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124 B. CANDELPERGHER, M. A. COPPO ET E. DELABAERE

LEMME 7.2. On suppose que a appartient à Vespace ö/)(P)exp^. Alors
Bk(a) définit une fonction holomorphe dans l'ouvert Ur x D; de plus pour
tout fermé S' contenu dans l'ouvert Ur, pour tout compact K C D et pour
tout e > 0, il existe C C(Sf,K,e) > 0 tel que pour tout £ G S' on ait la

majoration (uniforme en z) :

I Bk(a)(Cz)\<Ce(*+e)l«l.

Autrement dit, B]fa) G (9/)(t/r)exp(^.

De plus si zse=(zi,,.., z„), -§^Bk(a)

Démonstration. Il suffit de reprendre la preuve du lemme 7.1 et de conclure

par le théorème de convergence dominée de Lebesgue.

7.3. Transformation de Laplace

7.3.1. Transformée de Laplace

Définition 4. Soit k > 0 et / g 0(Ur)txv^k\ où Ur est le voisinage
sectoriel introduit précédemment. On définit la transformée de Laplace de /
par:

Cf(x)= [ e-*f(OdÇt

où 7 est le chemin représenté sur la figure 2.

Figure 2

Remarquons tout de suite que l'hypothèse de croissance faite sur

/ G 0(Urfxp^ implique (en utilisant les mêmes arguments qu'à la sous-
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section précédente) l'analyticité de Cf dans l'ouvert Pk du plan complexe

des a, voisinage sectoriel de l'infini défini par

Pk := {x G C | 93(x) > k}

L'étude sur sa croissance à l'infini est l'objet du lemme suivant:

LEMME 7.3. Si f G 0(Urfx?{k) alors la fonction Cf appartie?it à Vespace

vectoriel ö{Pkf^{r).

Démonstration. Pour montrer que Cf est de type exponentiel dans l'ouvert

Pk, considérons un demi-plan fermé S contenu dans cet ouvert: pour e > 0

assez petit nous pouvons supposer que le secteur fermé S est inclus dans le

domaine des x tels que la condition

93(x) >(k + e)

soit satisfaite. En utilisant notre liberté de déformation du chemin 7 à l'aide
d'une homotopie -laissant invariantes les directions à l'infini nous pouvons
aussi supposer que 7 s'écrit comme la somme:

— du chemin compact orienté C(r -f p) consistant à parcourir le demi-cercle
situé dans le domaine 93(Ç) < 0, de rayon a + p, où p est un réel positif
que l'on peut prendre aussi petit que l'on veut;

— de la réunion de deux demi-droites orientées 7(r + p) et 7(r + p), demi-
droites horizontales dont la première est d'extrémité i(r + p) et la seconde

d'origine — /(r + p).

Considérons l'intégrale sur 7(r + p).

I dç e-*r+p)f+ /(r +
J^fir+p) J 0

dt.

Suivant notre hypothèse sur /, il existe une constante C > 0 telle que pour
tout t > 0, on ait :

|/(f + i(r+ p)) I < Ce(k+e'2){r+P) e"£f/2

de sorte que pour tout x G 5,

I e~x'f(t + i(r + e)) \<Ce(k+e/2){r+P)e~,/2

et par conséquent pour tout x G S.

e-*M)dÇ
y(r+p)

2Ce{k+e/7)(r+p)
< e(r+p)\x\
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L'intégrale sur 7(r + p) se traite de la même façon, avec une conclusion

identique. En ce qui concerne l'intégrale sur le chemin compact C(r + p),
il suffit de majorer le module de / par une constante (par compacité) pour
conclure.

7.3.2. Dépendance suivant un paramètre

La transformation de Laplace «à paramètre» ne pose pas de difficulté
particulière: avec les notations de la sous-section précédente énonçons le

Lemme 7.4. Si f G öD(Urf^{k) où D un ouvert de Cn, la fonction
Cf définit une fonction holomorphe dans l'ouvert P^xD ; de plus pour tout
demi-plan fermé S C Pk, pour tout compact K C D et pour tout e > 0, il
existe une constante C C(S> K,e) > 0 telle que pour tout x G S, on ait la

majoration (uniforme en z):

\Cf(x,z)\<Ce(r+^,

autrement dit: Cf G Od(Pk)txv("r)•

De plussi Z- (Ji Zn), -§r£(f) £(%:/)

Démonstration. Il suffit de reprendre la preuve du lemme 7.3 et de conclure

par le théorème de convergence dominée de Lebesgue.

7.3.3. La transformation de Laplace-Borel

Le lemme qui suit est une simple remarque.

LEMME 7.5. Si f G C>(C)exP, on a Cf 0.

Mais cela nous permet de définir sans ambiguïté la transformée de Laplace

CB(a) de la transformée de Borel d'un élément a G 0(P)exp^ : pour tout

k> 0,

CB(a) := CBk(a).

Par conséquent, CB(a) définit une fonction analytique dans l'ouvert P (faire
tendre k vers 0). Plus précisément:
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Théorème 2. Soit a G ö(F)exp(r). Alors

C(B(a)) a

dans Vouvert P.

Démonstration. Soit x G S où S est le secteur fermé de l'ouvert P

représenté sur la figure 3. D'après les définitions de L et B on a:

C(B{a))(x)= [ •«*«/>(*)<£

où B{a) (0 est défini par :

B(d)(0T /
Jd+

si £ est sur 7+, et par :

mi0 ~é^Jd

si £ est sur 7_, où les chemins d+ 7+ et 7_ sont représentés sur
la figure 3. On a donc:

C(B(a)){x)= [ e7.'-f a(y)dyd£+e~x^[J7+2i7r •/</+ A- 2i7T Jd_

: d+/

<
Cela donne en permutant l'ordre d'intégration:

r («„)) w - - e"~"s d(a<y)e'"'e«)^

Figure 3
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En intégrant £ —» e^~x) ^ le long de 7+ et de 7_, on obtient :

1 f e(y~x^ 1 f Jy~x) Co

C(B{a)) 0) - / a(y)<7y+—- / a(y)dy.
2itt Jd+ y-x 2itt Jd_ y-x

Si C# désigne le lacet représenté sur la figure 4, on a d'après la formule de

Cauchy:
1 f e(j~x)

a(x) -—~ / a(y)dy.
2i7T Jcr y~x

Figure 4

En faisant tendre R vers l'infini on voit que C(B(a)) (x) a(x) pour tout

x e s.

7.4. Le cas intégrable

Supposons que la fonction a appartienne à l'espace vectoriel ö(Vß)exp^

(r > 0) où Vß désigne l'ouvert

Vß {xC\{0} I < < ß}

avec 7t/2 < ß < n.
Reprenons les notations de la sous-section 7.2; en particulier Ur{0) désigne
le demi-plan

Ur(9) := R G C I m.(ei90 < -r}
En adaptant les résultats de 7.2 on voit que le représentant Bßa) de la

transformée de Borel de a se prolonge analytiquement :
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