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D'où :

A(1) 0= f A(t)dt + J2jf[dk-2a]2iJik- l

La condition précédente suffit pour déterminer la solution formelle de

l'équation aux différences, elle ne suffit pas pour avoir l'unicité d'une solution

analytique car elle laisse l'arbitraire de lui ajouter une solution périodique non
constante telle que l'intégrale de 1 à 2 soit nulle. Pour résoudre ce problème
nous allons faire des hypothèses supplémentaires sur la fonction a.

3. Sommation de Ramanujan
ET TRANSFORMATION DE LAPLACE-BORED

3.1. Sommation de Ramanujan

THÉORÈME 1. Soit x a(x) une fonction analytique de type exponentiel

a < 2tt dans le demi-plan P {x | 93(x) > 0}. L'équation aux différences :

Rix) — R(x + 1) — a(x)

admet une unique solution analytique de type exponentiel a < 2tt dans P,
notée Ra, vérifiant la condition:

2

Ra(t)dt 0.

Démonstration, a) Existence. En prenant la transformée de Borel (cf.

appendice) de l'équation aux différences, on obtient:

On en déduit que:

B(R)(0=
1 — e~£

Il suffit alors de prendre la transformée de Laplace de £ i-» x_}e-z Biß) (0
pour obtenir une solution de l'équation aux différences. Celle-ci est analytique
de type exponentiel a (a <2tt) dans P.

b) Unicité. Il s'agit de montrer que si / de type exponentiel a < 2tt est

solution de l'équation f{x) — /(x + 1) 0, alors / est constante. Il est clair
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que la condition d'analyticité de / dans le demi-plan P et la périodicité de /
impliquent que / est entière. La périodicité de / permet d'écrire

f(x) g(e2hnc),

où la fonction g est la fonction analytique dans C - {0} définie par

g(z) —/(In(.:)). Le développement de Laurent de en 0 se traduit

par le développement de Fourier de / :

f(x)^j2c»e2imu>
«GZ

où les coefficients cn sont donnés par les formules intégrales :

c„ — —[f(t + -f- ln(r)j e-2,7m' dt pour tout r >0.
r" 2iir

La condition / de type exponentiel a < 2n permet de majorer les \cn\ :

1 (Q + e) Iw.-Q (O "h 6)
\cJ < — Ce ^ (avec — < 1
1 1 ~ rn 2tt

Il suffit de faire tendre r vers 0 et vers +oo pour obtenir cn — 0 pour
tout n 0. La condition de nullité de l'intégrale sur [1,2] implique alors

co 0.

Remarque 1. D'après la démonstration du théorème précédent, la
fonction Ra peut s'écrire:

Ra(x)J e~xt(0<% + C0

où la constante Co dépend du représentant choisi pour B(a) (qui n'est définie

qu'à l'addition près d'une fonction analytique dans C de type exponentiel).
D'après les propriétés de la transformation de Borel, la fonction

xi-> -J1B(0est une primitive de a. On peut donc écrire:

Ra(x) — ~ J ß(0 dt + J e — — J B{a) (0 dt; + Ci

Cette dernière intégrale sur 7 ne dépend plus du choix de B(a). En écrivant :

^ a(t) dtJ e-*Z±B(a){QdÇ- J e
J ^
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on vérifie facilement que la condition de nullité sur l'intégrale de Ra sur

[1.2] se traduit par C\ 0. Finalement on a:

Ra(x) - a(t)dt+ J e~xÇ ^ - |j (0

Si l'on suppose en outre que le mineur a existe (cf. appendice §7.4), on peut
écrire la fonction Ra sous la forme d'une intégrale sur [0, +oo[ :

Ra(x) - jf <3(0 dt+j0e~X(1 -e-t ^^ '

En particulier, on a alors :

Définition 1. Soit x a(x) une fonction analytique de type
exponentiel a < n dans le demi-plan P {x | 9f(x) > 0}. On appelle somme de

Ramanujan de la série X^>i a^n) et on note Y^n>\a(n) Ie nombre Ra( 1).

REMARQUE 2. On pourrait définir, pour une fonction a analytique de

type exponentiel a < 2tt dans le demi-plan P {x | 9ï(x) >0}, la somme
de Ramanujan de la série comme la valeur en 1 de la fonction Ra :

n
yN {ri) 1).
n> 1

Cependant pour a > tt ce procédé de sommation ne vérifierait pas :

n n
a(n) b(n) pour tout entier n > 1 implique a(n) E b(n)I,

n> 1 n> 1

comme le montre l'exemple suivant (cf. exemple 5) :

n l n

y sm{niï) — — alors que 0 0.
n> 1

71

n>l

En fait, pour a et b de type exponentiel a < tt, la condition: a(n) b{n)

pour tout entier n > 1 implique a — b d'après le théorème d'unicité de

l'interpolation de Carlson (cf. [Bo] p. 153).
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Exemple 1. Soit a(x)I. On a 2(0 1. D'après la remarque 1, il
vient :

Ra(x)=- ln(x) + £ e~*

où l'on utilise la notation habituelle i/j j? • En particulier:

où 7 désigne la constante d'Euler. D'après la définition de la somme de

Ramanujan, il vient:
n 1

' n
n> 1

Exemple 2. La fonction d'Hurwitz (cf. [C]), définie pour 9f(x) > 0

et 9f(z) > 1 par
oo

^
CCr, z) — > — (somme de Cauchy),

rr.
vérifie l'équation aux différences :

ainsi que l'égalité

<(x,z) - C(x+ l,z) 4

,2 ,oo J J

I Ç(x,z)dx J — dt
tz — 1

Pour

— '

on a donc :

flaW CO,z) —E •

z - 1

On en déduit pour 9i(z) > 1, la somme de Ramanujan :

TZ

n> 1

avec

n>l ^

oo

C(z) C(i,z) £4-
1 ^n=l
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^ pz~ i

Par ailleurs, on a a(Ç) — D'où l'expression de la somme de Ramanujan
sous forme d'intégrale:

JL _L_ [+co I
nz Hz) Jqy1-£n> 1

Remarque 3. Le choix de la normalisation J2Ra(t)dt 0 permet
d'écrire :

n 1 n 1

lim y - y lim - 7.
1 + ^' nz 1 + nzz-*i+ nz ~!z^i+ nz

n> 1 n>1

Exemple 3. Soit k un entier > 0. La fonction R: x i-> — Bkj^ où Bk(x)

désigne le ^-ième polynôme de Bernoulli, vérifie l'équation aux différences:

R(x) - R(x + 1) xk

ainsi que l'égalité:
f2
/ R(x) dx •

,2 j
J 1

& + 1

Pour a(jt) xk, on a donc :

p x
1

1 M"•w ÏTÏ
On en déduit les sommes de Ramanujan :

*
1 - fi*

«

n>l

1Z

1

2

n 1

E' i
n> 1

Exemple 4. La fonction R: x i— — ln(F(x)) vérifie l'équation aux

différences :

R(x) — R(x -f 1) ln(x),

ainsi que l'égalité

p2f 1

j ln(r(t)) dt —l + - ln(27r).
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Pour a(x) ln(x), on a donc :

Ra(x) - ln(rW) - 1 + ^ ln(2?r).

On en déduit la somme de Ramanujan:

n
lnfwl — —14-

K j^ ln(n) -1 + - ln(27r).
«>i

Exemple 5. Soit a tel que 0 < \a\ < ir, on a:

eax_e*{x+l) =e*X(l _^)5
f2 ea
/ eaxdx (eŒ-I) — -

Ji «

Il en résulte que pour a(x) eax, on a :

Ra(x)
1 — ea a

Par conséquent:

STea» ea(—^ V1 - ea an> 1 v

En particulier, en prenant a it, et en séparant partie réelle et imaginaire, il
vient :

n
E.

1 t cos t
sm(nt) -cot—

n> 1

nEl sin t
cos(nf) -- + —— •

n>lL1

Proposition 3.1. Pour D\(x)>0,définit par:

J2a(n+ x) 53 a(n + x ~ 1) •

n>0 n>1

On a la relation :

fx
Ra(x)=^2a(n+x) - / dt.

0 •*1
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Démonstration. On considère la fonction b(y) a(y + jc — 1). On a :

p2 pX+\
Rh(y) Ra(y + x -i) - J Ra(t+ x - \)dt Ra- 1) - Ra(t)dt.

D'où

V—^
/**+!

Rb(1 + x - 1) - / Ra(t)dt.
«>1 A

Or ^ f*+l Ra(t)dt —a(x), et le résultat en découle.

Exemple 6.

^ 1 f+ OO

I

e
XT^ ]n(x) -^ J

e~Xi f T - 7 A •

3.2. Liens avec la sommation de Cauchy

Dans ce paragraphe, a désigne une fonction analytique de type exponentiel
a < 7t dans le demi-plan P {x | *H(jc) > 0}.

PROPOSITION 3.2. Si Ra(x) tend vers une limite finie quand x —> oo, alors
la série Yln>\ aW converge au sens de Cauchy, et en notant a(n) sa

somme de Cauchy, on a la relation:

7Z oo

y ain) — /
^
a(n) ~~ I / ^.' ^ J N—>00 /,

„^ t ,— 1 J 1

Démonstration. Soit TV un entier naturel > 1. En sommant pour
n 1,..., TV — 1 l'équation :

+ 1) a(w),

il vient:

Rail) - Ra(N) fl(l) + • • • + a(N - 1).

D'où:
n
yV(n) <3(1) + --4#-l) + RaiN).
n> 1

En faisant tendre TV vers l'infini, on obtient la relation:



LA SOMMATION DE RAMANUJAN 103

TZ oo

y a(n) y a{n) + ^lirn^ Ra(A0.

ji>1 n=l

En intégrant entre n et « + 1 l'équation aux différences

üaW - + 1)

puis en sommant pour n1,..., N 1, il vient :

- / Ra(t)dt= / a(t)dt.
Jn J i

En faisant tendre N vers l'infini, on obtient la relation:

rN

- lim lim / a(t)dt.
N-^oo

Remarque 4. Si /?<,(*) + ga(t)dttendvers zéro quand x —> +oo, alors

la série X^>i (ö'n) - J"+1a(t)dt)convergeau sens de Cauchy, et on a:

TZ oo / pn+1 \
fl(/r) ß(n) - / a(0 dt I

n>l n=l V Jn J

Exemple 7.

^ i A /1 r+i i j
^

La proposition 3.2 admet une sorte de réciproque:

PROPOSITION 3.3. Si la série Yln>oa^nJrx) converge (au sens de Cauchy)
normalement sur tout compact de P — {x | 9%(x) >0} et y définit une fonction
analytique de type exponentiel a < n alors:

Rq(x) yy a(n + x) — / ^ a(n + x) dx.
^2 oo

n

Si on suppose en outre que f a(t) dt converge alors :

n=0 n=0

r OO

Ra(x) — yy + x) — a(t) dt.
77-0

-71
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En particulier, on a la relation :

7Z oo ~oo

a{n) a(n) — / a(t) dt.
n> 1 n= 1

1

Démonstration. La fonction x i—» a(n + x) ~ jf a(n + x^ ^x
vérifie clairement les trois conditions qui caractérisent la fonction Ra. De plus,
on a:

f'2 °° oo ç.2 oo r>n-\-1 p oo

/ -t-x) dx yy / ß(ft+x)dx yy / a(t)dt / a(t)dt.
Jl n=0 n=0Jl «=1 1 ^

EXEMPLE 8. En appliquant la proposition précédente à la fonction
x ^ ^rry avec J > 0

> il vient la relation :

1Z oo 1 /> ooy^^ y^^_ 1

^ eny _1 _ J y J
n> 1 n= 1 ^

4. Propriétés de la sommation

4.1. Linéarité

Si a et £> sont deux fonctions analytiques de type exponentiel aa < tt et

ab < 7T respectivement dans le demi-plan P {x | 9f(x) > 0}, alors pour
tout À, p dans C, \a + pb est une fonction analytique de type exponentiel

(majoré par) a := Max(aa,ab) < 7r dans le demi-plan P et on a:

E\a-\-(j,b — T pPb -

Il en résulte que l'application qui à une série ^a(n) associe sa somme de

Ramanujan est C-linéaire.

4.2. Translation

Si a est une fonction analytique de type exponentiel a < n dans le demi-

plan P, alors pour tout entier N > 1 la translatée EN(a) est une fonction

analytique de type exponentiel a < it dans le demi-plan P et on a la
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