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2 2
A1) =0= / A(f) dt + Z % [0 2a)? = —/ R(t)dt .
1 : 1

k>1

La condition précédente suffit pour déterminer la solution formelle de
I’équation aux différences, elle ne suffit pas pour avoir I'unicité d’une solution
analytique car elle laisse I’arbitraire de lui ajouter une solution périodique non
constante telle que 1’intégrale de 1 a 2 soit nulle. Pour résoudre ce probleme
nous allons faire des hypotheéses supplémentaires sur la fonction a.

3. SOMMATION DE RAMANUJAN
ET TRANSFORMATION DE LAPLACE-BOREL

3.1. SOMMATION DE RAMANUJAN

THEOREME 1. Soit x — a(x) une fonction analytique de type exponentiel
a < 27 dans le demi-plan P = {x | R(x) > 0}. L’équation aux différences :
R(x) —R(x+ 1) = alx)

admet une unique solution analytique de type exponentiel o < 2w dans P,
notée R,, vérifiant la condition :

2
/ R, (t)dt=0.
1

Démonstration. a) Existence. En prenant la transformée de Borel (cf. ap-
pendice) de I’équation aux différences, on obtient:

B(R) (&) — e *BR) (&) = B(a) (€) .

On en déduit que:

BR) (§) = B(a) (§) -

1 —e ¢

Il suffit alors de prendre la transformée de Laplace de & — T—i——é B(a) (&)
pour obtenir une solution de 1’équation aux différences. Celle-ci est analytique
de type exponentiel o (o < 27) dans P.

b) Unicité. Il s’agit de montrer que si f de type exponentiel o < 27 est
solution de 1’équation f(x) —f(x+ 1) = 0, alors f est constante. Il est clair
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que la condition d’analyticité de f dans le demi-plan P et la périodicité de f
impliquent que f est entiere. La périodicité de f permet d’écrire

fx) = g(e®™),

oi la fonction g est la fonction analytique dans C — {0} définie par
9(2) = f(5=1n(z)). Le développement de Laurent de g en 0 se traduit

par le développement de Fourier de f :
f()C) _ Z Cne'.Zimzx’
neZl

ou les coeffficients ¢, sont donnés par les formules intégrales:

rl'l

1 /[? 1 .
ch=— | f <t+ — ln(r)> e 2™ gt pour tout 7 > 0.
1 2im

La condition f de type exponentiel o < 27 permet de majorer les |c,| :

1 (@46 [1n(r o+e€
— Ce = MO avec ( )
i 27

I1 suffit de faire tendre r vers O et vers +oo pour obtenir ¢, = 0 pour

tout n # 0. La condition de nullité de I’intégrale sur [1,2] implique alors
Co — 0. D

<1.

€] %

REMARQUE 1. D’apres la démonstration du théoreme précédent, la
fonction R, peut s’écrire:

: 1
&m:/fﬁQ_rQB@@&+@,
i

ou la constante Cyp dépend du représentant choisi pour B(a) (qui n’est définie
qu’a I’addition prés d’une fonction analytique dans C de type exponentiel).
D’apres les propriétés de la transformation de Borel, la fonction

mﬁ—/éﬁlam@mg
Y

est une primitive de a. On peut donc écrire :

_ * _xt 1 1
Ra(x) = Aamm+Le (L%%—E-B@@M£+Q.

Cette derniere intégrale sur v ne dépend plus du choix de B(a). En écrivant:

/amm:/?ﬂﬂiamgwﬁi/fﬂi&mﬁma
1 ¥ é % 5
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on vérifie facilement que la condition de nullit€é sur I’intégrale de R, sur
[1,2] se traduit par C; = 0. Finalement on a:

Ra(x) = — / Ca(r)di+ / e—«*f< L 1) Ba) (€) d€ .
1 ~ 1 —e¢ é

Si I’on suppose en outre que le mineur a existe (cf. appendice §7.4), on peut
écrire la fonction R, sous la forme d’une intégrale sur [0, oo :

R()“—/x ) di /m g (1 1)”)d
al\X) = la() + o e <1—€—§—6 a(f €

En particulier, on a alors:
R,(1) /+x % 1 : a(&) dé
a = e - — = a .
0 l—e=t ¢ .

DEFINITION 1. Soit x — a(x) une fonction analytique de type expo-
nentiel a < 7w dans le demi-plan P = {x | fA(x) > 0}. On appelle somme de
Ramanujan de la série ) ., a(n) et on note ZZ; a(n) le nombre R,(1).

REMARQUE 2.  On pourrait définir, pour une fonction a analytique de
type exponentiel « < 27 dans le demi-plan P = {x | R(x) > 0}, la somme
de Ramanujan de la série comme la valeur en 1 de la fonction R, :

R

Za(n) = R,(1).

n>1

Cependant pour « > 7 ce procédé de sommation ne vérifierait pas:

R R
a(n) = b(n) pour tout entier n > 1 1mplique Z a(n) = Z b(n),
n>1 n>1

comme le montre I’exemple suivant (cf. exemple 5):

R 1 R
in(nr) = — al 0=0.
Z sin(n) - alors que Z

n>1 n>1

En fait, pour a et b de type exponentiel o < 7, la condition: a(n) = b(n)
pour tout entier n > 1 implique a = b d’apres le théoreme d’unicité de
I’interpolation de Carlson (cf. [Bo] p. 153).
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EXEMPLE 1. Soit a(x) = % On a a(§) = 1. D’apres la remarque 1, il
vient :

+oo _at 1 1 2
Ra(x) - —IH(X) +/(; € 1 — 6_5 - E 5 — —w(x)7

ou I’on utilise la notation habituelle ) = 1_1“__ En particulier:

R (1) = e 1 l)df—ﬂ
a()—/o € (1—6—5——5 =7,

ou v désigne la constante d’Euler. D’apreés la définition de la somme de
Ramanujan, il vient:

EXEMPLE 2. La fonction ¢ d’Hurwitz (cf. [C]), définie pour R(x) > 0
et R(z) > 1 par

o0

1
((x,z2) = Z TEE (somme de Cauchy),
n=>0

vérifie I’équation aux différences:

(x,2) —Cx+1,2) = —

2 Ool 1
3 d - _dt: ¢
/1 o) /1 1t z—1

ainsi que 1’égalité

Pour 1
a(x) = =
on a donc: {
Ra(x) = ((x,2) — 1
On en déduit pour R(z) > 1, la somme de Ramanujan :
R
1 1
> =@ —
N —1’
n>1

avec

C@=Cla=3 .
n=1
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Par ailleurs, on a a(§) = & Doul expression de la somme de Ramanujan
sous forme d’intégrale :

R

R T At 1 1
n>1ﬁzaﬁ5/0 ’ <1—65 5)6 &

REMARQUE 3. Le choix de la normalisation ff R,(t)dt = 0 permet
d’écrire :

R R
: 1 .1
lim E — = lim — =7
z—1Tt n* z—1+ nt
n>1 n>1

EXEMPLE 3. Soit k un entier > 0. La fonction R: x — —B’;:;‘ix) , ou Bi(x)

désigne le k-ieme polyndme de Bernoulli, vérifie I’équation aux différences:

R(x) — R(x+ 1) = x*,

2 1
RX)dx = —— .
/1 CEdE k+1

ainsi que 1’égalité:

k

Pour a(x) = x*, on a donc:

1 — Big1(x)
k+ 1

On en déduit les sommes de Ramanujan:

R
1-B
n>1 T

R, (x) =

R
>i-1
n>1

EXEMPLE 4. La fonction R: x — —1n(F(x)) vérifie 1’équation aux

différences :
R(x) ~ R(x+1) = In(v),

ainsi que 1’égalité

2
/ In(T(n)) dt = —1 + %ln(%r).
1
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Pour a(x) = In(x), on a donc:
R,(x) = —In(T(x) — 1+ %m(zw).

On en déduit la somme de Ramanujan:

Z In(n) = -1+ = 1n(27r)

n>1

EXEMPLE 5. Soit « tel que 0 < || <, on a:

ax eoz(x—i—l) — eax(l . ea),

2 a
/ eo‘xdx:(ea—l)f—-
1 8%

Il en résulte que pour a(x) = e**, on a:

e

ox o
4

e
Rolx) = 1—ea+g‘

Par conséquent :

R
1 1
Z 1 — e~ Q

n>1

En particulier, en prenant o = if, et en s€parant partie réelle et imaginaire, il
vient:

Zsin( 1) c tt cost
nt) = — cot — — 1
2 2
n>1
R .
1 sin ¢
Zcos(nt) =-3 + —
n>1 t

PROPOSITION 3.1. Pour $R(x) > 0, on définit Y% a(n +x) par:

R R
Za(n—l—x) = Za(n+x— 1).
n>0 n>1

On a la relation :

R

R,(x) = Za(n +x) — / a(t)dr.
n>0 1
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Démonstration. On considere la fonction b(y) = a(y +x—1). On a:

2 x+1
Rb(y):Ra(y+x—1)—/ Ra(t+x~l)dt:Ra(y+x—l)~/ R,(t)dr .
1

X

D’ou
R

x+1
Ry(1) = a(n+x—1) = Ry(x) — / R, (1) dt.

n>1

Or L "' R.(t)dt = —a(x), et le résultat en découle.  []

dx Jx

EXEMPLE 6.

SR YA N
g—nﬂ"“(x)“w(’”“/o e (1_6_5—5 .

3.2. LIENS AVEC LA SOMMATION DE CAUCHY

Dans ce paragraphe, a désigne une fonction analytique de type exponentiel
a < m dans le demi-plan P = {x | RR(x) > 0}.

PROPOSITION 3.2. Si R,(x) tend vers une limite finie quand x — oo, alors
la série anl a(n) converge au sens de Cauchy, et en notant Z:O:l a(n) sa
somme de Cauchy, on a la relation:

R o0 N
> atm) =" a(m) - Jim a(r)dt .
n>1 n=1 el

Démonstration. Soit N un entier naturel > 1. En sommant pour -
n=1,...,N—1 I"équation:

Ry(n) — Ry(n+ 1) = a(n),

il vient:
R()—R,N)=a(l)+---+alN —1).
D’ou:
R
Za(n) —a(l)4---+aN — 1) + R,(N).
n>1

En faisant tendre N vers I’'infini, on obtient la relation :
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R e}

Z a(n) = Z a(n) + NILH;O R,(N).

n>1 n=1

En intégrant entre n et n+ 1 1’équation aux différences
Ry(x) = Ro(x + 1) = al),

puis en sommant pour n = 1,...,N — 1, il vient:

N+1 N
— / R, (t)dt = / a(t) drt.
N 1

En faisant tendre N vers l'infini, on obtient la relation:

N
— lim R,(N) = lim / a(t)dt . O
—> OO 1

N—o0o

REMARQUE 4. Si R,(x)+ f f a(t) dt tend vers zéro quand x — +o0, alors
la série ) >1 (a(n) f ot a(t) dz‘) converge au sens de Cauchy, et on a:

R o0 n+1
Za(n)zz <a(n) / a(z‘)a’t) .

n>1 n=1 n

EXEMPLE 7.

La proposition 3.2 admet une sorte de réciproque :

PROPOSITION 3.3.  Si la série ) >oan+x) converge (au sens de Cauchy)
normalement sur tout compact de P = {x | R(x) > 0} er y définit une fonction
analytiqgue de type exponentlel a < m alors:

n=

R,(x) = a(n + x) — / Z a(n + x)dx .
0

n=0

Si on suppose en outre que f | a(t)dt converge alors.

oo

R, (x) = Z a(n + x) — / a(t)dt.
1

n=0



104 B. CANDELPERGHER, M. A. COPPO ET E. DELABAERE

En particulier, on a la relation :

R oo

Za(n) = Za(n) — /OO a(t)dt.

n>1 n=1 1

P i . o0 2 (o]
Démonstration. La fonction x — Y ° a(n +x) — [ >~ a(n + x)dx
vérifie clairement les trois conditions qui caractérisent la fonction R,. De plus,
on a:

00
1

2 o ) o aptl
/ Za(ner)dx:Z/ a(n—l—x)dx:Z/ a(t)dt:/ aidr. [
I =0 n=0 1 1 /1

EXEMPLE 8. En appliquant la proposition précédente a la fonction
=2 avec y > 0, il vient la relation :

eV —1
R o0 o0
ny ny 1 t
= — — dt.

n>1 n=1

X =

4. PROPRIETES DE LA SOMMATION

4.1. LINEARITE

Si a et b sont deux fonctions analytiques de type exponentiel o, < 7 et
ap < 7 respectivement dans le demi-plan P = {x | R(x) > 0}, alors pour
tout A\, u dans C, Aa+ pb est une fonction analytique de type exponentiel
(majoré par) a := Max(ay,, ap) < 7 dans le demi-plan P et on a:

R/\a—Hw = ARq + LRy .

Il en résulte que I’application qui a une série »_ a(n) associe sa somme de
Ramanujan est C-linéaire.

4.2. TRANSLATION

Si a est une fonction analytique de type exponentiel v < 7 dans le demi-
plan P, alors pour tout entier N > 1 la translatée E"(a) est une fonction
analytique de type exponentiel o« < 7 dans le demi-plan P et on a la
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