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EXEMPLE 11.
R
1 1 1
}: . = —(y+In@) -1+ 5 In@3).
n>1 27’l T 1 2 2

4.6. UTILISATIONS DE DEVELOPPEMENTS EN SERIE ENTIERE

PROPOSITION 4.5. Si a est la fonction entiere de type exponentiel T <T
définie par:

alx) = Z %v‘ avec o] < Ccrr,

k>0
alors :
R oC 3 R 1 1 oo -
k k 2k—1
an:Z—Zn: atdt——ozo—z B .
Z ) k! _/0 ® 2 (2k)!
n>1 k=0 n>1 k=1
Démonstration. Montrons que R, = ) ;5o 7 Re. On sait que
R« = % Considérons la fonction:

= 87 674
~ By .
U G n G o

En utilisant la fonction génératrice

on constate que pour 7 < r < 7, il existe une constante C, telle que pour
tout x, on ait ’

|Bep1(0)] < Cor*e ™ (k4 1))

Ceci permet de vérifier que la fonction:

= 047 (675
x - B,
~ ; G+l Gt o™

vérifie les trois conditions qui caractérisent R,.  []
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EXEMPLE 12.  Pour 0 <y < 7, le développement en série entiere de la
fonction x — S22 .

sin —1)
Cy) Z (=D elerss
X = (2k + 1)!

permet d’écrire la somme de Ramanujan:

L sin(ny) / Y sin(x) 1
E — dx — — y .
n 0o X 2

n>1

REMARQUE 6. La série précédente converge également au sens de Cauchy,
et la relation de la proposition 3.3 s’écrit:

fo's) . R . . .
sin(ny) sin(ny) / °° sin(x) / ° sin(x) 1 T—y
Z n Z n i v PR 0 x Y 2

n=1 n>1

REMARQUE 7. La proposition précédente ne s’applique pas si 1’on ne

suppose pas la fonction a entiere. Par exemple, si on 1’appliquait a la fonction
2g+1

x+— 5= avec q entier > 0 et y > 0, le développement en série entiére :

2q XY ﬁzq k
x exy_l-;;()k!x Ky (x| < 2m)

permettrait d’écrire la somme de Ramanujan:

n2q+1y 1 /y 291 qu+] N qu+2
0

= dt .
e~ —1  y2tl el — 1 +2q+1 4q+4y,

n>1

En fait, cette formule n’est pas valable car d’apres I’exemple 8 (cf. §3.2), on
a la relation:

R
ev —1 e —1 yatl [ e —1 "

n>1 n=1

ce qui donnerait:

2ty ] /y 2q+1 i Boys1 N By
oy —1 et Jo 17 g1 ag 4

n=1
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Or, cette relation est fausse, comme on le voit en faisant tendre y vers I'infini.
Remarquons que pour y = 27 et g = 2p, la relation précédente donne:

B 1 L
s {7'_25 sip=0

Buapta
n=1 4p+2

alors que I’on a (cf. [B2] p. 256 et p. 262):
O ptl _{ %—gll; sip=20

827‘_” —1

sip>1

e27rn _
n=1

Bupio

St d sip>1

PROPOSITION 4.6.  Soit f(x) = >~ cxX* une série entiére de rayon de

convergence p > 1. On suppose que la fonction x v f (%) est analytique de
type exponentiel o < w dans le demi-plan P, alors:

R oo
Zf(l/n) ZCkZ —0174‘;@(_}_1 (g(k—}—l)—%) .

n>1 n>1

Démonstration. Posons a(x) = f (%) . On a le développement convergent

1
a) =) o

n>1

a ’infini:

Le mineur de a est donc la fonction entiere de type exponentiel 1/p < 1:

N gk—l
ag)=> T

k>1

Par définition de la somme de Ramanujan, on a:

R

+co i 1 1
Za<n>:/0 e (1_e~5~—> as)ds
n>1
+o0 o
:/0 ‘ <l—e5 )Zkk—l)‘

k>1

L’hypothese p > 1 permet de majorer les |cg| et ainsi de permuter les
signes [ et > dans la formule précédente. Il vient alors:

_ 1 k—1
Za(n)—ch/ £<1~€§_E> (]f_l)!d@ []

n>1
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EXEMPLE 13. Le développement en série entiere en 0 de la fonction

X+ xe ¥
- __ Z (—1)k ko k1
- K-
k>0

permet d’écrire la somme de Ramanujan:

Z—e

(_ ) (C(k+1)—l>
n>1

4.7. DEPENDANCE ANALYTIQUE PAR RAPPORT A UN PARAMETRE

PROPOSITION 4.7. Soit D un ouvert de C. Soit a(z,x) analytique dans
D x P. On suppose que pour tout compact K C D, il existe des constantes
Ck et 7x < m telles que pour tout x € P avec |x| > 1 et tout z € K on ait
la(z, x)| < Cxe™ . Alors 7 +— 23;1 a(z,n) est analytique dans D. De plus,
on a:

R R
9, Z a(z,n) | = Z d,a(z,n).
n>1 n>1

Démonstration. On sait (cf. appendice) qu’on peut choisir un représentant
de la transformée de Borel de a tel que pour tout z € K C D (ou K est
un compact quelconque), on ait |B(a)(z,x)] < Cekl?l avec 0 < k < 1. Soit
Rz, 1) = [, et (== — %) B(a) (£)dé. Cette intégrale dépend analytique-
ment du parametre z, la fonction a intégrer €tant majorée uniformément en

z € K par une fonction intégrable.  []

COROLLAIRE 4.1. La fonction z — ZnR>1 % est une fonction entiere. Pour
tout z€ C— {1}, on a:

R
1 1
> =@ —
nZln
R
In(n) 1
; = =@+ —

. . . R .
Démonstration. Le fait que z — > ni est analytique dans C est une
conséquence immédiate de la proposition précédente. La premiere égalité étant




	4.6. Utilisations de développements en série entière

