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X)(-l)* (c(*+l)-l) ln(2) — 1,
k> 1

^ '

où désigne la somme de Borel de la série.

6. Interpolation de Newton et sommation de Ramanujan

Étant donnée une suite (an)n>i, il est très facile, par l'intermédiaire
des séries de Newton, de construire formellement une fonction a telle que
a(n) an pour tout n > 1. On a la formule d'interpolation de Newton :

À'Wl)
a(x) a{ 1) + — (x — 1) (x — 2)... (x — n).z—^ n\

n> 1

Cette formule fait intervenir le calcul des différences n -ièmes :

n

A"a(l) ^(-l )n~kCknak+l.
k=0

Du développement de Newton de a :

a(x) a(l) + —
n>1

n'

on déduit formellement l'égalité:

k>\ k> 1 n> 1
H ' k> 1

Calculons à présent £^>, (fc ~ 1)(& - 2 )...(k-n)Del'équation aux
différences :

{x-1) (x -2)... (X- n -1) ~x(x-1)... (x- -{n +1) (x 1)...
il découle que:

D
1

"(A-IH.V-2)...(*-n) ~WTï(x -l)(x-2)... (x 1) + + 1),

avec :

7/7+1 / x(x — 1)... (x —
Jo

On a donc:
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1Z
In+1

yn — i) — z) {K — n)
k> 1

et

7Zl n + 1

v—1Y 1 A / xdx -k>lDe plus, les intégrales 7n+i sont données par la fonction génératrice:

E —E—/ fM

n+1 ^
1 1

Z —

n>0 ("+!)! lnd+JC) z

PROPOSITION 6.1. 5/ a est une fonction analytique bornée dans le demi-

plan P, alors:
n °° A"a(l)Ya(n) Y: n\ n+ln>I n=0

Démonstration. On commence par démontrer le

LEMME 6.1. Si a est une fonction analytique bornée dans le demi-plan P,
alors les Ana( 1) forment une suite bornée.

Démonstration. Par le théorème des résidus on a:

A-0(l) ^ f îM TA,2i7r Jjn (x —1)... (x —(n+ 1))

où est le lacet entourant les points 1,2,... ,n + 1 composé d'un segment
3

2
vertical passant par le point ~ et du cercle de centre n+l et de rayon n+l
Sur le cercle, on a:

|0- l).. .0 - 0 +1)1 > 0+ l)!,

et sur le segment, on a

10 - 1)... (x - (n + 1)1 > •

La majoration de Ànn(l) provient du fait que le cercle est de longueur
27r(n + 1) et que le segment est de longueur < 2y/n + 1 ce qui permet de

majorer l'intégrale sur le segment à l'aide de la formule de Stirling.
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La série X)«>o (n+iy. A,7ß(l) est absolument convergente car les Ana( 1) sont

majorés par une constante et la série X^n>o(~^n (i+T)T est converêente (Par

un théorème taubérien classique). D'autre part, d'après des propriétés connues
des séries de Newton (cf. [G]) la fonction :

vérifie les trois propriétés caractéristiques de la fonction Ra.

Exemple 14. D'après le calcul de Ana pour a(x) ~ ~ :

n\
Ana(x) (-ir-x(x -f 1).. • (x + n)

il vient:
1Z

ln-\-1
/v ^ uo

E — E(-1)"-X—J yi —1— y X—/
„> on+xtzo x(x+

Pour tout entier N>2,on en déduit, d'après l'exemple 9 (cf. §4.2), l'égalité :

1 °°
7 1 + ' ' ' + 77—7 " ln(lV) + Y(-ir /n+1

N-l ^ N(N + 1)... (N + ri) (n 4- 1)

Remarque 11. De la relation :

n—k

** 1 + E S'k(x ~ 1) (x 2)... (x -
n— 1

avec :

p=0

on déduit, en prenant la somme de Ramanujan des deux membres, la relation :

1 ~ Bk+\ _ sp 4+1
k+1

n—0
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Remarque 12. Le développement formel de Ra :

Ra(x) - / a(t)dt - ^2 7~T~TU öwa(v),
«>o

permet d'écrire formellement l'égalité:

(n+ 1)!
n>l n>0

En général, la série de droite diverge au sens de Cauchy. Cependant, on pourrait
montrer que sous certaines hypothèses sur a, cette série est Borel-sommable

et que

n> 1 n>0
^ }'

où Y2n>\ désigne la somme de Borel. Par exemple:

7-1+- + +
n> 1

D'autre part, on a vu (cf. proposition 6.1) que sous certaines hypothèses,

on a:
1Z oo j

£*<»> £ i
n> 1 n=0 V 7

Remarquons que l'égalité formelle:

-y g"+1
dna{\)y In+\, A"a(l)

(« +1)! Hh 1)!
«>0 n>0

peut se déduire directement des développements formels :

/ =i yjn+^dn
«>0

uE-^A"ln(7 + A) A ^ (« + 1)!
n>u

ainsi que de la relation :

9 In E — ln(7 + À).
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