)-dimensional
connected topological manifold is transitive and is conjugate to the
projective action of SL(n,R) on either S"~! or RP" !,

(c) For n > 3, every transitive C°-action of SL(n,R) on a non-compact
n-dimensional topological manifold is conjugate, after possibly pre-
composing with some automorphism of SL(n,R), to the canonical action

of SL(n,R) on R"\{0} or (R"\{0})/{£1d} = RP"~! x R.

Proof.  (a) Suppose that H is a closed subgroup of SL(n,R) of codimen-
sion m. Consider the restricted SO(n)-action. Choose any Riemannian metric
on the smooth manifold M = SL(n,R)/H and average it by the SO(n)-action.
Then SO(n) acts isometrically, for the averaged metric. But the group of isome-
tries of M has dimension at most m(m + 1)/2, by [19, Theorem I1.3.1]. So

dim SO(n) = (g) < (’";1> |

Hence n < m+ 1, as required.
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(b) Suppose one has a non-trivial CY-action of SL(n,R) on an
(n — 1)-dimensional connected topological manifold M. By (a), this action
is transitive and M = G/H for some closed subgroup H C G. Then the
restricted SO(n)-action gives a compact group of isometries of M of dimen-
sion n(n — 1)/2. It follows from [19, Theorem II.3.1] that M is the round
sphere $"~!, or projective space RP"~!, and the action is the canonical one.

(c) Consider a transitive C°-action of SL(n,R) on an n-dimensional
topological manifold M and let H denote the stabilizer of some point so
that M can be identified with the homogeneous space SL(n,R)/H. We first
deal with the case where H is connected, since the other cases can be reduced
to this by taking a covering of the corresponding homogeneous space. We
begin by showing that the linear action of H C SL(n,R) on R” is reducible
and fixes a line or a hyperplane.

Suppose first by contradiction that the complexified representation of the
Lie algebra $H® C C sl(n, C) is irreducible, where §) denotes the Lie algebra .
of H. By a well known theorem of Lie, the radical of $ ® C preserves
some line in C" and since we assume that § ® C is irreducible, the only
possibility is that this radical is Abelian and acts by homotheties. In other
words, H® C is a reductive algebra. By taking suitable real forms, one would
have a compact subgroup K in SU(n) whose real codimension is n. Now, as
before, one can consider SU(n) as a group of isometries of the n-dimensional
manifold SU(n)/K. This would imply that dimSUn) =n> — 1 < n(n — 1)/2
which is a contradiction.

On the other hand, if $® C C sl(n,C) is a reducible representation, then
H ® C C sl(n,C) is contained (up to conjugacy) in the algebra of matrices
preserving CP x {0} (for some 0 < p < n) which is of codimension p(n—p).
Therefore p(n —p) < n so that p =1 or n — 1. This means that there is a
complex line or a complex hyperplane fixed by $H®C. This line or hyperplane
has to be invariant under complex conjugation; otherwise we would have an
invariant complex subspace of dimension or codimension 2 and this is not
possible since H has codimension exactly n. It follows that H fixes a line
or a hyperplane.

If H fixes a hyperplane, replace it by o(H) where o is the automorphism
of SL(n,R) defined by o(g) = (¢~ !). This amounts to changing the action
of SL(n,R) under consideration by pre-composing with o. So we can assume
that H is contained in the stabilizer H' of the radial half-line AT through the
first vector e; of the canonical basis in R"”. Moreover, H is a codimension
one subgroup of H’.
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By Lie [23] (see also [33, Part II, Chap. 6, Theorem 2.11), the connected
codimension one closed subgroups of H’ are given by homomorphisms (0
from H' to R, Aff, or (some cover of) PSL(2,R), where

Affz{(é 1%) : a>0}

is the group of affine transformations of the line. More precisely, H is (the
component of the identity of) the inverse image by ¢ of a codimension one
subgroup, which is trivial in the case of R, the subgroup of homotheties
(b =0) in the case of Aff and the upper triangular subgroup in the case of
PSL(2,R). It is easy to see that there are no non-trivial homomorphisms of
H' to Aff. There are no non-trivial homomorphisms of H’ to (any cover of)
PSL(2,R), except in the case n = 3. In this special case n = 3, one finds
that H is the restricted upper-triangular group

a b c
I = 0 d e cooa>0
0O 0 f

which gives the compact flag manifold SL(3,R)/U = S3. Finally, up to a
multiplicative constant, there is a unique homomorphism from H’ to R:

(R (A,'j) cH — InA;; € R.

Note that here H = kert is precisely the stabilizer Stabg;(, ry(e;) of e; so
that here SL(n,R)/H is the homogeneous space R"\{0}.

Thus we have dealt with the case where H 1s connected. Suppose that H 1s
not connected, and let Hy be its connected component of the identity. Now H
is a normal subgroup of H, and from above, by conjugation we may take H
to be either the group Stabg;, r) (e1), or the group U. If Hy = Stabg;(, r) (e1),
notice that the normalizer of H, is the stabilizer H' of the radial half-line
AT . Tt follows that H/H, is a discrete subgroup of R. If H/H, is finite,
then H/Hy = +1 and so the quotient space is R"\{0}/{+1d}. If H/H, is
infinite, then it is either infinite cyclic, or infinite cyclic cross Z/2Z, and in
either case the quotient space 1s compact. If Hy = U, the normalizer of Hy is
the full group U of upper-triangular matrices: there are 3 possibilities here,
but in each case we get a compact quotient space.

This completes the proof of the theorem. [

We now describe a useful method of extending an action of a subgroup to
an action of the larger group. This method is very general and variations of it
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appear in various branches of mathematics : “induced module” in representation
theory, “suspension” in dynamical systems, etc. In particular, it was used in
an essential way in Schneider’s classification of analytic SL(2, R)-actions on
surfaces [37]. Suppose that H is a closed subgroup of a Lie group G and
suppose that H acts continuously on a topological space F. So H acts
diagonally on G x F, where ¢ € H C G acts on the first factor by right
translation by ¢g~'. Let E = (G x F)/H denote the quotient space. So E
fibres over the space G/H of left cosets of H, with fibre F. Now notice that
G acts on G X F by left translation on the first factor, and this defines an
action of G on E.

DEFINITION 3.6.  The action of G on E just described is called the
suspension of the action of H on F.

Notice that for such an action, there is a H -invariant subspace F' in E,
which i1s H-equivariantly homeomorphic to F, and which has the property
that Staby(x) = Stabg(x), for all x € F'. Indeed, one can take F’ = 7~ '(H),
where 7: E — G/H is the natural fibration. Given f € F and g € G, let
lg,f] denote the image in E of (g,f) under the quotient map G X FF — E.
Then nlg,f]1 = gH, and F' = {[1,f]:f € F}(SL(n,R)).

Conversely, one has:

LEMMA 3.7. Let H be a closed subgroup of a Lie group G. Suppose
that G acts continuously on a topological space M and that there is a
G-equivariant fibration p: M — G/H. Then the G-action on M is conjugate
to0 the suspension of the action of H on the fibre F = p~'(H). More precisely,
if E=(GXxF)/H, then there is a G-equivariant homeomorphism from M fto
E which projects to the identity map on G/H.

Proof. We define a function ¢: M — E as follows: for each x € M we set

W(x) =g, 01,

where p(x) = gH. Note that this makes sense since ¢~ '(x) € F and the
definition of % (x) doesn’t depend upon the choice of g. By construction, %
is G-equivariant and projects to the identity map on G/H. Finally, it is easy
to see that 1) is a homeomorphism. [

By Remark 2.2, SO(n)-actions of class C% on (R™ 0) are not always
linearizable. Despite this, we have the following result, which was proved for
the cases n < 3 in [30, Chapter V1.6.5] and was conjectured therein for all n.
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PROPOSITION 3.8. Every faithful CC-action of SO(n) on (R",0) is globally
conjugate to the canonical linear action.

Proof. By the proof of Theorem 3.5(a), the orbits of the SO(n)-action have
dimension > n— 1. In fact, there cannot be any SO(n)-orbit of dimension #,
since otherwise it would be all of R"\{0}, which is impossible, by the
compactness of SO(n). By the proof of Theorem 3.5(b), the only SO(n)-
orbits of dimension n — 1 are $"~' and RP""!, and the actions on them
are conjugate to the canonical projective ones. In fact, for n > 3 there can
be no orbit homeomorphic to RP*!, because RP"~! does not embed in R”
[6, Theorem 10.12]. So each orbit of SO(n) is a (n— 1)-dimensional sphere or
a fixed point. It then follows from [30, ibid.] that O is the unique fixed point
and there is a continuous ray -y beginning at O which meets each SO(n)-orbit
exactly once.

First consider the n = 2 case. Note that the SO(2)-action on R2\{0} is
free. Indeed, let g € SO(2) and suppose that x € R*\{0} belongs to the fixed
point set Fix(g) of the action of g on R?. Then Fix(g) contains 0 as well
as the entire orbit of x by SO(2). By Eilenberg’s theorem [9], since ¢ is
orientation preserving, the action of g on R? is topologically conjugate to a
rotation. So, as g has more than one fixed point, we must have Fix(g) = R?.
Hence, as the SO(2)-action on R? is faithful by hypothesis, we have ¢ = Id,
as claimed. Now define the map ¢: R?> — R? by setting

#(hy(0) = h. (g)

for all + € [0,00), h € SO(2), where h acts on the left via the given
SO(2)-action, and on the right by matrix multiplication. By construction, )
conjugates the given SO(2)-action to the canonical linear action.

Now suppose n > 2. Let {e|,...,e,} denote the canonical basis of R”.
Then, as in the proof in [30, ibid.], one may choose the ray ~ to be comprised
of fixed points of the restricted SO(n — 1)-action, where here SO(n—1) is the
subgroup of SO(n) which fixes the first basis vector e;. So for each x € R",
there is a unique number ¢ € [0,00) and an element g € SO(n) such that

x = g(y(1). Moreover, for x € R™\{0}, the element g is unique modulo
SO(n — 1). Consider the fibration

p:x € R"\{0} — g € SOm)/SO(n — 1) 2 §"~ 1.

Clearly p is SO(n)-equivariant. Notice that p~'(SO(n — 1)) = y\{0} ¥R
and the SO(n — 1)-action on this set is trivial. So, by Lemma 3.7, the action
of SO(n) on R™\{0} is conjugate to the action induced by the trivial action

[P N T R S
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of SO(n — 1) on R. That is, it is conjugate to the canonical action of SO(n)
on R"\{0}. It remains to put back the origin. This can obviously be done
equivariantly : one merely needs to verify that it can be done continuously.
However, by averaging the flat metric on R” by the original action of SO(n),
one may assume that the action is distance preserving. Thus, as ¢ tends to 0,
the SO(n)-orbits through () converge uniformly to 0. So the continuity of
the conjugation is clear. [

We will also need the following:

LEMMA 3.9. Let n > 3 and suppose that one has a C°-action of SL(n,R)
on (R",0) such that the restricted action of SO(n) is the canonical linear
action. Then locally the SL(n,R)-action preserves the radial lines.

Proof. The key point is that two points of R” lie in the same radial line if
and only if they have the same stabilizer under the SO(n)-action. Let x,y € R”
lie in the same radial line and let g € SL(n,R). So Stabgo(,)(x) = Stabsom(y)
and we want to show that

Stabsoem (9(x)) = Stabsow) (9()) -

Since the restricted action of SO(n) is the canonical linear action, each
orbit of SL(n,R) in R"\{0} is either a round sphere centred at 0 or a
spherical shell centred at 0. Suppose that our SL(n, R)-action on R” has two
spherical orbits, S; and §; say. By Theorem 3.5(b), the SL(n,R)-action on
each sphere is the projective one. So there is an equivariant homeomorphism
Y: S — S If x € §; and y = ¢¥(x) € S, we have ¢g(y) = w(g(x))
and as it is equivariant, 1 respects the stabilizers of the SO(n)-action. So
Stabsom) (g(y)) = Stabso) (g(x)), as required (and v is just + the radial
projection of S; onto §,).

By continuity, it remains to consider the case where x and y lie in the
same open orbit of SL(n, R) ; that is, suppose y = h(x) for some h € SL(n,R).
For all f € SL(n,R), one has Stabsou(x) = Stabsoe (f(x)) if and only if
fe NormSL(n,R) (Stabso(n)(x)). So h e NormSL(n,R) (Stabgo(n)(x)) and we need
to show that ghg™' € NormgRr)(Stabsow (9(x))). But if G is any group
acting on a space X and H is a subgroup of G, then

g (NormG (StabH(x)) ) ¢! = Normg (g (StabH(x)g‘1 ) )
= Normg (StabH (g(x)) ,

for all x € X and g € G, as we require.
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4. SL(n.R)-ACTIONS ON R" FOR n >3

Let n > 3. We first give examples of Cl-actions of SL(n.R) on R".
Consider the canonical projective action of SL(n.R) on Sl Let A™ be
the radial half-line through the first basis element e; and let H denote the
subgroup of SL(n.R) that fixes A™. So SL(n.R)/H = §"~'. Consider the
homomorphism

U (A;j) € H— InAyp € R

Notice that one obtains a linear action of H on RJ = (0.x) by setting
h(x) = e¥"Mx, for all h € H, x € R} . Obviously this is conjugate to the
H-action on A™T. It follows from Lemma 3.7 that the action of SL(n.R)
obtained by suspension of this action of H on R is the canonical linear
action of SL(n.R) on R"\{0}. In fact, the map

v [g.x] € (SL(?Z,R) X R:)/H — g(xe;) € R"™\{0}

is an isomorphism. We now deform the action of H. Choose a topological
flow (0');er on RT = [0.x), fixing 0. This defines an action of H on
R by setting h(x) = o¥™(x), for all h € H. x € RZ. Now suspend this
action of H and let @ denote the resulting action of SL(n.R) on the space
M = (SL(n,. R) xR} )/H. The space M fibres over $"~', with fibre R . and
the structure group is orientation preserving. So topologically, M is R x S"~ 1.
Thus, identifying $"~! x {0} to a point, we obtain an SL(n.R)-action on R".
The fixed points of the flow ¢ correspond to orbits in R” which are spheres
of dimension n—1. In general, an n-dimensional orbit is either all of R"\{0},
as in the linear case, or it is a spherical shell, bounded by S"=1 orbits, or a
punctured ball bounded by an $"~! orbit, or the exterior of an $"~! orbit. In

all cases, the n-dimensional orbits are conjugate to the canonical linear one
on R"\{0}, by Theorem 3.5(c).

THEOREM 4.1. For all n > 3, every non-trivial C°-action of SL(n.R) on
(R".0) is conjugate to one of the above actions @.

Proof. Suppose that we have a non-trivial C%action of SL(n.R) on
(R".0). First use Proposition 3.8 to linearize the SO(n)-action. Then by
Lemma 3.9, the SL(n.R)-action preserves the radial lines. Hence the radial
projection R"™\{0} — §"~' is equivariant, where the action of SL(n.R) on
§"~! is the canonical projective one. Let H be the stabilizer of the radial half-
line A™ through e;, as above. So the action of SL(n. R) on R"\{0} is induced
by some action of H on R. Notice that this action is trivial when restricted to

k-
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SO(n — 1). It remains to consider all actions of H on R which are trivial on
SO(n—1). Again, by Lie [23, ibid.], these are given by homomorphisms from
H to R, Aff, or (some cover of) PSL(2,R). We have the homomorphism
Y: (Aij) € H— InAy; € R. Note that keryp = SL(n — 1,R) x R*™!. But it
is easy to see that there are no non-trivial homomorphisms of kervy to R or
Aff. There are no non-trivial homomorphisms of kery to SL(2,R), except
in the case n = 3, and in this case there are no such homomorphisms which
are trivial on SO(n — 1). So the only possibility left is that H acts on R by
some flow. Finally, we put back the origin, as in the proof of Proposition 3.8.
This completes the proof of the theorem. [

We now prove Theorem 1.1 for n > 3.

THEOREM 4.2. For all n > 3 and k = 1,...,00, every C*-action of
SL(n,R) on (R",0) is C*-linearizable.

Proof. Let n >3 and k= 1,...,00 and suppose that we have a non-
trivial C*-action of SL(n,R) on (R”,0). By Remark 3.4, we may assume that
the differential of the action at the origin is either the identity or the map
g — (g1H". We will assume that it is the identity; the other possibility can
be handled using the same argument.

Linearizing the SO(n)-action, using the Bochner-Cartan theorem, one may
assume that the SO(n)-action is the canonical one. Then by Lemma 3.9, the
SL(n, R)-action preserves the radial lines. Let A denote the radial line through
the first of the canonical basis elements, e;. Consider H = Stabg;(, ry(A), as
before. So, as we saw in the proof of Theorem 4.1, H defines a C*-flow
on A. This flow is hyperbolic, by the first paragraph. Hence by Theorem 2.5,
this flow is linearizable by some local C*-diffeomorphism f of A(= R). So,
after conjugacy, we may assume that H acts linearly on A. Now define the
local C*-diffeomorphism F of R” by the formula:

e
) F(x):{ b X7

: x=0.

To see that F is of class C*, the key point is to verify that f is a C* odd
function on R. This follows easily from the fact that the flow on A commutes
with Stabgo(, r)(A), and the SO(n)-action is linear.

Now notice that F agrees with f on AT = {re; € A : t > 0}, and
as F commutes with the SO(n)-action, the SO(n)-action is unchanged by
conjugation by F. In particular, the SO(n)-action still commutes with dilations.
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It follows that after conjugation by F, the SL(n,R)-action commutes with
dilations. Indeed, consider the conjugated SL(n,R)-action. If f € SL(n,R),
x € R* and A > 0, then choose a,b € SO(n) such that ax € At and
bf(\x) € AT . Provided x is sufficiently close to 0, ax and bf(Ax) will lie in
the domain of f. Then bfa~! € H and so

FOx) = b bfa" a(x) = b (bfg ™) Aax)
= b_lx\(bfa—l)a(x) = /\b—l(bfa_l)a(x)
= M(x).

The proof of the theorem is then completed by the following well known
result (cf. [17, Lemma 2.1.4]). [

LEMMA 4.3. Every C' map commuting with dilations is linear.

Proof. Suppose that f is a C'-diffeomorphism of R" which commutes
with dilations. By comparing the differential of A.f and fo A at x we have
Adf|; = Adf|x, for each A > 0 and every x € R". Hence df |x = df|x and
so df is constant on the radial lines. Thus df|, = df|o for all x and so f is
linear. [

5. THE ADJOINT REPRESENTATION OF SL(2,R)

Let us recall some facts concerning the linear representations of SL(2, R).
Let P;(R?) denote the space of real valued homogeneous polynomials, of two
variables, of degree [. As a vector space, P;(R?) = R and the action
of SL(2,R) on R? defines a linear action on P;(R?): up to isomorphism,
this is the (unique) irreducible representation of SL(2,R) in dimension
[+ 1. In dimension 3, there is another useful realization of the polynomial
representation, called the adjoint representation. Notice that the group SL(2, R)
acts by the adjoint representation on its Lie algebra s[(2,R). Of course,
s[(2,R) 1s the space of 2 x 2 real traceless matrices; so as a vector space,
s[(2,R) = R®. The adjoint representation Ad: SL(2,R) — GL(3,R), defined
by

Ad(g): h+ ghg™', Vg€ SL2,R), hesl(2,R),

is an irreducible linear representation. In fact, an explicit equivariant isomor-
phism 1: s5[(2,R) — P>(R?) is obtained by taking (h), as a function of
variables x and y, to be the area of the parallelogram spanned by (x,y) and
h(x,y). That is,
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a b ) )
P <c —a> =by +2axy—cx".
Recall that the Cartan-Killing form K of a semi-simple Lie algebra is a non-
degenerate quadratic form which is invariant under the adjoint representation
of the associated Lie group. For s[(2,R), one has K = —8det. (The Cartan-
Killing form is unique up to constant factor: the factor here of —8 corresponds
to the usual convention K = tr Ad”.) Notice that in particular, K has signature
(—,+,+) and hence determines a Minkowski metric on s[(2,R). The time-
like elements 4 € s[(2,R) (those with deth > 0) are called elliptic elements.
The space-like, resp. light-like, elements (that is, those with deth < O, resp.
deth = 0) are said to be hyperbolic, resp. parabolic. Notice that under 1,
the elliptic elements correspond to quadratics which are irreducible over R,
the hyperbolic elements correspond to products of distinct linear factors, and
the parabolic elements correspond to (£1 times) the squares of linear factors.
Moreover, this equips Minkowski space with a “temporal” orientation: the
parabolic elements which are squares of linear factors belong to the future.

Orbits of the adjoint representation

We denote the exponential map by exp: sl(2,R) — SL(2,R). It is
common to say that g = exph is parabolic, resp. elliptic, resp. hyperbolic,
according to the type of h. The parabolic elements g € SL(2,R) are those
with #%(g) = 4, the elliptic elements have #r*(g) < 4, and the hyperbolic
elements have #*(g) > 4. Notice also that the universal cover §Z(2,R) of
SL(2,R) is also a Lie group. Let us denote the corresponding exponential
map by exp: s[(2,R) — SL(2,R). The kernel of the natural quotient map
§I:(2, R) — SL(2,R) is precisely the image under exp of the elliptic elements

foon(% 1) nez)
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Now consider the orbits of the points # € s[(2,R) under the adjoint
representation of SL(2,R). Notice that since this action leaves K invariant,
the action preserves the spheres K = constant, in Minkowski space R!?.
(Of course, these Minkowski “spheres” are hyperboloids of revolution in R?.
See figure.) So the orbits of the adjoint representation lie in these Minkowski
spheres. In fact, it 1s easy to see that the orbits are precisely the connected
components of these Minkowski spheres. (This is essentially the Jordan
canonical form theorem in dimension 2.) In the case of non-zero parabolic
elements, this means that the orbits are precisely the connected components of
the light-cone minus the origin. Typical stabilizers of the adjoint representation
are :

. 1 0 el 0
hyperbolic case:  Stabg;o r) 0 _1]° + 0 et . t€R
: 0 1 I ¢
parabolic case:  Stabgy» g 00/ + 0 1 :teR

elliptic case: StabSL(zyR) (—Ol (1)> = { <(S:(1);Zt _Czlsntt) e R} .

For every non-zero element & € s[(2,R), the stabilizer Stabg; o ry(h) is (£1
times) the one-parameter subgroup {exp(th): ¢ € R} generated by k. Notice
that if h € s[(2,R) is elliptic (resp. hyperbolic or parabolic), then Stabg2 ry(h)
is a circle (resp. two lines).

6. SL(2,R)-ACTIONS ON R?

By Theorem 3.5, the only homogeneous space of SL(2,R) of dimension 1
on which SL(2,R) acts faithfully is the circle S! equipped with the projective
action. We now examine the homogeneous spaces of SL(2,R) of dimension 2.

LEMMA 6.1. Every faithful transitive action of SL(2,R) on a noncompact

surface is conjugate to one of the following two actions :

: : t 0
a) the c [ act SL(2,R : =~ R?
(a) anonical action on SL(2, )/{(O 1/t> D> 0} = R*\{0},

(b) the canonical action on SL(2,R)/ { (é ;) RS R} =~ R?\ {0}.

Proof.  Of course, the homogeneous spaces of SL(2,R) of dimension 2
are determined by the closed subgroups of SL(2,R) of dimension 1. The
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connected component of a closed subgroup of SL(2,R) of dimension 1 is a
one-parameter subgroup: so it is either hyperbolic parabolic, or elliptic. This
gives the following three homogeneous spaces:

(a) SL(2,R)/ { (é &) t> o} ~ R2\ {0},
(b) SL2,R)/ { (é i) L re R} ~ R2\ {0},

©) SL(2,R)/{<°059 _Si“9> : HGR} ~ R?,

sinf  coséd

Up to a twofold covering, these actions are just the restrictions of the adjoint
representation to the orbits seen in the previous section. Notice however that
in the elliptic case the element —Id acts trivially, and so the action is not
faithful. So this leaves the two required actions.

It remains to show that the homogeneous spaces of the form SL(2,R)/H,
where H is not connected, do not give us any new faithful actions. But it
i1s easy to see that in the hyperbolic case, there are only two possibilities,
corresponding to H having 2 or 4 connected components, and —Id acts
trivially in each case. In the parabolic case, the situation is similar to that of
Part (c) of Theorem 3.5: either —Id acts trivially, or the homogeneous space
is compact. [

We now classify the continuous SL(2,R)-actions on R?. As in the higher
dimensional case, we do this by giving a recipe for constructing examples,
and then prove that this gives a complete list.

First, consider the oriented annulus A = {(r,0) : 1/2 < r < 2}, expressed
in polar coordinates. Note that the above lemma furnishes us with three
faithful transitive actions of SL(2,R) on A. By conjugation by the map
¥: R2\{0} — A defined by o(r,0) = (5%,0), the action (b) on R*\{0}
gives us an action on A which we denote P*. By conjugating this by the
inversion (r,0) — (1/r,0), we obtain another action, which we denote P~ .
In the hyperbolic case (a), the above lemma gives us another action, which
we denote 7H, but it is easy to see that in this case, inversion gives us an
isomorphic action.

Now choose a closed set § C R} and choose a continuous function
T: RF\S — {—1,0,1}. Then one obtains an SL(2,R)-action @5 r on (R?,0)
as follows : taking R} to be the radial coordinate, for each s € S one takes the
circle of radius s to be a one-dimensional orbit, equipped with the canonical
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projective action, and for each connected component C of R;"\S, one takes an
action Pt.P~ or H according to whether T(C) is 1,—1 or O respectively.
It is easy to see that the actions on the two-dimensional orbits agree on their
boundaries with the action on the one-dimensional orbit, so one does indeed
obtain a continuous action.

THEOREM 6.2. Every faithful C%-action of SL(2,R) on (R?,0) is conjugate
to one of the above actions DPgs 1.

Proof. First we linearize the SO(2)-action, using Proposition 3.8. This
shows that the origin is the only zero-dimensional orbit, and that the one-
dimensional orbits are circles centred at the origin. Moreover, from above,
the restricted SL(2,R)-action on the one-dimensional orbits is the canonical
projective action, and the actions on the two-dimensional orbits are each
individually conjugate to either P+, P~ or H. It remains to see that the open
orbits can be glued to their boundaries in a unique manner.

Notice that if x lies in a one-dimensional orbit €, then Stabg; ry(x)
contains a unique one-parameter parabolic subgroup G, of SL(2,R), and
conversely, each one-parameter parabolic subgroup G, fixes a unique pair of
points +x € Q. Inside the orbits of Pt and P, the fixed point sets of the
subgroups G, are radial lines passing from one boundary component of the
annulus to the other component. It follows that each end can be glued to a
circle in precisely two ways which respect the action of the one-parameter
parabolic subgroups. In fact, since —Id commutes with the SL(2, R)-action,
the resulting actions are isomorphic.

Similarly, one treats the hyperbolic two-dimensional orbit of H by
considering the fixed points sets of the one-parameter hyperbolic subgroups of
SL(2,R). If € is a one-dimensional orbit, then each one-parameter hyperbolic
subgroup fixes four points in €. Conversely, each point x € Q is fixed by
a family F, of one-parameter hyperbolic subgroups. For the action H, the
one-parameter hyperbolic subgroups are the stabilizers of the points, and each
one-parameter hyperbolic subgroup has precisely four fixed points. For each
x € Q, the fixed points of the elements of F, define four curves which pass
from one boundary component of the annulus to the other. It is not difficult
to see that a unique SL(2, R)-action results by gluing each end of the annulus
to a circle in such a way as to have continuity of these fixed point sets. [ ]

We now complete the proof of Theorem 1.1.
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THEOREM 6.3. For all k = 1,...,00, every C*-action of SL(2,R) on
(R2,0) is C*-linearizable.

Proof. The proof is essentially the same as that of Theorem 4.2, except
that we require a replacement for Lemma 3.9. Of course, it is not true that
two points of R? lie in the same radial line if and only if they have the
same stabilizer under the SO(2)-action. The idea is to instead use the stable
manifolds of the hyperbolic elements of SL(2,R).

Let ®: SL(2,R) — Diff(R?,0) be our given C!-action. First note that as
in the proof of Theorem 4.2, we may assume that locally the SO(2)-action
is the canonical linear one and that the differential of @ at the origin is the

identity. Now let
—t
. (e 0
= )

and consider the hyperbolic flow ¢’ = ®(h’) on (R?,0). By the stable manifold
theorem (see [17, Theorem 6.2.8 and Theorem 17.4.3]), the stable manifold
So of @' is locally the graph of a C!'-function from (R,0) to (R,0). It
follows that there is a local C'-diffeomorphism of (R?,0) which commutes
with the SO(2)-action and which takes Sy to the x-axis. Conjugating @ by
this diffeomorphism, we may assume that locally Sy is the x-axis. Then by
using Theorem 2.5 we may linearize the action of ¢’ on Sy, with some
local C*-diffeomorphism f of the x-axis and then extend the conjugation to
(R?,0), using Equation (2) of Section 4. The upshot of this is that we may
assume that, at least locally, the SO(2)-action is the canonical one, and the
action of the subgroup H = {h' : t € R} C SL(2,R) is linear on the x-axis.

We will show that the SL(2, R)-action now preserves the radial lines. Let
Rs € SO(2) denote the rotation through angle @ and let f% = Ry i’ R, . Then
clearly the stable manifold Sy of ®(f) is the radial line at angle 6. Now let
g € SL(2,R) and consider £ = ®(g) (Sg). We want to show that X is a radial
line. Clearly X is the stable manifold of the hyperbolic flow ®(gf59™").
Let o denote the angle of the stable line of the hyperbolic one-parameter
group of matrices gf5¢g~'. Then R;'E is the stable manifold £, of the
hyperbolic flow ®(A’), where A" = R;1gftg~'R,. Now the stable line of
the hyperbolic flow A’ is the x-axis; that is A’ is a one-parameter subgroup

—1 b e~! —bsinht
r -
A-exp(t(o 1))—(0 o )

for some b € R. We are required to show that X4 is the x-axis. First notice
that restricted to the x-axis, one has

of the form
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or-o((t ") (4 1)
of(3 )G

since H acts linearly on the x-axis. Hence, since the family of maps

B 1 be=2—1)/2
e(( MR

is equicontinuous in some neighbourhood of the identity, we conclude that 24
is the x-axis, as required.

By the above argument, we may assume that locally the SO(2)-action is
the canonical one and the SL(2, R)-action preserves the radial lines. The proof
is then completed as in the proof of Theorem 4.2. [

7. EXAMPLES OF C%-ACTIONS OF SL(2,R) ON R”™

When m is greater than n there is a plethora of examples of continuous
actions of SL(n,R) on (R™,0). In this section we give some examples in the
case n = 2.

7.1. THE SYMMETRIC PRODUCT. Choose one of the continuous SL(2, R)-
actions on (R?,0) from the previous section. Now consider the associated
SL(2,R)-action on the symmetric product

L R*/%, = C",

where X, is the symmetric group on m letters. Recall that the last identification
associates to an m-tuple of points (x,...,x;) In R? = C the coefficients of
the monic polynomial of degree m in one complex variable whose roots are
the x;. As the original action fixed the origin in R?, so the corresponding
action fixes the origin in R*".

7.2. THE ADJOINT ACTION AT INFINITY. Consider the adjoint action
of SL(2,R) on R?, as discussed in Section 5. Removing the origin and
compactifying the other end, we obtain a CC-action of SL(2,R) on R3,
which we will call the adjoint action at infinity. This action is certainly not
topologically linearizable, since all the orbits now accumulate to the fixed point.

In fact, this action is not topologically conjugate to any C'-action. To see

this, consider the hyperbolic element h = ((1) Ol> . Using the exponential
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exp(th), one obtains a one-parameter subgroup in SL(2,R) which, by the
adjoint action, defines a flow ¥ on s((2,R). Choose the following basis for

sI2,R) X R3:
1 0 0 1 0 1
0 —1)’ 1 0)° -1 0 '

Then a simple computation shows that the flow § is generated by the vector
field X = z—% + ygg (where (x,y,z) are the coordinates with respect to the
above basis). Restricted to each plane x = constant, the vector field X has
a standard hyperbolic singularity, with index —1, and on the invariant lines
z = —y and z = y, the flow is contracting and expanding respectively. It
follows that if the SL(2,R)-action at infinity was C!, then the differential at
infinity of the action of X would be trivial. In this case, the differential at
infinity of the entire SL(2, R)-action would be trivial, contradicting Thurston’s
stability theorem.

7.3. THE ACTION ON THE CLOSED SUBGROUPS OF R?. Recall that from
[35] the space Gr of closed subgroups of R?, with the Hausdorff topology, is
homeomorphic to $*. Obviously SL(2,R) acts continuously on Gr, and the
two trivial subgroups, {0} and R?, are fixed by this action. Inside Gr there
is an invariant S° comprised of the set K of subgroups isomorphic to R,
together with the set of subgroups isomorphic to Z? which have generators
which span a parallelogram of area 1. The set K, which is a trefoil knot in S°,
is a 1-dimensional orbit, and its complement S° — K is a single 3-dimensional
orbit.

Removing one of the fixed subgroups, {0} or R?, one obtains an interesting
SL(2,R)-action on R* with one fixed point. Notice that this action is not
conjugate to a C'-action. Indeed, if the action was C', then the differential
at the origin would define a linear representation of SL(2,R) in R*. So this
representation would be a direct sum of irreducible representations. Since
—Id acts trivially on Gr, it follows that it is either the sum of the canonical
3-dimensional representation with the trivial 1-dimensional representation, or it
is the trivial 4-dimensional representation. But the second case is not possible,
by Thurston’s stability theorem. In the first case, one could linearize the
SO(2)-action, using the Bochner-Cartan theorem, and thus locally one would
find a 2-dimensional subspace through the origin which was fixed pointwise by
SO(2). But there are no closed subgroups of R?> which are SO(2)-invariant,
apart from {0} and R?. So this case is also impossible.
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7.4. CONING ACTIONS ON SPHERES. If one has a non-trivial SL(2, R)-action
on S™, then taking the cone in the obvious sense, one obtains an SL(2, R)-
action on (R™1.0). We claim that such actions cannot be conjugate to C !
actions. Indeed, actions defined by coning have invariant spheres around O.
If a C! diffeomorphism has a family of invariant topological spheres around
the origin, it cannot have any stable manifold so that all the eigenvalues of its
differential at the origin have modulus one. No non-trivial linear representation
of SL(2.R) has the property that all eigenvalues of all elements have modulus
one. So, if the action under consideration was C! the differential at the origin
would be trivial : this is a contradiction with Thurston’s stability theorem.

There are many interesting actions of SL(2.R) on spheres. Compactifying
the actions of Section 6 gives examples on S°. An action on S° was given in
Example 7.3. Notice also that if one has actions of SL(2,R) on $” and §9,
then there is an associated action of SL(2, R) on their join S” x §9 = §pFa+!,

Finally we remark that many interesting actions of SL(rz, R) on spheres,
for n > 3, can be found in the papers of Fuichi Uchida (see for exam-
ple [46, 47, 48)).

8. A C°-ACTION OF SL(2.R) WHICH IS NOT LINEARIZABLE

Here we give a variation of the Guillemin-Sternberg example a C°°-action
of the Lie algebra s[(2.R) on R’ which is not linearizable. The action we give
below integrates to a C°° non-linearizable SL(2.R)-action. It is obtained by
deforming the adjoint action of SL(2.R) on its Lie algebra. The constructed
action 1s clearly non-linearizable since it has an orbit of dimension 3.

By differentiation, the adjoint action of SL(2,R) defines a Lie algebra g
(isomorphic to s[(2.R)) of vector fields on R?. This algebra can be explicitly
computed as follows: choose an element 4 € s[(2,R), take its exponential
exph, and compute the derivative of the adjoint map Ad (exp(t h)) at + = 0.
A convenient basis for g is:

0 0 0 0 0 0

X=zo4y2, Y=124x2 gpr=yx2 _,9.
< y }azz Z8x+x82‘ xay Ox

Here R is the derivative of Ad(exp(th)) where h = ( 01 é) The

commutator relations are:

[X,Y]=—-R, [RX]=Y. [RY]=-X.
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The idea is now to deform this action by adding in a component in the
direction of the radial vector field:

0.0 2
- T ox y@y ‘o7

We don’t change R, but we set X = X +fr,Y = Y 4 gr, for some functions
f and g and we want to impose the same relations as before :

[X,Y]:—R, [RaX]:Y7 [Ra}_;]:_)Z

Since r commutes with X, Y and R, this requires

3) R(f) = g
@) R(g) = —f
(5) X(g) — Y(f) +fr(g) — ge(f) = 0.

Equations (3) and (4) give R*f +f = 0, which suggests that one looks for
functions of the form

fx,y,2) = xA(z, Vx* + y?),

for some function A: R> — R. Then ¢(x,y,2) = —yA(z, /x> +y?) and
equation (5) gives
X(A) + Y(xA) = 0.

This has the smooth solution
a(v? — 7%)

A(z,v) = 3

)

where a: R — R is any C*°-function which is zero on R™. It follows that
for each choice of a, the vector fields

X=X4+xAZ,\/x*>+y)r, Y=Y —yA, Vx> +y>)r, and R

generate a Lie algebra 2l isomorphic to s[(2,R). By choosing a to be a
bounded function, we guarantee that the elements of 2l are complete vector
fields. Indeed, take a Riemannian metric on R?® which, outside the unit ball,
1S geey/\/ X2+ y2 + 22, where g, denotes the standard Euclidean metric.
This defines a complete Riemannian metric, with respect to which the elements
of 2 are bounded. Hence, by [1, Proposition 2.1.21] for example, the elements
of 21 are complete. By integration, we consequently obtain a smooth action of
the universal cover of SL(2,R) whose orbits are those of 2. In fact, since we
haven’t changed the definition of R, this gives a smooth action of SL(2,R)
whose orbits are those of 2.
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Notice that the vector fields X,Y,R are linearly independent wherever
a # 0. Indeed, putting v = /x?> 4+ y?, one has:

Az v) 2+ xARv) Y+ xzAZv)
det(X,7.R) = det | z—xyA(z,v) —Y*A(z,v) x— yzA(z,v)
—y X O

= —@* - DA, v) = (0 — D) a@w’ — 7).

It follows that if the function a is non-zero on R™, then the set of hyperbolic
points in s[(2,R) constitute a single orbit under the new action of SL(2,R).
Since no linear action of SL(2,R) in R?® has an orbit of dimension 3, we
conclude that our new action of SL(2,R) is not linearizable. Note that outside
the open orbit, this action coincides with the adjoint linear action.

In order to motivate the construction that we shall present in the next
section, we now present another way of describing the non-linearizable action
that we just constructed. Consider the subgroup Diag of SL(2,R) of diagonal
matrices and consider the trivial action of Diag on the positive line R} . It is
easy to see that the suspension of this action is conjugate to the adjoint action
of SL(2,R) outside the invariant cone in R®. Now, since Diag is isomorphic
to R x Z/2Z, it is easy to let Diag act non-trivially on R} and the new
suspension will provide a new action of SL(2,R). If the new action of Diag
extends to R™ and is sufficiently flat at O, this action of SL(2,R) can be

equivariantly glued to the invariant cone and provides non-linearizable smooth
actions of SL(2.R) on (R?,0).

9. A C®-ACTION OF SL(3,R) WHICH IS NOT LINEARIZABLE

We start with the adjoint action of SL(3, R) on its Lie algebra s((3,R) = R8.
Denote by Diag the subgroup of SL(3,R) of diagonal matrices. This group
is isomorphic to R? x (Z /27))? . Let diag C s[(3,R) denote the 2-dimensional
subalgebra consisting of diagonal matrices. The Weyl group, which is in this
case the symmetric group on 3 letters, acts linearly on diag by permutation of
the axis. The orbit of any point in diag under the adjoint action is a properly
embedded submanifold of s[(3,R) which intersects diag on some orbit of
the Weyl group. Let C be a Weyl chamber in diag, for example the region
consisting of diagonal matrices (A, Ay, A3) with A\; < X\, < A\;. This is a
fundamental domain for the action of the Weyl group.
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Choose a closed disc D contained in the interior of the Weyl chamber C.
The saturation Sat(D) of D under the adjoint action of SL(3,R) is a properly
embedded submanifold with boundary, which fibres over D.

LEMMA 9.1. The action obtained by suspension of the trivial action of
Diag on the disc D is the adjoint action of SL(3,R) on the saturation of the
disc.

Proof. This 1s clear since the stabilizer of any point in D under the
adjoint action is precisely Diag. [
LEMMA 9.2. There exists a C*®-action of R* on the plane with support

inside the unit disc.

Proof. Let p: RT — [0, 1[ be a C* -diffeomorphism which is equal to

the identity in a neighbourhood of 0. This defines an embedding of R? in-

the unit disc in R* sending the point of polar coordinates (r,6) to (p(r),0).
Now define an action of R?> on R? in the following way. Inside the unit disc,
this action is conjugated by the previous embedding to the canonical action
of R? on itself by translations. Outside, the action of R? is trivial. It is a
simple exercise to check that with a suitable choice of p, one can guarantee
that this action is C*°. [

Consider such a C®-action of R®> on D whose support lies in the
interior of D. This defines an action of Diag ~ R? x (Z/2Z)2 on D for
which (Z/2Z)* acts trivially. By suspension, we get a C*-action of SL(3,R)
on some 8-manifold with boundary, which fibres over SL(3,R)/Diag with
a closed disc as a fibre. This manifold is therefore diffeomorphic to the
saturation Sat(D) of D under the adjoint action of SL(3,R). The idea is to
replace the adjoint action by this new action inside this manifold. However,
since Sat(D) does not accumulate at the origin, this new action has not been
modified near the origin and is therefore still locally linear. We shall therefore
perform this modification on a sequence of discs in C accumulating to the
origin and it will be easy to see that the action obtained in this way is not
linearizable.

In order to realize this construction, we employ a family of C*°-actions
of R? with support in the interior of the disc D, which depend continuously
on a parameter € € [0,1] in the C°°-topology and which is trivial when
¢ = 0. This is easy to construct: just multiply the fundamental vector
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fields of some action of R?> by e. We can also consider this family of
actions as an action of R*> on D x [0,1] which is trivial on D x {0}.
By suspension, we get an action of SL(3,R) on a 9-manifold, fibring over
SL(3,R)/ Diag with compact fibres D x [0, 1]. It is therefore diffeomorphic
to Sat(D) x [0, 1]. Therefore, we can project everything to Sat(D) in such a
way that we get a continuous family of actions @, of SL(3,R) on Sat(D)
having the following properties. In some neighbourhood of the boundary of
Sat(D), all these actions coincide with the adjoint action and @ is the adjoint
action.

We can restate this as follows. Choose a basis of the Lie algebra s((3,R)
and consider the associated linear vector fields Xi,...,Xg on s[(3,R) = RS
which are the corresponding infinitesimal generators of the adjoint action.
Then we have C°° families of vector fields Xf,...,X¢ on Sat(D) such that
X) = X,,...,Xg = Xz and such that they satisfy the same bracket relations
for all €; that is, they generate an action of s[(3,R). Denote by Rf the
difference X7 — X; (for i = 1,...,8). Extending by 0 outside Sat(D), one
gets C*° vector fields in R®.

Now consider some contracting homothety A of R® which is such that
all images of the disc D under the iterates of A are pairwise disjoint. Note
that A preserves each X; since these vector fields are linear. If a sequence
(e)i>o0 € [0, 1] converges to O sufficiently quickly when [ goes to infinity then
the infinite sums

Ri= ) AR

>0

converge uniformly on compact sets in R® and define C°° vector fields.
Now, define the vector fields X; = X; + R;. In A! (Sat(D)) the vector fields
X; coincide with Al (X)) and outside these regions, they are equal to X;. It
follows that the X; satisfy the same bracket relations as the X;, and hence
generate a C*-action of the Lie algebra s[(3,R) on R®. These vector fields
are complete and generate an action of SL(3,R) since we know that inside

A](Sat(D)) they integrate to a suspension and outside they integrate to the
adjoint action.

The C*°-action of SL(3,R) on R?® thus obtained is not linearizable, since
it has a countable number of open 8-dimensional orbits and this is obviously
not possible for a linear representation.



164 G. CAIRNS AND E. GHYS

10. LINEARIZABILITY OF SL(n,Z)-ACTIONS

The purpose of this section is to prove Theorem 1.2.

THEOREM 10.1.  There are no faithful C'-actions of SL(n,Z) on (R™,0)
for 1 <m < n.

Proof. Suppose we have a faithful C'-action of SL(n,Z) on (R™, 0).
First note that the differential of the action defines a homomorphism
D: SL(n,Z) — GL(m,R). According to a special case of Margulis’ super-
rigidity theorem, proved in [40, Theorem 6], there is a finite index subgroup
I' in SL(n,Z) and a continuous linear representation p: SL(n,R) — GL(m,R)
such that p and D agree on I". For 1 < m < n, there is no such non-trivial
representation p so that we deduce that the restriction of D to I' is trivial.
Again, by a special case of a theorem of Margulis, proved in [40, Theorem 7],
for any finite index subgroup I'" of SL(n,Z), there is no non-trivial homomor-
phism from I' to R. Hence by Thurston’s stability theorem, we deduce that
the action of I' is trivial, contradicting the faithfulness of the action. L]

EXAMPLE 10.2. We now give an example of a non-linearizable C*°-action
of SL(3,Z) on R®. This example is obtained simply by restricting to SL(3,Z)
the action of SL(3,R) on R® given in Section 9. This gives an action with
many discrete orbits because by construction we have an open region where
the stabilizers of the SL(3,R)-action are trivial and SL(3,Z) is discrete in
SL(3,R). But this is impossible for the linearized action, which is the adjoint
representation. To see this, first note that if g € s[(3,R) is diagonal, then
its orbit under SL(3,R) is SL(3,R)/ Stabgy3 ry(g). Now for most diagonal
elements ¢, the stabilizer Stabg; 3 ry(g) 1s just the set of diagonal elements
in SL(3,R), and the action of SL(3,Z) on SL(3,R)/{diagonal matrices}
has a dense orbit if and only if the action of the diagonal matrices on
SL(3,R)/SL(3,Z) has a dense orbit. But this latter condition is true, by
Moore’s ergodicity theorem (see [50, Theorem 2.2.6]). It follows that for the
adjoint representation there is a dense set of non-trivial diagonal elements
whose orbits under SL(3,7Z) are dense in their orbits under SL(3,R) and are
therefore non-discrete.

EXAMPLE 10.3. We now give an example of a non-linearizable C*-action
of SL(2,Z) on R?. Consider the matrices

0 -1 0 -1
S:<1 O> and T_<1 1).
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It is well known that SL(2,Z) is an amalgamated product of the cyclic groups
generated by S and 7 (see for example [36, Chapter 6]). Explicitly :
SL2,Z)=(S,T : $*=T6=1d, §=T°).

Now let f: R — R be the map f(y) =y -+ and replace T by its conjugate
t = F''TF, where F(x,y) = (x,f(y)). We claim that the group G of
diffeomorphisms of R? generated by S and ¢ is isomorphic to SL(2,Z). Indeed

the differential of the action of G defines a homomorphism ¢: G — SL(2,Z)

which takes S to S and ¢ to T. To construct the inverse homomorphism from
SL(2,Z) to G, it suffices to send S to S and T to ¢, and then check the
group relations: but ¢ clearly has order 6 and since f is an odd function, one
has £ = —Id = §2.

Now let P = S~!t. One has P(x,y) = (f~'(x+f(»),f()). In particular,
P(x,0) = (f~'(x),0) and so the x-axis is an invariant line on which P is
a contraction. Hence P cannot be topologically conjugate to its linear part,

: I 1
which is the parabolic matrix S™!T = ( 0 1> .

We now study analytic actions of lattices and prove a linearizability result
analogous to Kushnirenko’s theorem. We state it for general lattices rather
than for the special case of SL(n,Z) since the proof is the same.

THEOREM 10.4. Let 1T be any irreducible lattice in a connected semi-
simple Lie group with finite center, no non-trivial compact factor group and
of rank bigger than 1. Every C%-action of T on (R™,0) is linearizable.

We begin with several lemmas. We fix a lattice I" as in the theorem and
a real analytic action @ of I" on (R™,0).

LEMMA 10.5. The action of T is formally linearizable.

Proof. Margulis has shown that the first cohomoiogy of I' with values
in any finite dimensional linear representation vanishes [27, Chap. IX,
Theorem 6.15]. Hence the proof of Theorem 2.8 applies. [

LEMMA 10.6. Let D be any representation of T in GL(m,C). Then the
traces of all the matrices in the image of D are algebraic numbers.

Proof. This is also a well known corollary of the vanishing of first
cohomology groups. One first remarks that the homomorphism D is rigid;
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that 1s, any other homomorphism close to D on a finite system of generators
is conjugate to D. This again uses the vanishing of H'(T, gl(m,C)) (see
[27, 1bid.]). Then denote by £ the field generated by the traces of all
matrices in D(I'). This is a finitely generated extension of the rationals and
one has to show that it is an algebraic extension. But if this was not the
case, one could deform the embedding ¢ C C by using some non-trivial
Galois automorphism of C. Applying this automorphism to all elements
of D(I'), this would construct a non-trivial deformation of D, which is
impossible. [

LEMMA 10.7. For every « in I' such that D(vy) is semi-simple, the
diffeomorphism ®(+) is analytically linearizable.

Proof. We recall Brjuno’s linearization theorem (see [7, Chapter 11,
Theorem 10] or [28, théoreme 3]). Let f be an analytic diffeomorphism
of (R™,0). Suppose that f is formally linearizable and that the linear part
of f is a semi-simple matrix whose eigenvalues are (Ar,...,A,). If these
eigenvalues satisfy some diophantine condition (€2) described below, then f is
analytically linearizable. For any positive integer k, denote by wy the infimum
of the modulus of non-zero numbers of the form A{'--- Al — 1 where the
q; are integers such that g; > —1, at most one of the ¢; equals —1, and
S".qi < 21, Then the condition (Q) asserts that the series >, 2 %Inw;'
converges. -

According to Lemma 10.5, the diffeomorphism ®(y) is formally lineariz-
able. According to Lemma 10.6, all eigenvalues (\j, ..., \,) of the differential
D(y) of ®(v) at the origin are algebraic numbers. An important theorem of
Baker shows that there is a constant C > 0 such that for all integers k, we
have wy > exp(—Ck) [3, Theorem 3.1]. It follows that the condition (€2) is

satisfied and one can apply Brjuno’s theorem. [

REMARK 10.8. In most cases, the spectrum of D(v) contains many
resonances. Not only the determinant of D(7y) 1s one since there is no
non-trivial homomorphisms from I' to R but there are extra resonances
coming from the structure of linear representations. Suppose for example
that ' = SL(n,7Z) and that @ = D is the restriction to I' of a linear
representation of SL(n, R) in GL(m,R). Then the many integral linear relations
between the weights of this representation provide corresponding multiplicative
relations between the eigenvalues of the matrix D(v). Hence, in order to
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prove the previous lemma, the classical linearization theorem of Siegel is
not sufficient ([28]): one has to use the more powerful theorem of Brjuno
which allows resonances but it was indeed necessary to first prove the formal
linearizability.

Of course, our problem now is that the diffeomorphisms which linearize
the ®(vy) might depend on ~. The difficulty comes again from the resonances
since these imply that the centralizers of D(v) are big inside the group of
analytic diffeomorphisms.

Denote by Diff(R™,0) the group of germs of real analytic diffeomorphisms
of R™ at 0 and by I/)’i?f(R’", 0) the group of formal diffeomorphisms. We can
consider @ as a homomorphism from I' to Diff(R™,0) C Diff(R"™,0). The
linear part D of @ is a homomorphism from I' to GL(m,R).

We can assume that D(I") is infinite. Indeed, if D(I") is finite, the kernel
of D acts trivially by Thurston’s theorem so that the action @ factors through
a finite group and is therefore linearizable.

By Lemma 10.5, there is an element ]? in ﬁiﬁ"(R’”,O) which conjugates
® and D. Let H C GL(m,R) be the Zariski closure of D(I'). According to
[27, 1bid.], H 1s a semi-simple group. Let ¢: H — ]j?f(R’”, 0) be defined by
d(h) = fhf ! so that for v € T, we have ®(y) = ¢(D(v)). If we could show
that ¢(H) C Diff(R™, 0) then we could apply Kushnirenko’s theorem and there
would exist an element f of Diff(R™, 0) such that f¢(H)f~! is contained in
GL(m,R). Since f®(y)f~! = f¢(D(y))f~" the convergent diffeomorphism f
would linearize ®(I") as required.

Therefore, we denote by Hy C H the inverse image of Diff(R”,0) by
¢ and we shall show that Hy = H. Observe first that obviously D(T) is
contained in Hy since qﬁ(D(fy)) = @(vy) is convergent by hypothesis.

For each v in TI', denote by (D(v)) the Zariski closure of the group
generated by D(v) in GL(m,R). We claim that (D(~)) is contained in H, if
D(7) 1s semi-simple.

Indeed, by Lemma 10.7, we know that there is a convergent diffeomorphism
f~ such that f,®(y)f" ' = D(y). The algebraic group consisting of those
elements g of GL(m,R) such that Fv o9y I'= g contains D(v), hence
{D(7)) . It follows that every element of (D(v)) has an image under ¢ which
is conjugate by f, to a linear map so that in particular ¢({D())) consists
of convergent diffeomorphisms and (D(v)) is indeed contained in H, as we
claimed.

Observe that by Remark 2.1 we can replace ' by a subgroup of finite
index. In particular, using Selberg’s lemma, we can assume that D) is
torsion free and, more precisely, that if some power of some D() lies in
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a normal subgroup of H then D(vy) is in this subgroup (note that there are
finitely many such normal subgroups).

Since D(y) has infinite order (if + is non-trivial), (D(7)) has positive
dimension so that it contains a non-trivial one-parameter group. Hence
every non trivial semi-simple element in D(I') yields a one-parameter group
contained in Hy. We now show that these one-parameter subgroups generate the
connected component of the identity in H. Observe the following elementary
fact: if a family of vectors spans the Lie algebra of a Lie group, then the one-
parameter groups generated by these vectors generate the connected component
of the identity. Therefore, we consider the linear span ¢ in the Lie algebra
$) of H of the Lie algebras of all the subgroups (D(v)) for + semi-simple.
It is enough to show that € = §. Note that ¢ is certainly non-trivial since
semi-simple elements are Zariski dense in H. Note also that & is invariant
under the adjoint action of D(I"), hence under the adjoint action of H since
D(I") is Zariski dense in H. It follows that & coincides with the product of
some of the simple factors of . The only possibility is that ¢ = ) since
otherwise, all the semi-simple D(7y) would have some power contained in the
same product of some but not all of the simple factors of H (note that the
algebraic Abelian group (D(y)) has a finite number of connected components).
This implies that all semi-simple elements of D(I") are contained in some non
trivial normal subgroup of H. This is not possible by the following argument.
In the algebraic group H, there is a non-empty open Zariski set consisting
of semi-simple elements which are not contained in any non-trivial normal
subgroup of H. Since D(I') is Zariski dense in H, it intersects non-trivially
this open set.

It follows that Hy contains the connected component of the identity of
H. Therefore Hy, is a semi-simple Lie group of finite index in H. By
Kushnirenko’s theorem, we can analytically linearize ¢(H) (one also uses
Remark 2.1) and in particular ®(T").

Theorem 10.4 is proved.
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