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En particulier, on a la relation :

7Z oo ~oo

a{n) a(n) — / a(t) dt.
n> 1 n= 1

1

Démonstration. La fonction x i—» a(n + x) ~ jf a(n + x^ ^x
vérifie clairement les trois conditions qui caractérisent la fonction Ra. De plus,
on a:

f'2 °° oo ç.2 oo r>n-\-1 p oo

/ -t-x) dx yy / ß(ft+x)dx yy / a(t)dt / a(t)dt.
Jl n=0 n=0Jl «=1 1 ^

EXEMPLE 8. En appliquant la proposition précédente à la fonction
x ^ ^rry avec J > 0

> il vient la relation :

1Z oo 1 /> ooy^^ y^^_ 1

^ eny _1 _ J y J
n> 1 n= 1 ^

4. Propriétés de la sommation

4.1. Linéarité

Si a et £> sont deux fonctions analytiques de type exponentiel aa < tt et

ab < 7T respectivement dans le demi-plan P {x | 9f(x) > 0}, alors pour
tout À, p dans C, \a + pb est une fonction analytique de type exponentiel

(majoré par) a := Max(aa,ab) < 7r dans le demi-plan P et on a:

E\a-\-(j,b — T pPb -

Il en résulte que l'application qui à une série ^a(n) associe sa somme de

Ramanujan est C-linéaire.

4.2. Translation

Si a est une fonction analytique de type exponentiel a < n dans le demi-

plan P, alors pour tout entier N > 1 la translatée EN(a) est une fonction

analytique de type exponentiel a < it dans le demi-plan P et on a la
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Proposition 4.1. Pour tout entier N > 1,

n n on

a(n) a(l) + * • * + a(N — 1) + ci(n -f- N) J a(t) dt.

u > 1

Démonstration. En sommant pour n 1,..., N - 1 l'équation :

Pain) - Ra(n + 1) a(n),

il vient:
n

a(n) a( 1) + • • • + a(A/" — 1) + Pa(N).
n>\

Il suffit alors (cf. proposition 3.1) de remplacer Ra(N) par J2n>oa^n~^N)

a{t) dt.

Exemple 9. Pour N >2, on a:

n 1 1 ^ 1

7 V - 1 + • • • + In(N) + y —- •^ n N - 1 yn + N
71 >1 ">0

4.3. Dérivation

Si a est une fonction analytique de type exponentiel a < tt dans le demi-

plan P, alors sa dérivée da est une fonction analytique de type exponentiel

a < tt dans le demi-plan P. De plus, en dérivant l'équation aux différences,

on obtient la relation :

Pda — d(Ra) + a{l)

où le terme a( 1) provient du fait que f}2 d(Ra)(t)dt Ra(2) — Ra(l) — —a( 1).
Plus généralement, on montre par récurrence sur n que

Ra>,a d"(Ra) + d"-1a(l).

4.4. Sommation par parties

Si a et b sont deux fonctions analytiques de type exponentiel respectivement

aa < n et ab < tt dans le demi-plan P {x \ > 0}, alors le

produit ab est analytique de type exponentiel a < aa + dans le demi-plan
P. Soient alors u et v deux fonctions analytiques de type exponentiel
respectivement au < tt et av < tt dans le demi-plan P avec au + av < tt D'après
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les propriétés de linéarité et de translation vues aux paragraphes précédents,
on a:

r
y^(w(ft) — u(n +1)) v(n)
n> i

r
u(n + 1) {y{n -f 1) — v(n)) 4- u( 1) u(l) — f u{t)v(t)dt.

n> 1 h

Cette formule est pour la sommation de Ramanujan l'analogue de la classique
formule de sommation par parties d'Abel. En particulier en remplaçant u par
Ra, on obtient:

r r r2
^2a(n)v(n) 1) (v(n +1) - v(n)) /

n> 1 n> 1
^1

En remplaçant à présent v par R& dans la formule précédente, on obtient
alors :

-R R

^ a{n) Rb(n)+ ^ Z>(«)

Ra(n)
>1

R

y^ a(n) &(w) + <z(w) £(w) — / /?/,(£) d/1,

rc>l «>1

R R R

n>l n>l n>l

ce qui peut encore s'écrire:

R n 1Z n

n> 1 1 n>l 1

^ R RR «2

b(k) + ^ £0) a(fc)

n>l 1

R 7

y^ <z(w) Z?(tî) + a(w) yy b(ri)+ )] <if.

n>l «>1 «>1
1

Cette dernière formule admet deux cas particuliers intéressants :

Proposition 4.2.

R /? R n

y fl(n) y <9a(^) + y <9a(X) y «(^)
n> 1 1 n> 1 1

R RR ^
R

y] a(n) da(ri) + y^ a(n) y da(ri) + 2aW2 ~~ '

n>l n>l n> 1 n>l
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Démonstration. En appliquant la formule (1) avec b(x) da(x), et en

utilisant la propriété de dérivation vue au §4.3, il vient:

n2 p2 11^/ Ra{t)Rda{t)dt=/ Ra{t)dRa{t)dt=-[R2a\\ -a(\)2-a(l)Y,a{n).
''] n>\

Proposition 4.3.

7L n

EE a(k) - E a(n) — ^2 na{n) — E d la(n).
TL n

3
TL TL TL

2
n> 1 1 n>l jtt>l n> 1

avec d la(x) f*a(t)dt.

Démonstration. En appliquant la formule (1) avec b(x) 1, on obtient:

TL TL n 2 j tL TL

22naT)+E E + / tRaV) dt= ^E a(n) + a(n).
n2>\ /?> 1 ]

^ w>l ri> 1

Posons A(v) f*a(t)dt. On a de sorte que (en intégrant par
parties)

j //vyx//=-A>,(1).

La proposition en résulte.

Exemple 10. (Sommes harmoniques: cf. [Bl] pp. 251-253, [AV], [BB]).

n n n n 01112 Hn
2 lnW

2 7 +
2

~
2

ln(27r) '
n>\ *>1

n
«>1 „>1

2 2 2

2Ef C(2)-i+72+ f
n>1 •>!

n U n

E| + E En=C0)-it1fl2),7?2 ^ ft fc2
n>{ n> 1 1

avec :

" 1

« E •

1
*
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Remarque 5. D'après la formule:

f t"-lLi2(t) dt'
Jo n n

où Lh désigne le dilogarithme (cf. [L] p. 20), on obtient en sommant:

Il en découle, d'après l'exemple précédent, la relation:

4.5. SÉPARATION DES TERMES PAIRS ET IMPAIRS

PROPOSITION 4.4. Si a est une fonction analytique de type exponentiel

a < 7t/2 dans le demi-plan {x | 9f(x) >0}, on a:
il tz iz r2

a(2n) + a(2n H- 1) a{n) — a{ 1) — / Ra(2t) dt.
n> 1 n> 1 n> 1

^1

Démonstration. D'après l'équation aux différences vérifiée par Ra, on

peut écrire:

Ra(2x) — Ra(2x + l) a(2x),

Ra(2x ~h 1) — Ra (2(x + 1)) a(2x H- 1).

En ajoutant, on obtient:

Ra(2x) — Ra (2(x 4- 1)) a(2x) + a(2x + 1).

On a donc :

71

^2(«(2«)+ a(2n+ 1)) -
n> 1

Par la propriété de linéarité, il vient:

n n ^2

V a(2n) + a{2n + 1) Ra(2) — / Ra{2t) dt,
n>\ n> 1

Jl

et de plus, Ra{2) Ra( 1) — a( 1).

Ra(2t) dt.
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Exemple 11.

/!> 1

4.6. Utilisations de développements en série entière

PROPOSITION 4.5. Si a est la fonction entière de type exponentiel r < tt

définie par:
a(x) avec \ak\ < Crk t^ kl

k> 0

alors :

iz oc n r\ oo

n>\ k=0 ' n> 1
0 *=1

Démonstration. Montrons que Ra o ff • On sait que

— 1~flri'(A) • Considérons la fonction :

OC'

a<_
f-r, (k\I)!(£+1)! "+U

En utilisant la fonction génératrice

te" ^LC

— 1 72!
n>0

r",

on constate que pour r < r < tt il existe une constante C, telle que pour
tout x, on ait

|ß*+i(*)| <c,rVW + 1)!

Ceci permet de vérifier que la fonction:

V~^ ak OLk

(Err)T-(Eri)!Bt+!W

vérifie les trois conditions qui caractérisent Ra.
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Exemple 12. Pour 0 < y < tt, le développement en série entière de la
fonction x i—> sm^ :

sin(*y) _ ^2k^2k+î
Y Z—'*>o^+1>!

permet d'écrire la somme de Ramanujan:

k

xry

n
Esin(ny) fy sin(x) 1

—=L —**-?
l

J 0

Remarque 6. La série précédente converge également au sens de Cauchy,
et la relation de la proposition 3.3 s'écrit:

sin(rcy) sin(ny) f°° sin(x) f°° sin(x) 1 tt — y
> > h / ax—\ dx — - y ——Z^ n n y L X 2 2

n> 1

REMARQUE 7. La proposition précédente ne s'applique pas si l'on ne

suppose pas la fonction a entière. Par exemple, si on l'appliquait à la fonction
2q+ï

x ^ avec # enLer >0 et y > 0, le développement en série entière :

A V ^ <1*1 < 2tt)
exy _ l /s k\ 11

Bl

k> o

permettrait d'écrire la somme de Ramanujan:

nv yyyz \ r a+i
4-/ eny __ i y2q+\ Joet_i2q+l4q + 4y',
n> 1

En fait, cette formule n'est pas valable car d'après l'exemple 8 (cf. §3.2), on

a la relation :

n n2q+ly ^ n2q+ly 1 f°° t2q+{

En ^ y ^ xp n - y
__

1 / i -

eny _ 1
~ 2^ eny _ J y2q+l J é - \ '

n> 1 n= 1 7 Jy

ce qui donnerait:

^ yyyy i r &+i
Z eny-1 y2q+l Jo e' -1 2q+ln= 1
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Or, cette relation est fausse, comme on le voit en faisant tendre y vers l'infini.

Remarquons que pour y — 2tï et q 2p, la relation précédente donne :

E f - h si P 0

e2nn _ I ï j > jn=\ \ 4p+2 f —

alors que l'on a (cf. [B2] p. 256 et p. 262):

y, n4p+1
_ f - 8^ si p 0

L e2«n Z1
~ ] fteg si 1

77=1 V 8/7+4 1 —

PROPOSITION 4.6. Soit f(x) X+>i w/îp sérié? entière de rayon de

convergence p > 1. O/r suppose que la fonction * l—>/ (~) analytique de

type exponentiel a < ix dans le demi-plan P, alors :

TZ co 72. oo / ^

E-A1/«) E C(:E + Cl7 + E Ck+1 - £
72>1 *=1 77>1 &=1 ^

Démonstration. Posons a(x) / (f). On a le développement convergent
à l'infini :

a(x) X]
77>1

Le mineur de a est donc la fonction entière de type exponentiel 1 /p < 1 :

2(0-E (£- 1)!
k>l v y

Par définition de la somme de Ramanujan, on a:

n r+ oo / J 1 \
E a(«) / " T 3(0 <*£

72 > 1
/o V1 ~~

+°° / 1 1 \ ck— 1

6 ^

/O

1 + v- 0
7=7"? (Jfa(i- 1)!

L'hypothèse p > 1 permet de majorer les 1+ et ainsi de permuter les
signes Jet dans la formule précédente. Il vient alors :

+(„>+ « fV£+L^I)++. D
77 >1 &=1 /o
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Exemple 13. Le développement en série entière en 0 de la fonction
x i—» xe~vc :

ŷ kl
k>0

permet d'écrire la somme de Ramanujan:

n>1 k=1 X

4.7. Dépendance analytique par rapport à un paramètre

PROPOSITION 4.7. Soit D un ouvert de C. Soit a(Z)X) analytique dans

D x P. On suppose que pour tout compact K C D, il existe des constantes

Ck et tk < TT telles que pour tout x G P avec \x\ > 1 et tout z C K on ait
\a{z.x)\ < CkcTk^x'. Alors z i—» a(z,n) est analytique dans D. De plus,
on a:

(n
\ n

y a(z,n)I - y «) •

n>1 J n>1

Démonstration. On sait (cf. appendice) qu'on peut choisir un représentant
de la transformée de Borel de a tel que pour tout z G K C D (où K est

un compact quelconque), on ait \B(a)(z,x)\ < Cek^ avec 0 < k < 1. Soit

Ra(Zyl) J e~^ i_g- — Cette intégrale dépend analytique-
ment du paramètre z, la fonction à intégrer étant majorée uniformément en

z G K par une fonction intégrable.

COROLLAIRE 4.1. La fonction Z ^ J2n>\ h est une fonction entière. Pour

tout z G C — {1}, on a:

n
£i=<fe)-_L-,' nz z — 1

n> 1

n 1

Z é yiZ

Démonstration. Le fait que z i—>• Y^>\ & est analytique dans C est une

conséquence immédiate de la proposition précédente. La première égalité étant
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vérifiée pour > 1, par prolongement analytique elle est donc vraie pour
tout z G C — {1}. La seconde égalité s'obtient par dérivation par rapport
à z.

Remarque 8. Les formules précédentes restent valables pour z 1

en remplaçant les membres de droite par leurs limites en 1, et on a le

développement (cf. [Bl] p. 164):

A-J nz A^ A^/ nn> 1 k~ 1 n> 1

5. Exemples d'utilisation

5.1. Développement en série de la fonction ç
La fonction 0 vérifie l'équation:

1p(z.+ 1) 0(z) + - •

z
Par ailleurs, d'après l'exemple 6 (cf. §3.1), on a pour 9î(z) > -1 :

0(1 + z) ln(l +
n + zn> 1

Supposons |z| < 1 et posons /(x) on a

n> 1 n> 1 x 7

Le développement en série entière en 0 de la fonction / :

k> 1

de rayon de convergence p|>l, permet d'écrire la somme de Ramanujan
de cette série sous la forme:

£rL 7+D<-,)V(«1:+l)-r) '

n>\ k> 1 \ KJ

On en déduit le développement de i/j :

0(z)= -- - 7-53(-1)*_1CWz*_1.
k>2
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