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102 B. CANDELPERGHER, M. A. COPPO ET E. DELABAERE

Démonstration. On considere la fonction b(y) = a(y +x—1). On a:

2 x+1
Rb(y):Ra(y+x—1)—/ Ra(t+x~l)dt:Ra(y+x—l)~/ R,(t)dr .
1

X

D’ou
R

x+1
Ry(1) = a(n+x—1) = Ry(x) — / R, (1) dt.

n>1

Or L "' R.(t)dt = —a(x), et le résultat en découle.  []

dx Jx

EXEMPLE 6.

SR YA N
g—nﬂ"“(x)“w(’”“/o e (1_6_5—5 .

3.2. LIENS AVEC LA SOMMATION DE CAUCHY

Dans ce paragraphe, a désigne une fonction analytique de type exponentiel
a < m dans le demi-plan P = {x | RR(x) > 0}.

PROPOSITION 3.2. Si R,(x) tend vers une limite finie quand x — oo, alors
la série anl a(n) converge au sens de Cauchy, et en notant Z:O:l a(n) sa
somme de Cauchy, on a la relation:

R o0 N
> atm) =" a(m) - Jim a(r)dt .
n>1 n=1 el

Démonstration. Soit N un entier naturel > 1. En sommant pour -
n=1,...,N—1 I"équation:

Ry(n) — Ry(n+ 1) = a(n),

il vient:
R()—R,N)=a(l)+---+alN —1).
D’ou:
R
Za(n) —a(l)4---+aN — 1) + R,(N).
n>1

En faisant tendre N vers I’'infini, on obtient la relation :
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R e}

Z a(n) = Z a(n) + NILH;O R,(N).

n>1 n=1

En intégrant entre n et n+ 1 1’équation aux différences
Ry(x) = Ro(x + 1) = al),

puis en sommant pour n = 1,...,N — 1, il vient:

N+1 N
— / R, (t)dt = / a(t) drt.
N 1

En faisant tendre N vers l'infini, on obtient la relation:

N
— lim R,(N) = lim / a(t)dt . O
—> OO 1

N—o0o

REMARQUE 4. Si R,(x)+ f f a(t) dt tend vers zéro quand x — +o0, alors
la série ) >1 (a(n) f ot a(t) dz‘) converge au sens de Cauchy, et on a:

R o0 n+1
Za(n)zz <a(n) / a(z‘)a’t) .

n>1 n=1 n

EXEMPLE 7.

La proposition 3.2 admet une sorte de réciproque :

PROPOSITION 3.3.  Si la série ) >oan+x) converge (au sens de Cauchy)
normalement sur tout compact de P = {x | R(x) > 0} er y définit une fonction
analytiqgue de type exponentlel a < m alors:

n=

R,(x) = a(n + x) — / Z a(n + x)dx .
0

n=0

Si on suppose en outre que f | a(t)dt converge alors.

oo

R, (x) = Z a(n + x) — / a(t)dt.
1

n=0
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En particulier, on a la relation :

R oo

Za(n) = Za(n) — /OO a(t)dt.

n>1 n=1 1

P i . o0 2 (o]
Démonstration. La fonction x — Y ° a(n +x) — [ >~ a(n + x)dx
vérifie clairement les trois conditions qui caractérisent la fonction R,. De plus,
on a:

00
1

2 o ) o aptl
/ Za(ner)dx:Z/ a(n—l—x)dx:Z/ a(t)dt:/ aidr. [
I =0 n=0 1 1 /1

EXEMPLE 8. En appliquant la proposition précédente a la fonction
=2 avec y > 0, il vient la relation :

eV —1
R o0 o0
ny ny 1 t
= — — dt.

n>1 n=1

X =

4. PROPRIETES DE LA SOMMATION

4.1. LINEARITE

Si a et b sont deux fonctions analytiques de type exponentiel o, < 7 et
ap < 7 respectivement dans le demi-plan P = {x | R(x) > 0}, alors pour
tout A\, u dans C, Aa+ pb est une fonction analytique de type exponentiel
(majoré par) a := Max(ay,, ap) < 7 dans le demi-plan P et on a:

R/\a—Hw = ARq + LRy .

Il en résulte que I’application qui a une série »_ a(n) associe sa somme de
Ramanujan est C-linéaire.

4.2. TRANSLATION

Si a est une fonction analytique de type exponentiel v < 7 dans le demi-
plan P, alors pour tout entier N > 1 la translatée E"(a) est une fonction
analytique de type exponentiel o« < 7 dans le demi-plan P et on a la
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