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vérifiée pour P(z) > 1, par prolongement analytique elle est donc vraie pour
tout z € C — {1}. La seconde égalité s’obtient par dérivation par rapport
az. O

REMARQUE 8. Les formules précédentes restent valables pour z = 1
en remplacant les membres de droite par leurs limites en 1, et on a le
développement (cf. [B1] p. 164):

R B k
le: Z( )(—l)kzln(:)‘

n>1 n>1

5. EXEMPLES D’UTILISATION

5.1. DEVELOPPEMENT EN SERIE DE LA FONCTION 1)

La fonction v vérifie I’équation :

1
¢(z+1):¢(z)+—z-'

Par ailleurs, d’aprés I’exemple 6 (cf. §3.1), on a pour $i(z) > —1:
R

w(l+z):ln(l+z)—z :

n+z'

Supposons |z| < 1 et posons f(x) = on a

1+xz
1 1
- Z f <Z> .
n>1
Le développement en série entiere en O de la fonction f :

_Z( 1)tk k

R

k>1
de rayon de convergence p = , ;> 1, permet d’écrire la somme de Ramanujan
de cette série sous la forme:
LA
=y + D2 (Gt + 1) — =
ZHZ Y ,;( K <<(+> )

On en déduit le développement de 1) :

1
Y@= - =y =) D

k>2
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5.2. CALCUL DE ZZ; n*? In(n)

PROPOSITION 5.1.  Si q désigne un entier naturel > 1, alors:

R

% . 1 B 1
;n ') = ~ 5= ~ Gy B ),

avec

i
(Bag+1,v) :/0 Boy1(x) (x) dx.

Démonstration. On commence par montrer le

LEMME 5.1. Si a est telle que a(0) = 0a(0) = --- = 8%~ 1a(0) = 0,
alors
R 1 1 1
- | a®dt+—— | B Ripesi ,(x) dx.
;aw /O ) (2q+1)!/0 294100 Rgaare1,(x) dx

Démonstration. Soit A(x) = f(;c a(t)dt. On applique la formule d’Euler-
MacLaurin avec reste intégral sur [0, 1] a la fonction R4. Il vient:

1

1 1
aanA} eE / By y1(x) O R4(x) dx .
0 - JO

OR4(0) + ORa(1) i [Bz,l

2 2n!
n>1

Comme [0?"R4]3 = 0 pour tout n < g, on a:

ORA(0) + ORa(1) 1
2 (g + 1)

]
/ Boy1(x) %12 Ry (x) dx .-
Jo

En utilisant la propriété Rgy = 0"Ry + 0" 'f(1), on obtient:

qu_H ()C) R324+1a()€) dx . D

1 1 1
R,(1) :/0 a(t)dt + —(2q+ D1 /0

On applique le lemme a la fonction a(x) = x%4 In(x), cette fonction vérifie

1
_ 1 2g+1 _
/0 a(t)dt = o7 T 17 et 09 alx) = L]
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REMARQUE 9. D’aprés le corollaire 4.1 (cf. §4.7), on a aussi:

R

! :
D In(n) = = G — (200

n>1

En dérivant I’équation fonctionnelle de la fonction ( :
—1 . (T2
((z) =2@2n) " T'(1 —2)¢(1 —z)sin (—2—> s
on obtient pour g entier > 1 I’égalité (cf. [B1] pp. 273-276):

R
2 o 1 el @ Q9!
Z n~In(n) = 20+ 17 + (=17 2my4 (Rg+1).

n>1
De la proposition précédente, on déduit alors I’égalite :

(— 1) (29)!
(Bagy1,%) = —— (2g+ 1) 2y

C2qg+1).

REMARQUE 10. Pour |x| < 1, on a le développement:

ot =~ + 3 (@R

k>1

Posons:

= =5 7= C@k+ D,

k>1

D’apres le développement de ¢ vu au paragraphe précédent, on a la
décomposition :

wm:ﬂ@-%ummy

La fonction x — cot(7x) est une fonction impaire par rapport au point % De
la formule de réflexion:

W(l — x) = P(x) + 7 cot(mx) ,

on déduit que la fonction f est une fonction paire par rapport au point % La
fonction x — By,41(x) étant impaire par rapport au point 1, il résulte alors
de la décomposition de 1 précédente les égalités:

.
(Bog+1,%) = —§<qu+1,00t(7fx)> et (Byg41,f) =0,
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ce qui se traduit par les deux systémes infinis d’équations :

D C@R(*T Bogyr ) =1y + (‘—)(2 +1) ((2 i

k>1

(2g+ 1),

> CQk+ 1), By ) = — 1y,

k>1

avec r, = <2 ,Bogt1) .

5.3. UNE SOLUTION DE L’EQUATION DE LA CHALEUR

s : R s © . A ,
En dérivant sous le signe > ', on vérifie aisément que la fonction

R

1 242
u(t,x,y) = e Fntn
5:5,) Z n+t
n>1
est solution de 1’équation de la chaleur:
aﬂ/l = 82 u —|— 82

wH
D’apres le noyau de I’équation de la chaleur, on en déduit que
1 z _-r2+,v2
u(1,0,0) = — e+ u0,x,y)dxdy,
4 R

c’est-a-dire, apres passage en coordonnées polaires:

1 Oo—u 1—
\;Hl:/o S e du

Or, d’apres ’exemple 13 (cf. §4.6), on sait que:

k

s 1 & > u
@Zﬁe +Z( 1yt <g<k+1)——> ok

et d’autre part:

=

—1~1n(2)+z

n>1

On en déduit 1’identité :

ln(2)—1—/ —“Z< l)k<(k+1)——>—du

qui traduit le fait que la série ZkZI(—l)k (¢(k+ 1) — 1) est Borel-sommable
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B

SOy (ak . %) — @) -1,

k>1

ot 5°F désigne la somme de Borel de la série.

6. INTERPOLATION DE NEWTON ET SOMMATION DE RAMANUJAN

Etant donnée une suite (@n)n>1, 1l est trés facile, par I'intermédiaire
des séries de Newton, de construire formellement une fonction a telle que
a(n) = a, pour tout n > 1. On a la formule d’interpolation de Newton :

A'a(1)
n!

a(x) = a(l)+ ) x—Dx—=2)...(x—n).

n>1
Cette formule fait intervenir le calcul des différences n-iémes:
n
—k ok
A'a(1) =) (~1)"* Clagy .
k=0

Du développement de Newton de a :

Ana'(l) x—Dx—2)...(x —n),

n

a(x) = a(l) + Z

n>1

on déduit formellement 1’égalité :

>t =aY 1+ TS 1y ge-2). - m.

n:
k>1 k>1 n>1 k>1

Calculons a présent Z,Z;l (k — 1)k —2)...(k — n). De I’équation aux
différences :

x=—D@x=2)..x—=n—=1D—x(x—1)...(x—n) = —(n+DE—-1...(x—n),

il découle que:

Ri—1y(x=2)...omn) = — =—D&x=2)...c—n—D+1Ly /(n+1),

n—+1
avec:

1
In+1:/ x(x—=1)...(x — n)dx.
0

On a donc:
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