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vérifiée pour > 1, par prolongement analytique elle est donc vraie pour
tout z G C — {1}. La seconde égalité s'obtient par dérivation par rapport
à z.

Remarque 8. Les formules précédentes restent valables pour z 1

en remplaçant les membres de droite par leurs limites en 1, et on a le

développement (cf. [Bl] p. 164):

A-J nz A^ A^/ nn> 1 k~ 1 n> 1

5. Exemples d'utilisation

5.1. Développement en série de la fonction ç
La fonction 0 vérifie l'équation:

1p(z.+ 1) 0(z) + - •

z
Par ailleurs, d'après l'exemple 6 (cf. §3.1), on a pour 9î(z) > -1 :

0(1 + z) ln(l +
n + zn> 1

Supposons |z| < 1 et posons /(x) on a

n> 1 n> 1 x 7

Le développement en série entière en 0 de la fonction / :

k> 1

de rayon de convergence p|>l, permet d'écrire la somme de Ramanujan
de cette série sous la forme:

£rL 7+D<-,)V(«1:+l)-r) '

n>\ k> 1 \ KJ

On en déduit le développement de i/j :

0(z)= -- - 7-53(-1)*_1CWz*_1.
k>2
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5.2. Calcul de Y^>\ n2q lnW

PROPOSITION 5.1. Si q désigne un entier naturel > alors:

K

n> 1

avec

n2q ln(n) » —^ K

(2q + l)2 (2q + 1)
2q+l% ^'

(B2q+1, ip) / 52^+I 0) ^0) dx.
Jo

u

/ 0

Démonstration. On commence par montrer le

Lemme 5.1. 57 ß £e//<? gwe a(0) <9ß(0) •••== d2q la(0) 0,
alors

7Z,
p i J p \

V"a(«)= / a(t) dt +————-/^ J0 (2^+l)!t/0

Démonstration. Soit /HA") g a(t)dt. On applique la formule d'Euler-
MacLaurin avec reste intégral sur [0,1] à la fonction RA. Il vient:

q
dRA(0) + dRA( 1) ^ pßnjo

i ,i

o (2q+l)\J0
B2q+i(x) d2q+2Rdx.

n> 1

Comme [d2nRA]J — 0 pour tout n < q, on a:

Ôf?A(0) + ÔÂA(l) 1 ,,a2«+2iww
s 7S—mr / ß2?+i Wodx.2 (2q +1)! J0

En utilisant la propriété Rg«f dnRf + 9"~'/( 1), on obtient:

Ra(l)=f a(t)dt+
1

[B2q+\{x)Rd2,+ia{x)dx.Jo(2? +1)! J

On applique le lemme à la fonction a— x2q ln(x), cette fonction vérifie

[ait)dt—-
*

2
et •

Jo (2 q+ l)2 *
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Remarque 9. D'après le corollaire 4.1 (cf. §4.7), on a aussi:

fln2qin(n) -(2^TW~(:'{-2q)-
n> 1

En dérivant l'équation fonctionnelle de la fonction :

C(Z) 2(2TT)z_lr(l - z) CCI - Z) sin (y)
on obtient pour q entier > 1 l'égalité (cf. [Bl] pp. 273-276):

U 1 12/71 '

n2q ln(») - + 1)2
+ 1)?+

2(27r)2ç ^ + ^ '

«>1

De la proposition précédente, on déduit alors l'égalité:

(B2q+Ui,)^ (2« + 1) Ä C(2ç + 1) •

Remarque 10. Pour |x| < 1, on a le développement:

1

2x
COt(TTX) -y + ^2 C(2k)x2t 1

k> 1

Posons :

/« ---7-E^2fc+1)x2fc-
Jfc> 1

D'après le développement de pj vu au paragraphe précédent, on a la

décomposition :

7T

V>(v) /(*) - - COt(TTX)

La fonction x i—> cot(7rx) est une fonction impaire par rapport au point j. De

la formule de réflexion:

^(1 — x) » 1p(x) + 7r COt(7tx)

on déduit que la fonction / est une fonction paire par rapport au point ^. La
fonction x i—» B2q+i(x) étant impaire par rapport au point | il résulte alors
de la décomposition de ip précédente les égalités :

(B2q+\,iß)-y (ß2?+i,cot(7T et =0,
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ce qui se traduit par les deux systèmes infinis d'équations:

53 C(^k)(x2k
1

,B2q+1) rq + ^ (2q + 1) ^ '

k> 1

53 ^){x2ki Biq+1 ~ ~rq •>

k>\

avec rq (^,B2q+l)

5.3. Une solution de l'équation de la chaleur
En dérivant sous le signe » on vérifie aisément que la fonction

^ 1 _E±E
«(?.x.y) } e 4^+'>

est solution de l'équation de la chaleur:

dtu d2x u + d2yu •

D'après le noyau de l'équation de la chaleur, on en déduit que

1 [2 _£±vi
w(l,0,0) — / e 4 y) dxdy

4TT 7r
c'est-à-dire, après passage en coordonnées polaires:

^ 1 r00 ^ 1 MyJ—^f e-»Yl-e-ändu.
J VI —1— 1 L y 77« -h 1 Jo ^ n

n> 1 n> 1

Or, d'après l'exemple 13 (cf. §4.6), on sait que:
TZ

-j oo / t \ JeE(«*+«- L
«>1 fc=l V 7

et d'autre part:
* 1

7=1- ln(2) + —— •

22+1
n>l

On en déduit l'identité:
n CO 00 /
/ rVf-inm+n- k I k\

ln(2) 1 Ie~u ]T< U C(* + 1) " j) £

qui traduit le fait que la série 1)*(C(£ + 1) - }) est Borel-sommable

et que
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X)(-l)* (c(*+l)-l) ln(2) — 1,
k> 1

^ '

où désigne la somme de Borel de la série.

6. Interpolation de Newton et sommation de Ramanujan

Étant donnée une suite (an)n>i, il est très facile, par l'intermédiaire
des séries de Newton, de construire formellement une fonction a telle que
a(n) an pour tout n > 1. On a la formule d'interpolation de Newton :

À'Wl)
a(x) a{ 1) + — (x — 1) (x — 2)... (x — n).z—^ n\

n> 1

Cette formule fait intervenir le calcul des différences n -ièmes :

n

A"a(l) ^(-l )n~kCknak+l.
k=0

Du développement de Newton de a :

a(x) a(l) + —
n>1

n'

on déduit formellement l'égalité:

k>\ k> 1 n> 1
H ' k> 1

Calculons à présent £^>, (fc ~ 1)(& - 2 )...(k-n)Del'équation aux
différences :

{x-1) (x -2)... (X- n -1) ~x(x-1)... (x- -{n +1) (x 1)...
il découle que:

D
1

"(A-IH.V-2)...(*-n) ~WTï(x -l)(x-2)... (x 1) + + 1),

avec :

7/7+1 / x(x — 1)... (x —
Jo

On a donc:
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