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PARAMETRIZED PLANE CURVES,
MINKOWSKI CAUSTICS, MINKOWSKI VERTICES
AND CONSERVATIVE LINE FIELDS

by Serge TABACHNIKOV

0. INTRODUCTION

Some time ago I made the following observation ([T1]) generalizing
the classical 4-vertex theorem. Consider a smooth closed strictly convex
parametrized curve ~y(¢) in the oriented affine plane. The acceleration vectors
~"(t) (where prime denotes d/dr) generate a smooth line field I(z) along
the curve. Assume that these lines rotate in the same sense along -v;
analytically this means that [fy” @®),~" (Z)} =# 0 for all ¢ (where [, ] denotes
the determinant of two vectors).

THEOREM 0.1. For a generic curve (t) the envelope of the one-parameter
family of lines I(t) has at least 4 cusp singularities.

If ~(¢) is a strictly convex curve in the arc-length parameterization then
the lines [(¢) are perpendicular to v and their envelope is the caustic of the
curve. The singularities of the caustic correspond to the vertices of the curve,
i.e., to its curvature extrema. Thus Theorem 0.1 is a generalization of the
4-vertex theorem which asserts that a smooth closed convex plane curve has
at least 4 vertices.

The trick used in [T1] to prove the theorem does not explain its relation
to concepts of differential geometry, in particular, whether Theorem 0.1 can
be interpreted as a 4-vertex theorem.

The purpose of this paper is to provide such an explanation. I will
show that Theorem 0.1 is a 4-vertex theorem in Minkowski geometry in
the plane associated with the parametrized curve ~(r). It will also be
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seen that the statement of Theorem 0.1 holds even without the assumption
[,)///(ZL)7 ’y”’(t)} 7& 0.

The 4-vertex theorem in the Minkowski plane is by no means new. An
equivalent statement can be found in [BI 1]; see also [Ge, Gul,2, He 1,2, Su]
(note another term, the relative differential geometry, classically used to
describe the situation).

The point of view in this paper is that of contact geometry which, I believe,
clarifies the matter and makes it possible to extend naturally many familiar
results from the Euclidean setting to the more general Minkowski and Finsler
ones. For an approach to the 4-vertex theorem and related results as theorems
of symplectic and contact topology see, e.g., [A 1, A 4].

1. FINSLER METRIC FROM THE CONTACT GEOMETRICAL VIEWPOINT

Finsler geometry describes the propagation of light in an inhomogeneous
anisotropic medium. This means that the velocity of light depends on the
point and the direction. There are two equivalent descriptions of this process
corresponding to the Lagrangian and the Hamiltonian approaches in classical
mechanics.

On the one hand, one may study the rays of light, that is, the shortest
paths between points. The optical properties of a medium are described by a
strictly convex smooth hypersurface, called the indicatrix, in the tangent space
at each point. The indicatrix consists of the velocity vectors of the propagation
of light at a point in all directions. It plays the role of the unit sphere in
Riemannian geometry.

The distance d(x,y) between points x and y is the least time it takes
light to travel from x to y. If the indicatrices are not centrally symmetric this
distance may not be symmetric: d(x,y) # d(y,x). However it still satisfies the
triangle inequality :

dx,y) +d(y,z) =2 dx,z).

Minkowski geometry is a particular case of Finsler geometry in affine space
in which the indicatrices of all points are identified by parallel translations.
The rays of light in Minkowski geometry are straight lines.

On the other hand, one may study the wave fronts. The wave front of a
point is the hypersurface that consists of points which light can reach from
the given point in a fixed time. A wave front is characterized by its contact
elements (hyperplanes in the tangent spaces at the points of the front tangent
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to it) cooriented by the direction of the time evolution of the front. This
evolution is described by a vector field in the space of all cooriented contact
elements.

We recall in this section (without proofs) the relevant facts from symplectic
and contact geometry — see [A 2, A 3].

Let M" be a smooth manifold and 7 : T*M — M its cotangent bundle,
When needs be one introduces local coordinates in T°M,

(f],p) - (QIy---,QmPl,---,Pn);

where g are position coordinates in M and p are the corresponding momenta
coordinates in the fibers of the cotangent bundle. Denote by A the Liouville
differential 1-form on 7M. The value of Ay on a tangent vector v to
T*M at point (x,0), where x € M,0 € T:M, is, by definition, Q(dw(v)).
In coordinates, \g = pdg (= > _p:dg;). The 2-form d)\y is the canonical
symplectic form in T*M .

The space of cooriented contact elements is the spherization ST*M of the
cotangent bundle. Consider the principle R% - bundle

p:T"M —M — ST*M

(T*M — M 1is the complement to the zero section); its fiber over a cooriented

contact element consists of the linear functionals vanishing on this contact’

element and positive on its positive side. The codimension 1 distribution

Ker A\ on T*M — M projects to the canonical contact structure in ST*M.
A Finsler metric on M is determined by a (Hamiltonian) function H on

T*M . This function satisfies the following assumptions :

1) H 1s a nonnegative function, homogeneous of degree 1 in momenta, i.e.,
H(q,tp) = tH(qg,p) for all t > 0;

2) The level hypersurface S = H~!(1) is fiberwise star-shaped, i.e., each
intersection S, = SNT;M, x € M, transversely intersects every ray from

the origin in the linear space T:M.

3) The level hypersurface S = H~!(1) is fiberwise quadratically convex, i.e.,
each intersection Sy = SNTyM, x € M, is quadratically convex in the
linear space T;M.

The surface S, is sometimes called the figuratrix. It may be thought of as
the set of “unit covectors” in TFM.

Denote by ¢ the Hamiltonian vector field of H, that is the field such that
ied\og = dH . In local coordinates,

éZHp 3/561—Hq 8/8p
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The field £ is tangent to the hypersurface S. Let ¢, be the time-¢t map of
the flow £. Denote by A the restriction of the Liouville form to S.

THEOREM 1.1. Let the Hamiltonian function satisfy the above condi-
tions 1)—2). Then:

a) The form X is a contact form, that is, AN\ (dN\)""! # 0 everywhere on S.

b) The field & is the characteristic vector field of the form )\,' that is,
ied\ =0, X&) =1, and the flow ¢, preserves the form \ for all t.

The hypersurface S being fiberwise star-shaped, it is identified with ST*M,
and the contact form A\ determines the canonical contact structure in ST*M .
Conversely, a contact form A for the canonical contact structure in ST*M is
a section ¢ of the bundle p : T"M — M — ST*M such that ¢*\g = A. The
image of this section is a fiberwise star-shaped hypersurface S C 7*M, and
one can reconstruct the homogeneous Hamilton function H by § = H~(1).

The one-parameter group ¢, describes the time evolution of cooriented
contact elements of M mentioned at the beginning of the section. This flow
will be referred to as the geodesic flow in the space of cooriented contact
elements.

EXAMPLE. Let M be a Riemannian manifold and H(gq,p) = |p|. Then &
is the usual geodesic flow: each coorented contact element moves with the
unit speed in its positive normal direction.

We assume that the figuratrices S, are quadratically convex. The indicatrix
I, at point x € M consists of the velocity vectors of the foot points of the
contact elements in S, under the flow &. That is,

I, = {dr(£(x,0)), 0€S. CTiM}.

DEFINITION. Let X be a smooth strictly convex star-shaped hypersurface
in a vector space V. For every x € X there exists a unique functional y € V*
such that y(x) = 1 and Ker y = T,X. The set of such functionals for all
x € X is called the dual hypersurface and is denoted by X*.

Note that X* 1is strictly convex and star-shaped too; note also that
X" =X.

THEOREM 1.2. The indicatrix I, and the figuratrix Sy are dual to each
other for every x € M.
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To the field of indicatrices there corresponds a (Lagrangian) function L
on the tangent bundle TM : this function is homogeneous of degree 1 in
tangent vectors, and L™1(1)NTM = I, for all x € M. This function gives the
length of a tangent vector in Finsler geometry. Trajectories of light in Finsler
geometry are the extremals of the functional f L(g,q) dt.

THEOREM 1.3. These extremals are the projections to M of the trajectories
of the vector field &.

Thus the Hamiltonian vector field £ of the Hamiltonian function H
describes the propagation of light in an inhomogeneous anisotropic medium.
In the case of Minkowski geometry H depends on the momenta variables
only. The trajectories of light in Minkowski geometry are straight lines, and
the indicatrix is identified with the time-1 front of the origin. The cooriented
contact elements of this front are the time-1 images in the geodesic flow of
all contact elements at the origin.

Let N C R" be a cooriented hypersurface in Minkowski space. The
geodesic flow trajectories of the foot points of the cooriented contact elements
of N will be called (Minkowski) normals of N. Note that the normals may
change if the coorientation of N is reversed. The reader interested in differential
geometry of Finsler manifolds is referred to [Ru], and to [Bu] for the case of
Minkowski geometry.

2. MINKOWSKI GEOMETRY ASSOCIATED WITH A PARAMETRIZED CURVE

Return to the situation of the Introduction: (7) is a smooth closed strictly
convex parametrized plane curve satisfying the condition [v"(z),~"” O] #0
for all 7. The lines [(#) generated by the acceleration vectors /() constitute
a smooth transverse line field along ~(#). The condition [7” ®),~" (1)} # 0
ensures that infinitesimally close lines from the family I(¢) intersect, therefore
their envelope is bounded.

Give v the inward coorientation. Then ~ determines a curve ~ in the
space of cooriented contact elements of the plane. The curve ¥ is Legendrian,

that is, tangent to the contact structure in the space of cooriented contact
elements.

THEOREM 2.1.  There exists a unique, up to a multiplicative constant,

Minkowski metric in the plane such that the lines I(t) are the Minkowski
normals of the cooriented curve -y.
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Proof. Identify the tangent planes at different points with R? by parallel
translations. Consider the curve S(f) = +/(f) C R?. Since + is strictly convex,
S is star-shaped. Moreover, S'(f) = ~"(¢), therefore [S’ (), S” (z)] #£ 0 for
all ¢. Thus the curve S is strictly convex.

Assume that the curve ~(f) is oriented counterclockwise. Identify the
tangent and cotangent planes by the bilinear form [, ]: a vector v is considered

as the covector [v, ]. Then one may consider S as a curve in the dual
plane (R?)*.

Let H be the homogeneous of degree 1 function in (R?)* whose level
curve H=1(1) is S. Consider H as a function on T*R? depending on the
momenta only, and let £ be its Hamiltonian vector field. We claim that the
cooriented contact element of the curve ~y at point (¢) is translated by the
field £ in the direction of the line I(¢). The desired Minkowski metric is
determined then by the Hamiltonian function H, as explained in the previous
section.

To start with, the trajectories of & project to straight lines; in local
coordinates, £ = H, 9/8q. Since H(~/(r)) = 1, one has dH(y"(t)) = 0
(here +' and ~" are considered as vectors in (R?)*). The differential
dH € ((Rz)*)* = (R?), and, as a vector in (R?), this is H, 8/0q. In view of
the chosen identification of (R?)* with (R?), the equality dH(y") = 0 reads
[H, 8/9g,7"]1 =0 in (R?).

Thus H, 0/0q is colinear with +" at every point of the curve.

Conversely, the same argument shows that if the trajectories of the
Hamiltonian field £ project to the lines I(f) then H is constant on the curve
S(t) = +/(¢). This, along with the homogeneity, determines H, and therefore
the Minkowski metric, up to a multiplicative constant.

REMARKS. 1) If the function h’ '), ~" (t)} has zeroes the above theorem
still provides a star-shaped figuratrix S which, however, fails to be convex
and therefore does not determine a Minkowski metric.

2) Suppose a smooth strictly convex closed nonparametrized plane curve
~ is given. Then a choice of a homogeneous function H in (R?)*, such
that S = H~!(1) is star-shaped, determines a parameterization ~(f) with the
property that the trajectories of the Hamiltonian vector field £ project to the
lines generated by the vectors +”(f) along -y. Considering S as a curve in
R?, this parameterization is defined by the requirement: 7/(r) € S for all ¢.
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To describe the indicatrix of the Minkowski geometry constructed in the
above theorem one needs the following lemma. As before, we identify the
tangent and the cotangent planes by the bilinear form [ , ].

LEMMA 2.2. Let S(t) be a parametrized strictly convex star-shaped curve
in (R®>)*. Then the dual curve is S*(f) = S’(t)/{S(t),S’(t)].

Proof. By definition, the dual curve consists of the vectors §*(z) € R?
such that < S(1),S*(1) >= 1 and < S§(¢),S*(t) >= 0. Clearly, the curve
S*(t) = S'(t)/ [S(z‘)7S’ (t)} satisfies both equalities, and Lemma 2.2 follows.

This lemma, applied to the curve S(¢z) = +/(¢), along with Theorem 1.2,
implies the formula for the indicatrix:

1) =~"®)/[¥©®,~"®)] .

This formula gives the plane projection of the velocity vector of the cooriented
contact element of the curve ~ at point ~(f) in the geodesic flow. Notice
that the original parameterization (f) is not, in general, by arc-length in the
constructed Minkowski geometry.

Next, we give some explicit formulas in Euclidean terms. Let «f(z) be
the angle made by the tangent vector -y(f) with a fixed direction. Set

f(an) =log |y (1) ; then

v(®) = D (cosa(), sin o) .

The plane projection of the vector of the geodesic flow at point ~(z) is given
by the formula

e (f"(a(r)) cos o) — sin (), f(a?)) sin er) + cos a(n)

where prime means d/dc.

The function f(a) determines the Minkowski metric. The convexity
condition for the indicatrix reads: 1+ (f)* > f"”. If ~(r) is arc-length

parametrized then f(a) = 1 identically, and the Minkowski metric is the
Euclidean one.
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3. OSCULATING INDICATRICES AND MINKOWSKI CAUSTIC

Consider the curve J C R? centrally symmetric to the indicatrix I with
respect to the origin, and coorient it inwards. Since [/ is the time-1 front of
the origin, the time-1 map ¢; of the geodesic flow takes the foot points of
all the cooriented contact elements of J to the origin. If the curve J is a
source of light in our anisotropic Minkowski plane then light from all points
of J focuses at the origin in unit time.

Let «v be a nonparametrized closed strictly convex curve in Minkowski
plane, cooriented inwards. For every point x € -y there exists a unique curve
J(x), homothetic to J (that is, obtained from J by a dilation with a positive
coefficient and a parallel translation) which is second order tangent to -y
at x.

DEFINITIONS. Call J(x) the osculating indicatrix of v at x. The coefficient
r(x) of the dilation that takes J to J(x) is called the (Minkowski) curvature
radius of v at x. The center of J(x), i.e., the image of the origin under
the homothety that takes J to J(x), is called the (Minkowski) center of
curvature of v at x. A point x € 7y is called a (Minkowski) vertex if the
osculating indicatrix is third order tangent to ~y at x. Call the envelope I" of
the Minkowski normals to ~y its (Minkowski) caustic.

REMARK. The curvature radius at x € v is the focusing time for light,
propagating from a small piece of ~ around x in the direction of the
coorientation. This time is positive if the coorientation vectors point to the
convex side of the curve, and negative otherwise.

If the metric is Euclidean all these notions coincide with the usual ones,
e.g., the osculating indicatrix is the osculating circle, etc. We ‘list below a
number of properties of osculating circles and Euclidean caustics subject to a
generalization in the Minkowski setting.

1) The caustic of a curve is the locus of its centers of curvature.
2) A vertex of a curve corresponds to a singularity of its caustic.
3) A vertex is an extremum of the curvature radius.

4) The caustic of a generic curve is a piecewise smooth curve with an even
number of cusps and without inflection points.

5) If a caustic is bounded then the alternating sum of the lengths of its smooth
pieces equals zero.
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6) A curve v is described by the free end of a stretched string developing
from its caustic T.

7) (Kneser’s theorem). The osculating circles of an arc of a curve, free from
vertices, are pairwise disjoint and lie one inside the other.

In the case of Minkowski geometry these properties still make sense (using
the above definitions) except for 5) and 6) which require an explanation because
the Minkowski length of a curve depends on its orientation.

Give the normals of +« the inward orientation; then every smooth piece
of I' gets an orientation too. The length of a smooth oriented piece of I is
understood to be its length in Minkowski geometry. In this way property 5)
makes sense — see Figure 1.

FIGURE 1

To explain property 6) consider a smooth arc of the caustic, oriented as
above, and let A and B be two of its points such that A precedes B on the
arc. Consider the tangent segments to I" at A and B which are normals to v,
oriented “from +”. Let » and R be their respective Minkowski lengths and
L be the Minkowski length of the arc AB of the caustic. Property 6) asserts
that R —r = L — see Figure 2.
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R-r=L
R

FIGURE 2

Various statements of the next theorem can be found (in an explicit or
an implicit form) in the papers on plane Minkowski and relative geometry,
mentioned in the References. I have not seen an approach to the proof via
contact geometry in the literature.

THEOREM 3.1. The properties 1)—7) hold true in the Minkowski setting.

Proof. As before, H denotes the Hamiltonian function associated with
the Minkowski metric, S = H~!(1) C T*R? and TS — R? is the projection.
Let 77 be the lift of the cooriented curve v to S (considered as the space of
cooriented contact elements of the plane), and let Z C S be the cylinder that
consists of the trajectories of the Hamiltonian vector field & through 7. Denote
by [ C Z the curve consisting of points at which the rank of the projection
7|z is less than 2. Thus T is the set of points at which the fibers of 7 are
tangent to Z. Since the trajectories of & project diffeomorphically to the plane
the rank of 7|z equals 1 along . The curve I projects to the caustic I'.

To prove property 1), consider the osculating indicatrix J(x) at x € 7,
cooriented inwards. Then J(x) C S is tangent to 7 at point x, the cooriented
contact element of v at x. Let r(x) be the curvature radius of v at x. Then
Pr(x) (7(x)) is a fiber of m. Therefore a fiber of 7 is tangent to the curve
br0(¥) C Z, and hence ¢,(X) € I'. It remains to note that T (rn(X)) is
the center of curvature of « at x.

Likewise, if x € v is a vertex then I is tangent to the curve ¢y (J(x) at
point ¢, (x). Therefore T is tangent to a fiber of 7, so I" has a singularity at
the respective center of curvature. Property 2) follows. It follows also that the
singularities of the caustic are the singularities of the projection 7 : I T
the curve I is smooth.
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Next, note that an orientation of ~ gives I' a coorientation. Give I an
orientation; then the pair (orienting vector, coorienting vector) is either a
positive or a negative frame along each smooth piece of T'. The positive and
negative pieces alternate, so the number of cusps is even.

Consider the space of oriented lines in the plane (topologically, the
cylinder); the tangent lines to the caustic constitute a curve o in this space.
The family of Minkowski normals to v being smooth, the curve o is smooth
as well. An inflection of I" would correspond to a singularity of o. Thus
I is inflection free, and property 4) follows. Note that an inflection of I'
corresponds to the tangency between I and a trajectory of the field §.
Therefore I is transverse to .

Vertices correspond to the stationary osculating circles, therefore they are
extrema of the curvature radius. Conversely, consider a critical value of the
curvature radius at x € «, and assume that the caustic is smooth at the
corresponding curvature center. Then the direction of I' is parallel to the
tangent line to ~ at x. However the tangent line to I' is the Minkowski
normal to ~ at x which is transverse to 7. Property 3) follows.

One may use the Minkowski length of the tangent segment to I' from -y
that is, the curvature radius r, as a local parameter on a smooth oriented piece
of the caustic. The velocity vector 0I'/Or at a point of T" is the projection
under dmw of the vector ¢ at the corresponding point of . Therefore the
vector OI'/Or belongs to the indicatrix, and the parameterization I'(r) is by
arc-length. Property 6) follows. Property 5) is obtained from 6 by summation
over smooth pieces of the caustic.

Equivalently, the argument from the preceding paragraph means that the
Minkowski length of a smooth arc ¢ of the caustic, oriented as above, equals
the integral of the contact form A over the lifted arc §cT. Likewise, r and
R are the respective integrals of A over the trajectory segments of the field &.

Since i¢dA = 0, the integral of d\ over the quadrilaterals in Z, bounded
by the trajectories of £ and the curves § and v, vanishes. Applying Stokes’
theorem and taking into account that A =0 on 7, the equality L—R+r =10
follows.

To prove property 7), the Kneser theorem, assume that two osculating
indicatrices intersect at some point C. Let A and B be the respective centers
of curvature such that A precedes B on the oriented smooth piece of the
caustic, and let » and R be the corresponding curvature radii. Then the length
of the oriented segments CA and CB equal r and R, respectively. By property
6) the Minkowski length of the arc AB equals R — r, and this violates the
triangle inequality — see Figure 3.
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C

FIGURE 3

REMARK. The definitions given at the beginning of this section extend to
complete Finsler metrics without conjugate points. Properties 1) — 7) hold in
this case as well, and the proof goes through without change.

Returning to the situation of the Introduction one sees that Theorem
0.1 is the 4-vertex theorem in the Minkowski geometry associated with a
parametrized curve (as explained in Section 2). In particular, the envelope
I'(¢) of the lines I(¢) is the Minkowski caustic. We collect explicit formulas in
the next lemma. These formulas hold true even if the function [fy’ '), ~" (t)]
has zeroes.

LEMMA 3.2. The envelope is

[ (0,7 ()]

Ht,
@] P

() = )+ 7

the radius of curvature is

o = OO
(Y@, " (®)]

and cusps of T'(t) correspond to critical points of the curvature function

KD — Y0, 7" 0]

[y, "]
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EXAMPLES.

1) Let v be a nonparametrized smooth closed strictly convex plane curve
and O be its interior point. Take O as the origin in R?. There exists a
parameterization ~(r) such that |y(r),7' ] = 1 for all ¢. Then (2 is
colinear with ~(¢), and the caustic in the corresponding Minkowski geometry
degenerates to the point O. All points of v are Minkowski vertices, and all
osculating indicatrices coincide with the curve itself.

2) Let a parameterization (¢) satisfy |v'(s),7"(t)] = 1 for all ¢ (an
affine parameter). The indicatrix in the corresponding Minkowski geometry is
given by the formula I(r) = +"(¢). The lines I(f), generated by the vectors
~"(t), are called affine normals of the curve. The line [(f) is tangent to the
curve that consists of midpoints of the segments, bounded by the intersections
of ~ with the lines, parallel to the tangent line to  at point () — see
Figure 4. The envelope of the affine normals is called the affine caustic.

FIGURE 4

Differentiating the equality |v/(z),” (O] = 1 ome finds: ~"() =
—k(t) +'(¢), where the function k(r) is called the affine curvature. The affine
curvature 1s reciprocal to the curvature radius in the corresponding Minkowski
geometry. Critical points of the affine curvature are called affine vertices (or
sextactic points). A smooth closed convex curve has at least 6 affine vertices
(see [Bl 2]); thus a generic affine caustic has at least 6 cusps. Affine vertices
are points of 5-th order contact of the curve with a conic: at an ordinary point
the order of contact is one less.

To conclude this section, note that the Minkowski metric gives rise to a
symplectic form w in the space C of oriented lines in the plane. Indeed, C is
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identified with the space of trajectories of the geodesic flow £. Let A be the
contact form in the space of cooriented contact elements associated with the
Hamiltonian function H (see Theorem 1.1). Then the 2-form d) descends to
C ; this is the symplectic form in question.

The family of Minkowski normals to y is a curve o C C. Let o9 C C be
the curve that consists of oriented lines through a fixed point x in the plane.

LEMMA 3.3. The w-area of the region in C between the curves o and
oo equals zero.

Proof. Denote by 7, the set of cooriented contact elements with the foot
point at x. Then 7, is a Legendrian curve. The projections of 7 and 7, along
the trajectories of & are the curves ¢ and oy. The area under consideration
is the integral of the form d\ over a film spanned by & and 7. By Stokes’

theorem, this area equals
/ A— / A=0
¥ Yo

since both curves are Legendrian.

In particular, the curves o and oy intersect at least twice. Therefore at
least two Minkowski normals to ~y pass through an arbitrary point x in the
plane. If the Minkowski metric is associated with a parametrized curve ~y(¢)
then the corresponding values of ¢ are the critical points of the function

[7(@®) — x,7'®)].

REMARK. In the Euclidean case a convex closed curve has at least 2
double normals (chords, perpendicular to the curve at both ends). This is still
true in the Minkowski setting, provided the indicatrix is centrally symmetric,
but does not seem to hold in general.

4. MINKOWSKI VERTICES AND CHEBYSHEV SYSTEMS

This section contains proofs of the 4-vertex theorem in the Minkowski
setting (different from the one in [T1]) and a generalization of Theorem O0.1.
The arguments used are, more or less, classical; recently the approach via
Sturm theory attracted new interest (see [A 1, A 4, A 5, G-M-O]).

Let J have the same meaning as in the previous section and let J(¢) be
some parameterization of this curve, 0 <t < T. Let () be a strictly convex
closed smooth curve, parametrized so that the tangent vector ~'(f) has the
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same direction as J/(¢) for all z. Denote by r(z) the Minkowski curvature
radius at point () and by k(1) = 1 /r(¢) the Minkowski curvature. Fix a
linear coordinate system in the plane, and let (v1(1),72(2)) be the coordinates
of the point (7).

LEMMA 4.1. The function k'(t) is Lp—orthogonal to the functions
{1,71(8),2(0)} on the circle R/TZ.

Proof Clearly, [| K'(dt = 0. A curve, homothetic to J(z) with the
coefficient r(¢), is second order tangent to (¢). Therefore +'(r) = r()J'(@).
One has:

T T T
/ k' (Hv(t)dt = —/ k(1) (H)dt = —/ J'(t)dt=0.
0 0 0

Thus £'(¢) is orthogonal to () and (7).
In the case of a parametrized curve () this means that the function

( [ (@), 7" ()] >’
2

[/ (@®), 7" (1]

is orthogonal to {1,~(¢),v2(¢)} which follows from the easily verified identity :

O OL ( NTo )
[V @), 7" @] (v (0),7" )]

This orthogonality holds in the case when the function [y"(¢),~"/(¢)] has
zeroes as well.

DEFINITION. A (2n + 1)-dimensional space of functions on the circle is
called a Chebyshev system if every function from this space has at most 2n
zeroes, multiplicities counted.

The functions {1,7,(f),v2(f)} constitute a Chebyshev system: zeroes of a
function a + by (t) + cy,(¢) are the intersections of the line a4+ bx + cy with
the curve <y, and < 1s strictly convex. Since Minkowski vertices of ~y are
critical points of its Minkowski curvature, the 4-vertex theorem follows from
the next result found in [Gu 1, A 4, G-M-O].

THEOREM 4.2. A function f, orthogonal to a (2n + 1)-dimensional
Chebyshev system on the circle, has at least 2n + 2 distinct zeroes.

Sketch of proof. Assume f has 2n simple roots xi,...,xp,. There exists
a function g in the Chebyshev system with zeroes at xi, ..., xy,. By definition
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of Chebyshev systems, this function has no other zeroes. Thus the constant
sign intervals of f and g coincide, and [fg # 0, a contradiction. (The
argument adapts to the general case of fewer and, possibly, multiple roots.)

Theorem 4.2, along with Lemma 3.2, implies the following stronger version
of Theorem O0.1.

THEOREM 4.3. Given a generic parametrized closed strictly‘ convex plane
curve (t), the envelope of the one-parameter family of the lines, generated
by the acceleration vectors ' (t), has at least 4 cusps.

Next, we construct the support function of the curve (7). Let O be the
origin in R?. The tangent lines to ~ at point y(f) and to J at point J(¢) are
parallel; let p(#) be the coefficient of the homothety with the center at O that
takes the latter line to the former.

DEFINITION. The periodic function p(¢) is called the support function of
the curve (7).

A curve is uniquely determined by its support function. In the Euclidean
case the support function is the signed distance from the origin to the oriented
tangent lines to -y.

Let S(t) be the parametrized figuratrix, considered as a curve in R?,
and let (Sl(t),Sz(t)) be its linear coordinates. Consider the collection of
curves obtained from J(¢) by parallel translations and dilations with positive
coefficients.

LEMMA 4.4. The support functions of these curves are the functions
{a + bS(t) + cS2(t)} where a,b,c are constants and a > 0.

Proof. Clearly, the support function of J(#) is 1. By Lemma 2.2,
[J(),8®] = 1 and [J'(1),S(@)] = 0. Thus the linear functional [ ,S(1)]
equals 1 on the tangent line to the curve J at point J(z). It follows that the
support function p(¢) of a curve ~(#) equals [fy(t), S(z‘)] . Applying the dilation
with coefficient ¢ and the parallel translation through vector v to the curve
J(t) one obtains the support function

p(t) = [aJ() +v,50)] = a+ [v,50)] .

The result follows.
The curve S(¢f) being strictly convex, the vectors S'(f) and S"(¢) are
everywhere linearly independent. Thus
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S (@) = u@®) S"(@) +v() S'@)

for some T -periodic functions u(f),v(f). Consider the linear differential
operator on the circle R/TZ :

L= (d/dt)® — u(t) (d/dt)* —v(t) d/dt.

The kernel of L consists of the functions a -+ & S1(t) + ¢ Sy(¢). It follows
from the strict convexity of S that these functions constitute a Chebyshev
system.

EXAMPLE. If the parameterization S(¢) is an affine one then the operator
L equals (d/dt)® + k(t) (d/df) where k(¢) is the affine curvature.

DEFINITION. A linear differential operator of odd degree is called discon-
jugate on the circle R/TZ if every function in its kernel is T -periodic and
this kernel is a Chebyshev system.

The operator L is disconjugate. In the Euclidean case S(¢) is the unit
circle, and L = (d/dt)® + d/dt. Disconjugate operators enjoy the following
property proved in [A4, G-M-O].

THEOREM 4.5. Let L be a disconjugate differential operator on the circle
of degree 2n+1. For every smooth function f on the circle the function L(f)
has at least 2n + 2 distinct zeroes.

Vertices of a curve ~y(f) present themselves as follows in terms of the
support function p(r).

LEMMA 4.6. A point ~(to) is a Minkowski vertex if and only if

L(p) (o) = 0.

Proof.  Let po(f) be the support function of the osculating indicatrix at
point Y(fo). Then (7*p)(t0) = (j%po)(to). If (o) is a vertex then the 3-jets
are equal: (j°p)(fo) = (j3po)(to). Since L(py) = 0, one has: L(p)(ty)) = 0.

Conversely, if L(p)(ty) = 0 then

p"(t0) = u(to) p"(t0) + v(to) p' (1),

and the function py satisfies the same equation. Since the 2-jets of p and

po at to coincide, it follows that p"’(fy) = p}’(ty) as well. Therefore the
osculating indicatrix is third order tangent to v at point Y(to).

Thus Theorem 4.5 again implies the Minkowski 4-vertex theorem.

P
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REMARK. The following result is also known (see the literature cited): if
a convex closed curve intersects a curve, homothetic to J, at 2n points then
it has at least 2n Minkowski vertices.

5. CONSERVATIVE TRANSVERSE LINE FIELDS

In this section we discuss the following problem: given a smooth strictly
convex closed plane curve 7 and a smooth transverse line field / along it,
when does a parameterization ~y(¢) exist such that the line I(¢) at point ~y(f)
is generated by the acceleration vector () for all ¢ ?

DEFINITION. A transverse line field along a closed plane curve, generated
by the acceleration vectors for some parameterization of the curve, is called
conservative.

Clearly, not every line field is conservative : consider, for example, a field
of lines that everywhere make an acute angle with the curve. Theorem 0.1
provides a necessary condition: the envelope of the lines from a conservative
line field has at least 4 cusps. Lemma 3.2 gives another one: there exist at
least 2 tangent lines to this envelope through every point in the plane.

We start with the following situation. Let M> be a contact manifold and
let v C M be a closed smooth Legendrian curve. Recall that the characteristic
line field n of a contact form A is the field Ker d\. Assume that the contact
distribution along 7 is coorientable; then it can be determined by a contact
form. Let 1 be a line field along , transverse to the contact distribution.

QUESTION. When does a contact form exist in a vicinity of .7y for which
1 is the characteristic field ?

When this is the case we call the field 1 characteristic.

Let A be some contact form near v and let v be a vector field along ~
that generates the line field n. Consider the 1-form (i, d\)/A(v) and set

~ Iy dA

8

THEOREM 5.1. The number (B(,n) does not depend on the choice of the
contact form X\ nor the vector field v. This number vanishes if and only if
the field m is characteristic.
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Proof. Clearly, (i, d\)/Mv) does not change if v is multiplied by a
nonvanishing function. Let A; = fA with f # 0 be another contact form.
Then dA\{ =df A+ fdX. One has

/ iy dh /f iy d\ +df(v) A — Av) df
OIS f A)

i, dA df (v) df

— A — pers o

/:Y o) A LT

The second integral on the right hand side vanishes because v is a Legendrian
curve, tangent to the kernel of df(v)A/fA(v), and so does the third because
df /f is an exact 1-form. Thus 8(7,n) does not depend on the choices involved.

If 7 is characteristic for a contact form A then i, dA =0, so G(y,n) = 0.
Conversely, let 5(y,n) = 0. A neighbourhood of % in M is contactomorphic
to a neighbourhood of the zero section in the space of 1-jets J'S! (see [A 3]).
That is, there exist coordinates (x,y,z), x € S', y,z € R! in which the
contact structure 1s given by the 1-form A\g = dz — ydx, and 7 is the curve
y =z =20. Since 7 is transverse to the contact structure one may assume it
to be generated by the vector field

v = a(x) 0/0x + b(x) 0/0y + 8/0z,

where a(x) and b(x) are functions on the circle.

Then -
~ . Ly 0 o
5(%77)—A o) /b(x) dx .

If B(7,7n) vanishes then there exists a function g(x) such that b(x) = g (x).
Next, a direct computation shows that the characteristic line field of the contact
form ¢/®? )\, is generated by the vector field

fy 0/0x — (fi+yf) 0/8y + (1 + yf,) 8/0z,
which equals, along 7,
u=f, 0/0x—f, 9/0y+0/0z.

Therefore, setting f(x,y,z) = a(x)y — g(x), one has: v = u, and the field n
is characteristic.

Thus the characteristic line fields constitute a codimension 1 subspace in
the (infinite dimensional) space of line fields along 7, transverse to the contact
structure.

Return to the situation at the beginning of the section. Let v be a smooth
strictly convex closed curve, cooriented inwards, and let / be a smooth

S o s s
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transverse line field along 7. As before, 7 is the Legendrian curve in the
space of cooriented contact elements ST*R?, corresponding to . For every
point x € v consider the family of cooriented contact elements along the line
I(x), parallel to the contact element of « at x. This gives a line field n along
7, a lift of the field /. The field n is transverse to the contact structure.

Choose a parameterization y(7), 0 <t < T, and a vector field u(¢) along
v that generates the line field (7).

LEMMA 5.2. One has:

g T y"@®), u@)
oy = | LD
o /0 v 0, u0] “

Proof. Let v be the lift of u to ST*R? that generates the field
n. In Theorem 2.1 a Hamiltonian function H in ST*R? is constructed,
associated with the parameterization ~y(f) (one does not need the assumption
[’y’ (@), ~" (t)} +# 0 here). The space ST*R? is identified with R? xS, where the
star-shaped curve S C (R?)*, the level curve of H, consists of the covectors
[v/(£), ]. The corresponding contact form A is the restriction of the Liouville
form pdg to R? x S. The curve 7 is given by the formula:

YO = 0@, YO, D.
It follows that A(v(r)) = [v'(®), u(t)] . Likewise,

(indN) (T (1) = Gudp Adg) (T @) = [v'®), u®)] .

/iv d\ /T " @0,u®]
5 A) o [Y®u®]
In particular, the value of the integral

/T [y (0), u(®)] 0
o [Y(®,u®)]

Therefore

The lemma is proved.

does not depend on the parameterization ~y(#) nor on the choice of the vector
field u(¢). Denote this integral by a(v,]).
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LEMMA 5.3. The line field | along ~ is conservative if and only if the
line field m along 7 is characteristic.

Proof. If [ is generated by the vectors ~”(f) then 7 consists of the
characteristic directions of the contact form in ST*R?, associated with the
parameterization ~y(¢) in Theorem 2.1 (cf. the proof of the preceding lemma).

Conversely, a contact form A along 7, whose characteristics are the lines
n, is a field of covectors p along = which vanish on the tangent lines to -~y
at the respective points. Define the parameterization y(f) by the condition:
[v' (1), 1=p (4(2)) for all . Then the contact form in ST*R?, associated
with this parameterization according to Theorem 2.1, coincides with A along
~. Therefore the lines [(f) are generated by the vectors " (7).

Combining Theorem 5.1, Lemma 5.2 and 5.3, one arrives at the following
result (discovered in [T 2] and proved therein by a direct computation).

THEOREM 5.4. A transverse line field | along a smooth strictly convex
closed plane curve v is conservative if and only if a(v,[l) = 0.

Thus conservative line fields constitute a codimension one subspace in the
space of transverse line fields along a closed curve.

EXAMPLE. L. Guieu and V. Ovsienko studied the following situation
in [G-O]. Given a smooth convex closed plane curve consider the field of
lines connecting each point of the curve with a focus of its osculating conic
at this point (see Example 2 in Section 3). This line field is conservative,
and 1ts envelope, called the gravitational caustic in [G-O], has at least 6
Cusps.

Consider a curve ~ with a transverse line field /. A (partial) diffeomorphism
of the plane F takes v to a new curve F(v) with the transverse line field
dF(l). The field dF(l) does not have to be conservative even if [/ is.

EXAMPLE. Let « be the unit circle, [ consists of its normals, and F
is given near 7 in polar coordinates by the formula: (o, r) — (a + r,r).

Then F(y) = v, and the lines dF(I) make a constant acute angle with the
circle.

However the following result holds (to answer a question by V. Arnold).

THEOREM 5.5. Every projective transformation of the plane takes the
conservative line fields to the conservative ones.
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Proof. Consider R? as the plane {z =1} in Euclidean 3-space, and let

T (x,y,2) — (x/z,y/2)

be the projection of the half-space R: = {z > 0} on R?. Consider a
parametrized curve I'(f) C R3., and let v(r) = (I (D).

Claim : the field (dm) (F” (t)) is conservative along the curve (7).

Indeed, a direct computation (which is left to the reader) shows that

Z(1)

@m (@) =7"0+2 -

Y (®)-

Therefore

Z(1)
z(1)

a(y, @I ®)) = - / 2 dt = —2 / d log z(t) =0.

The claim follows from Theorem 5.4.

Let A be a linear transformation of space. Then F = wA : R? — R? is a
projective transformation, and all projective transformations are obtained this
way. Consider a curve v(f) C R?, and let I(f) be generated by the acceleration
vectors v"(r). Let I'(tf) = A(y(1)) ; assume, without loss of generality, that
') C Ri One has: I'(1) = A(fy” (t)), and it follows from the above claim
that the field (d7)(I"'(s)) is conservative along the curve m(I'(7)). Thus the
line field dF(I) is conservative along the curve F(7).

REMARK. Theorem 5.5 shows that the notion of the conservative line
fields along closed curves is a projective, and not an affine, one. Thus one
hopes that the theory of this paper can be extended to spherical curves in the
spirit of [A 5].
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ADDED IN PROOF. A higher dimensional analog of conservative transverse
line fields is studied in the author’s paper “Exact transverse line fields
and projective billiards in a ball”, to appear in “Geometric and Functional
Analysis”.
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