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124 B. CANDELPERGHER, M. A. COPPO ET E. DELABAERE

LEMME 7.2. On suppose que a appartient a ’espace Op(P)*P"). Alors
Bi(a) définit une fonction holomorphe dans ’ouvert U, X D; de plus pour
tout fermé S contenu dans ’ouvert U,, pour tout compact K C D et pour
tout € > 0, il existe C = C(S',K,€) > 0 tel que pour tout £ € S’ on ait la
majoration (uniforme en z):

|Bu(a) (£,2)| < Cetolel,

Autrement dit, Bi(a) € Op(U,)*P®.
De plus si 2= (z1,..,22), 3-Bu(@) = Bi(5-a).

Démonstration. 11 suffit de reprendre la preuve du lemme 7.1 et de conclure
par le théoreme de convergence dominée de Lebesgue. [

7.3. TRANSFORMATION DE LLAPLACE

7.3.1. Transformée de Laplace

DEFINITION 4.  Soit k > 0 et f € OU,)*®® ot U, est le voisinage
sectoriel introduit précédemment. On définit la transformée de Laplace de f
par: '

LF) = / eEf () de
Y

ou v est le chemin représenté sur la figure 2.

FIGURE 2

Remarquons tout de suite que [’hypothése de croissance faite sur
f € OWU,)™® implique (en utilisant les mémes arguments qu’a la sous-
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section précédente) ’analyticité de Lf dans 'ouvert P du plan complexe
des x, voisinage sectoriel de I’infini défini par

Py :={xe C|RXx > k}.

L’étude sur sa croissance & 1’infini est I’objet du lemme suivant:

LEMME 7.3. Si f € O(U)™% dlors la fonction Lf appartient a I’espace
vectoriel O(P)P" .

Démonstration. Pour montrer que Lf est de type exponentiel dans 1’ouvert
P, considérons un demi-plan fermé S contenu dans cet ouvert: pour € > 0
assez petit nous pouvons supposer que le secteur fermé S est inclus dans le
domaine des x tels que la condition

Rx) > (k+€)

soit satisfaite. En utilisant notre liberté de déformation du chemin ~ a I’aide
d’une homotopie laissant invariantes les directions a 1’infini nous pouvons
aussi supposer que < s écrit comme la somme:

— du chemin compact orienté C(r+ p) consistant a parcourir le demi-cercle
situé dans le domaine (&) < 0, de rayon a + p, ou p est un réel positif
que ’on peut prendre aussi petit que 1’on veut;

— de la réunion de deux demi-droites orientées ~(r + p) et v(r + p), demi-
droites horizontales dont la premiere est d’extrémité i(r+ p) et la seconde
d’origine —i(r + p).

Considérons 'intégrale sur ~(r + p),

/ e—xéf(g) dé = o~ X(rt+p) /T vg_-"“f(z‘ + i(r + ,0)) dt .
~(r+p) 0

Suivant notre hypothese sur f, il existe une constante C > O telle que pour
tout r > 0, on ait:

f (£ + iCr + p)) | < Celkte/Dtp) pgmetf2 glhter
de sorte que pour tout x € S,
‘e—‘”f(t +i(r+ 5)) l < Celkte/Dtp) p—et/2
et par conséquent pour tout x € S,

(k+e/2) (r+p)
l/ e—-‘ff(g) dg‘ < 2Ce e(/‘+P)|x| )
F(r+p)

€
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L’intégrale sur ~(r + p) se traite de la méme facon, avec une conclusion
identique. En ce qui concerne 'intégrale sur le chemin compact C(r + p),
il suffit de majorer le module de f par une constante (par compacité) pour
conclure. [

7.3.2. Dépendance suivant un parameétre

La transformation de Laplace «a parametre» ne pose pas de difficulté
particuliere : avec les notations de la sous-section précédente énongons le

LEMME 7.4. Si f € Op(U)™® o D un ouvert de C", la fonction
Lf définit une fonction holomorphe dans I’ouvert Py x D ; de plus pour tout
demi-plan fermé S C Py, pour tout compact K C D et pour tout € > 0, il
existe une constante C = C(S,K,e) > 0 telle que pour tout x € S, on ait la
majoration (uniforme en z): '

|1£f(x,2)] < Cem+l,
autrement dit: Lf € Op(P)*P")
De plus si z = (z1,...,2,), a%/j(f) = ,C(—a-a;f).

Démonstration. 1l suffit de reprendre la preuve du lemme 7.3 et de conclure
par le théoreme de convergence dominée de Lebesgue. [

7.3.3. La transformation de Laplace-Borel

Le lemme qui suit est une simple remarque.
LEMME 7.5. Si f € O(C)*®, on a Lf =0.

Mais cela nous permet de définir sans ambiguité la transformée de Laplace
LB(a) de la transformée de Borel d’un élément a € O(P)*P") : pour tout
k>0,

LB(a) .= LBy(a).

Par conséquent, L£B(a) définit une fonction analytique dans ’ouvert P (faire
tendre k vers 0). Plus précisément:
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THEOREME 2. Soit a € O(P)**P") . Alors
,C(B(a)) =a
dans ’ouvert P.

Démonstration. Soit x € § ot § est le secteur fermé de 1’ouvert P
représenté sur la figure 3. D’apres les définitions de £ et B on a:

£(B@) )= [ e B@ @ de
ol B(a) () est défini par: ’Y

B@© = -5 [ et
Si € est sur 4, et par:

B@© =5 [ efavay

si & est sur y_, ou les chemins di , d_ , . et y_ sont représentés sur
la figure 3. On a donc:

ﬁ(B(a)) (x) :/ e_xg;l/ et a(y) a’yd§+/ e_xg—_,—I/ & a(y) dyde .
e 2im J4u _ 2w J,

FIGURE 3

Cela donne en permutant I’ordre d’intégration :

£(B@) (x) = / / e da(y) dy— — / €€ dea(y) dy .
d+ J v+ 2i d— Jy—

i
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En intégrant £ — e¥9¢ e long de v, et de y_, on obtient:

1 V=) &o 1 =% &o

E(B(a)) x) = —— ay)dy + —

2im Jypo Yy —x 2T Jyo y—x

a(y)dy .

Si Cr désigne le lacet représenté sur la figure 4, on a d’apres la formule de
Cauchy :

1 e(y—x) &o
a(x) = ~75; / a(y)dy .
T Je, Yy —X

FIGURE 4

En faisant tendre R vers I’infini on voit que £(B(a)) (x) = a(x) pour tout |
xeS. [

7.4. LE CAS INTEGRABLE

Supposons que la fonction a appartienne & 1’espace vectoriel O(Vg)xP(")
(r > 0) ou Vg désigne I'ouvert

Vg :={x € C\{0} | =6 < Arg(x) < 5},

avec /2 < pB < m.
Reprenons les notations de la sous-section 7.2; en particulier U,(6) désigne
le demi-plan

U0) .= {£ € C| R < —r}.

En adaptant les résultats de 7.2 on voit que le représentant Bi(a) de la
transformée de Borel de a se prolonge analytiquement:
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