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En intégrant £ — e¥9¢ e long de v, et de y_, on obtient:

1 V=) &o 1 =% &o

E(B(a)) x) = —— ay)dy + —

2im Jypo Yy —x 2T Jyo y—x

a(y)dy .

Si Cr désigne le lacet représenté sur la figure 4, on a d’apres la formule de
Cauchy :

1 e(y—x) &o
a(x) = ~75; / a(y)dy .
T Je, Yy —X

FIGURE 4

En faisant tendre R vers I’infini on voit que £(B(a)) (x) = a(x) pour tout |
xeS. [

7.4. LE CAS INTEGRABLE

Supposons que la fonction a appartienne & 1’espace vectoriel O(Vg)xP(")
(r > 0) ou Vg désigne I'ouvert

Vg :={x € C\{0} | =6 < Arg(x) < 5},

avec /2 < pB < m.
Reprenons les notations de la sous-section 7.2; en particulier U,(6) désigne
le demi-plan

U0) .= {£ € C| R < —r}.

En adaptant les résultats de 7.2 on voit que le représentant Bi(a) de la
transformée de Borel de a se prolonge analytiquement:
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— sur ouvert
ut= |J 0O
oc[—B,0]
en une fonction notée B,j (a) € O(Uj)exp(k) :
— sur ouvert
vy = |J U®

6€l0, 5]

en une fonction notée By (a) € O(U; )*™® (voir figure 5).

FIGURE 5

Faisons a présent I’hypotheése suivante:

HYPOTHESE 1. La fonction B,j(a) (resp. B, (a)) se prolonge analytique-
ment dans [’ouvert UJ (resp. Uy ).

Désignons alors par *UP le voisinage sectoriel de Dinfini défini par
*UP = U NU; . Une application du théoréme de Cauchy montre alors
la proposition suivante.

PROPOSITION 7.1. Sous les hypothéses précédentes, la fonction a, appelée
le mineur de a, définie pour & € *UP par: a(€) = B, (a) (€) — By (a) (€), ne
dépend pas de k et on a: ‘

~ 1 ’
() = 5= [ eatas,
20T r
ou T est le chemin représenté sur la figure 6. De plus, a € O(*UP)expO)

Le fait que @ appartienne a I’espace vectoriel O(*UP)*PO) est une
conséquence directe des propriétés de croissance a I’infini de B,j (a) et B, (a)
en faisant tendre k vers zéro.

[ ———
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FIGURE 6

PROPOSITION 7.2. Si la fonction a possede un développement
a(x) = Zn>1an;l,; convergent a l’infini, alors la fonction a est entiére et

n—1

ag) = anl an(s_—l)! :

Démonstration. Le développement ) ., a, xi est uniformément conver-
gent pour |x| > R. En prenant pour contour I" un cercle de centre 0 et de
rayon R’ > R, on a:

1
x& — _ —x§
a(é) = / Z an dx = 2z7r an/ = dx ,
ce qui fournit ’expression désirée par un simple calcul de résidus. [
Ajoutons a présent I’hypothese suivante :
HYPOTHESE 2. L’origine est une singularité intégrable de B(a).
Nous pouvons écrire sous ces conditions 1’égalité :
+o0o
[ =@ ©de= [ e aga.
Jy 0

de sorte que le résultat qui suit est un simple corollaire du théoréeme 2.
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COROLLAIRE 7.1. Sous les hypothéses précédentes, on a:
o0
o) = / e aE) d
0
pour tout x dans I'ouvert Vg, ou la fonction analytique a désigne le mineur

de a.

7.5. QUELQUES PROPRIETES

La proposition suivante est une conséquence immédiate du théoreme 2.

PROPOSITION 7.3. L’opérateur de dérivation O se transforme par BB en
’opérateur de multiplication par —&,

B
Deérivation o = multiplication par (—§),
X
L

tandis que [’opérateur de translation E¥ de vecteur w > 0 se transforme par
B en l’opérateur de multiplication par e~ v,

B

Translation E¥ = multiplication par (e”“%).
L
REFERENCES

[AV] ArostoL, T. M. and T. H. VU. Dirichlet series related to the Riemann zeta
function. Journal of Number Theory 19 (1984), 85-102.

[B1] BERNDT, B. C. Ramanujan’s Notebooks, Part 1. Springer Verlag, New York,
1985.

[B2] —— Ramanujan’s Notebooks, Part II. Springer Verlag, New York, 1989.
[Bo] BoaAs, R. P. Entire Functions. Academic Press, New York, 1954.

[BB] BORWEIN, D., P. BORWEIN and R. GIRGENSOHN. Explicit evaluation of Euler
sums. Proc. Edinburgh Math. Soc. 38 (1995), 277-294.

[C] CARTIER, P. An introduction to zeta functions, in From Number Theory to
Physics. Springer Verlag, Berlin, 1992.



	7.4. Le cas intégrable

