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L'Enseignement Mathématique, t. 43 (1997), p. 93-132

LA SOMMATION DE RAMANUJAN

par B. Candelpergher, M. A. Coppo et E. Delabaere

RÉSUMÉ. Il s'agit de donner une présentation rigoureuse de la méthode de

sommation de Ramanujan et d'étudier les propriétés de cette sommation.

1. Introduction

Au début du chapitre VIII de ses Notebooks (cf. [B 1 ]), Ramanujan

introduit un procédé de sommation des séries basé sur la formule sommatoire

d'Euler-MacLaurin. Plus précisément, Ramanujan se sert de la formule de

développement des sommes partielles :

^ ß
a(x) dx + ^ ~ dk~1 a(x)

k> 1

pour associer à la série a(n) constante C qu'il appelle la constante de

la série. Ainsi, par exemple, la constante de la série harmonique J2n>\ h est *a

constante d'Euler. Ramanujan observe que la constante C «a de mystérieuses
relations avec la série», et qu'elle est «comme le centre de gravité d'un corps »,
aussi n'hésite-t-il pas à la substituer à la série. Le procédé de Ramanujan,

implicitement employé par Euler pour sommer la série harmonique (cf. [E]),
peut être justifié par des calculs formels (cf. §2).

Dans [H], Hardy étudie ce procédé à l'aide de la formule d'Euler-
MacLaurin, pour des séries liées à la fonction £, en laissant subsister une
certaine ambiguïté sur la borne de l'intégrale.

Dans cet article, on donne une présentation rigoureuse du procédé de

Ramanujan. Pour cela, on introduit un cadre analytique cohérent pour assurer

Mots-clés: Séries divergentes. Formule sommatoire d'Euler-MacLaurin. Equation aux
différences. Transformation de Laplace-Borel. Fonctions zêta.
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qu'une série X)«>i a(n) admet une et une seule somme de Ramanujan, celle-ci
étant définie comme la valeur en 1 de l'unique solution de l'équation aux
différences R(x)-R(x-\-1) a(x) vérifiant la condition: R(t)dt 0 (cf. §3).
Ceci permet de développer dans ce cadre les propriétés de cette sommation

(cf. §4) et d'établir un lien avec l'interpolation de Newton (cf. §6).
Il convient de noter que le procédé de Ramanujan n'est pas un procédé

de sommation au sens usuel : si la série Yln>\ a(n) converge au sens habituel,
sa somme de Cauchy (c'est-à-dire la limite de la suite des sommes partielles
de la série) ne coïncide pas en général avec la somme de la série au sens de

Ramanujan (cf. §3.1, exemple 2). Les liens existant entre les deux procédés
de sommation sont explicités au paragraphe 3.2.

2. Développements d'Euler-MacLaurin formels

Soit a une fonction analytique dans le demi-plan P {x | 93(a) > 0}.
Dans cette partie, on considère la série

^ a{n) — a{\) -F a(2) -F

n> 1

comme une expression formelle. Soit R(x) le «reste de la série à l'ordre a»
défini formellement par:

R(a) E a(n + a) a(x) + a(x -F 1) + •..
n>0

Par définition de R, on a:

yV(«) =R(l);
n> 1

et la «fonction» R est solution formelle de l'équation aux différences:

R(a) — R(x -F 1) a(x).

Soit E l'opérateur de translation défini par Ef(x) — f(x + 1), que l'on peut
encore écrire grâce à la formule de Taylor: E ed, d := dx désignant

l'opérateur de dérivation ordinaire. Si I désigne l'opérateur d'identité,
l'équation aux différences précédente peut s'écrire à l'aide des opérateurs

E et / sous la forme:

(I — E)R a.

En inversant, on obtient:
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"'ih--
ce qui peut encore s'écrire:

R— —
d

g 1

e9 -I
Le développement de Taylor formel :

3 ='+££«ed -I ^ k\
k> 1

permet alors d'obtenir ce que nous appellerons le développement formel de R :

^ ß
R(x) -<9~laO) - 77' kl

k> 1

Par définition de R, on a:

fl(n) fl(l) + a(2) + • • • + — 1) + /?(*)
n> 1

et en remplaçant R(jc) par son développement formel, il vient l'égalité:

^ ß
a(n) a( 1) + a(2) + • • • + a(v — 1) — <9-1a(x) —

1

a(x).
n>1 k>1

Cette dernière expression justifie formellement le procédé de Ramanujan.
Le choix du développement formel :

ß
a(f) dt — yy -j~

dk~la(x)
k> î

consiste à prendre pour d~la la primitive de a qui s'annule en 1. Ceci
revient à imposer à la solution formelle R de l'équation aux différences la
condition :

^

^ R(t) dt —

En effet, posons A(x) f* a(t)dt. En écrivant

A (I-E)J^A,
et en procédant comme précédemment, il vient:

Bk

k\

rX+1 Bu
A(x)= / A(t)dt + J2~

k> 1
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D'où :

A(1) 0= f A(t)dt + J2jf[dk-2a]2iJik- l

La condition précédente suffit pour déterminer la solution formelle de

l'équation aux différences, elle ne suffit pas pour avoir l'unicité d'une solution

analytique car elle laisse l'arbitraire de lui ajouter une solution périodique non
constante telle que l'intégrale de 1 à 2 soit nulle. Pour résoudre ce problème
nous allons faire des hypothèses supplémentaires sur la fonction a.

3. Sommation de Ramanujan
ET TRANSFORMATION DE LAPLACE-BORED

3.1. Sommation de Ramanujan

THÉORÈME 1. Soit x a(x) une fonction analytique de type exponentiel

a < 2tt dans le demi-plan P {x | 93(x) > 0}. L'équation aux différences :

Rix) — R(x + 1) — a(x)

admet une unique solution analytique de type exponentiel a < 2tt dans P,
notée Ra, vérifiant la condition:

2

Ra(t)dt 0.

Démonstration, a) Existence. En prenant la transformée de Borel (cf.

appendice) de l'équation aux différences, on obtient:

On en déduit que:

B(R)(0=
1 — e~£

Il suffit alors de prendre la transformée de Laplace de £ i-» x_}e-z Biß) (0
pour obtenir une solution de l'équation aux différences. Celle-ci est analytique
de type exponentiel a (a <2tt) dans P.

b) Unicité. Il s'agit de montrer que si / de type exponentiel a < 2tt est

solution de l'équation f{x) — /(x + 1) 0, alors / est constante. Il est clair
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que la condition d'analyticité de / dans le demi-plan P et la périodicité de /
impliquent que / est entière. La périodicité de / permet d'écrire

f(x) g(e2hnc),

où la fonction g est la fonction analytique dans C - {0} définie par

g(z) —/(In(.:)). Le développement de Laurent de en 0 se traduit

par le développement de Fourier de / :

f(x)^j2c»e2imu>
«GZ

où les coefficients cn sont donnés par les formules intégrales :

c„ — —[f(t + -f- ln(r)j e-2,7m' dt pour tout r >0.
r" 2iir

La condition / de type exponentiel a < 2n permet de majorer les \cn\ :

1 (Q + e) Iw.-Q (O "h 6)
\cJ < — Ce ^ (avec — < 1
1 1 ~ rn 2tt

Il suffit de faire tendre r vers 0 et vers +oo pour obtenir cn — 0 pour
tout n 0. La condition de nullité de l'intégrale sur [1,2] implique alors

co 0.

Remarque 1. D'après la démonstration du théorème précédent, la
fonction Ra peut s'écrire:

Ra(x)J e~xt(0<% + C0

où la constante Co dépend du représentant choisi pour B(a) (qui n'est définie

qu'à l'addition près d'une fonction analytique dans C de type exponentiel).
D'après les propriétés de la transformation de Borel, la fonction

xi-> -J1B(0est une primitive de a. On peut donc écrire:

Ra(x) — ~ J ß(0 dt + J e — — J B{a) (0 dt; + Ci

Cette dernière intégrale sur 7 ne dépend plus du choix de B(a). En écrivant :

^ a(t) dtJ e-*Z±B(a){QdÇ- J e
J ^
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on vérifie facilement que la condition de nullité sur l'intégrale de Ra sur

[1.2] se traduit par C\ 0. Finalement on a:

Ra(x) - a(t)dt+ J e~xÇ ^ - |j (0

Si l'on suppose en outre que le mineur a existe (cf. appendice §7.4), on peut
écrire la fonction Ra sous la forme d'une intégrale sur [0, +oo[ :

Ra(x) - jf <3(0 dt+j0e~X(1 -e-t ^^ '

En particulier, on a alors :

Définition 1. Soit x a(x) une fonction analytique de type
exponentiel a < n dans le demi-plan P {x | 9f(x) > 0}. On appelle somme de

Ramanujan de la série X^>i a^n) et on note Y^n>\a(n) Ie nombre Ra( 1).

REMARQUE 2. On pourrait définir, pour une fonction a analytique de

type exponentiel a < 2tt dans le demi-plan P {x | 9ï(x) >0}, la somme
de Ramanujan de la série comme la valeur en 1 de la fonction Ra :

n
yN {ri) 1).
n> 1

Cependant pour a > tt ce procédé de sommation ne vérifierait pas :

n n
a(n) b(n) pour tout entier n > 1 implique a(n) E b(n)I,

n> 1 n> 1

comme le montre l'exemple suivant (cf. exemple 5) :

n l n

y sm{niï) — — alors que 0 0.
n> 1

71

n>l

En fait, pour a et b de type exponentiel a < tt, la condition: a(n) b{n)

pour tout entier n > 1 implique a — b d'après le théorème d'unicité de

l'interpolation de Carlson (cf. [Bo] p. 153).
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Exemple 1. Soit a(x)I. On a 2(0 1. D'après la remarque 1, il
vient :

Ra(x)=- ln(x) + £ e~*

où l'on utilise la notation habituelle i/j j? • En particulier:

où 7 désigne la constante d'Euler. D'après la définition de la somme de

Ramanujan, il vient:
n 1

' n
n> 1

Exemple 2. La fonction d'Hurwitz (cf. [C]), définie pour 9f(x) > 0

et 9f(z) > 1 par
oo

^
CCr, z) — > — (somme de Cauchy),

rr.
vérifie l'équation aux différences :

ainsi que l'égalité

<(x,z) - C(x+ l,z) 4

,2 ,oo J J

I Ç(x,z)dx J — dt
tz — 1

Pour

— '

on a donc :

flaW CO,z) —E •

z - 1

On en déduit pour 9i(z) > 1, la somme de Ramanujan :

TZ

n> 1

avec

n>l ^

oo

C(z) C(i,z) £4-
1 ^n=l
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^ pz~ i

Par ailleurs, on a a(Ç) — D'où l'expression de la somme de Ramanujan
sous forme d'intégrale:

JL _L_ [+co I
nz Hz) Jqy1-£n> 1

Remarque 3. Le choix de la normalisation J2Ra(t)dt 0 permet
d'écrire :

n 1 n 1

lim y - y lim - 7.
1 + ^' nz 1 + nzz-*i+ nz ~!z^i+ nz

n> 1 n>1

Exemple 3. Soit k un entier > 0. La fonction R: x i-> — Bkj^ où Bk(x)

désigne le ^-ième polynôme de Bernoulli, vérifie l'équation aux différences:

R(x) - R(x + 1) xk

ainsi que l'égalité:
f2
/ R(x) dx •

,2 j
J 1

& + 1

Pour a(jt) xk, on a donc :

p x
1

1 M"•w ÏTÏ
On en déduit les sommes de Ramanujan :

*
1 - fi*

«

n>l

1Z

1

2

n 1

E' i
n> 1

Exemple 4. La fonction R: x i— — ln(F(x)) vérifie l'équation aux

différences :

R(x) — R(x -f 1) ln(x),

ainsi que l'égalité

p2f 1

j ln(r(t)) dt —l + - ln(27r).
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Pour a(x) ln(x), on a donc :

Ra(x) - ln(rW) - 1 + ^ ln(2?r).

On en déduit la somme de Ramanujan:

n
lnfwl — —14-

K j^ ln(n) -1 + - ln(27r).
«>i

Exemple 5. Soit a tel que 0 < \a\ < ir, on a:

eax_e*{x+l) =e*X(l _^)5
f2 ea
/ eaxdx (eŒ-I) — -

Ji «

Il en résulte que pour a(x) eax, on a :

Ra(x)
1 — ea a

Par conséquent:

STea» ea(—^ V1 - ea an> 1 v

En particulier, en prenant a it, et en séparant partie réelle et imaginaire, il
vient :

n
E.

1 t cos t
sm(nt) -cot—

n> 1

nEl sin t
cos(nf) -- + —— •

n>lL1

Proposition 3.1. Pour D\(x)>0,définit par:

J2a(n+ x) 53 a(n + x ~ 1) •

n>0 n>1

On a la relation :

fx
Ra(x)=^2a(n+x) - / dt.

0 •*1
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Démonstration. On considère la fonction b(y) a(y + jc — 1). On a :

p2 pX+\
Rh(y) Ra(y + x -i) - J Ra(t+ x - \)dt Ra- 1) - Ra(t)dt.

D'où

V—^
/**+!

Rb(1 + x - 1) - / Ra(t)dt.
«>1 A

Or ^ f*+l Ra(t)dt —a(x), et le résultat en découle.

Exemple 6.

^ 1 f+ OO

I

e
XT^ ]n(x) -^ J

e~Xi f T - 7 A •

3.2. Liens avec la sommation de Cauchy

Dans ce paragraphe, a désigne une fonction analytique de type exponentiel
a < 7t dans le demi-plan P {x | *H(jc) > 0}.

PROPOSITION 3.2. Si Ra(x) tend vers une limite finie quand x —> oo, alors
la série Yln>\ aW converge au sens de Cauchy, et en notant a(n) sa

somme de Cauchy, on a la relation:

7Z oo

y ain) — /
^
a(n) ~~ I / ^.' ^ J N—>00 /,

„^ t ,— 1 J 1

Démonstration. Soit TV un entier naturel > 1. En sommant pour
n 1,..., TV — 1 l'équation :

+ 1) a(w),

il vient:

Rail) - Ra(N) fl(l) + • • • + a(N - 1).

D'où:
n
yV(n) <3(1) + --4#-l) + RaiN).
n> 1

En faisant tendre TV vers l'infini, on obtient la relation:
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TZ oo

y a(n) y a{n) + ^lirn^ Ra(A0.

ji>1 n=l

En intégrant entre n et « + 1 l'équation aux différences

üaW - + 1)

puis en sommant pour n1,..., N 1, il vient :

- / Ra(t)dt= / a(t)dt.
Jn J i

En faisant tendre N vers l'infini, on obtient la relation:

rN

- lim lim / a(t)dt.
N-^oo

Remarque 4. Si /?<,(*) + ga(t)dttendvers zéro quand x —> +oo, alors

la série X^>i (ö'n) - J"+1a(t)dt)convergeau sens de Cauchy, et on a:

TZ oo / pn+1 \
fl(/r) ß(n) - / a(0 dt I

n>l n=l V Jn J

Exemple 7.

^ i A /1 r+i i j
^

La proposition 3.2 admet une sorte de réciproque:

PROPOSITION 3.3. Si la série Yln>oa^nJrx) converge (au sens de Cauchy)
normalement sur tout compact de P — {x | 9%(x) >0} et y définit une fonction
analytique de type exponentiel a < n alors:

Rq(x) yy a(n + x) — / ^ a(n + x) dx.
^2 oo

n

Si on suppose en outre que f a(t) dt converge alors :

n=0 n=0

r OO

Ra(x) — yy + x) — a(t) dt.
77-0

-71
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En particulier, on a la relation :

7Z oo ~oo

a{n) a(n) — / a(t) dt.
n> 1 n= 1

1

Démonstration. La fonction x i—» a(n + x) ~ jf a(n + x^ ^x
vérifie clairement les trois conditions qui caractérisent la fonction Ra. De plus,
on a:

f'2 °° oo ç.2 oo r>n-\-1 p oo

/ -t-x) dx yy / ß(ft+x)dx yy / a(t)dt / a(t)dt.
Jl n=0 n=0Jl «=1 1 ^

EXEMPLE 8. En appliquant la proposition précédente à la fonction
x ^ ^rry avec J > 0

> il vient la relation :

1Z oo 1 /> ooy^^ y^^_ 1

^ eny _1 _ J y J
n> 1 n= 1 ^

4. Propriétés de la sommation

4.1. Linéarité

Si a et £> sont deux fonctions analytiques de type exponentiel aa < tt et

ab < 7T respectivement dans le demi-plan P {x | 9f(x) > 0}, alors pour
tout À, p dans C, \a + pb est une fonction analytique de type exponentiel

(majoré par) a := Max(aa,ab) < 7r dans le demi-plan P et on a:

E\a-\-(j,b — T pPb -

Il en résulte que l'application qui à une série ^a(n) associe sa somme de

Ramanujan est C-linéaire.

4.2. Translation

Si a est une fonction analytique de type exponentiel a < n dans le demi-

plan P, alors pour tout entier N > 1 la translatée EN(a) est une fonction

analytique de type exponentiel a < it dans le demi-plan P et on a la
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Proposition 4.1. Pour tout entier N > 1,

n n on

a(n) a(l) + * • * + a(N — 1) + ci(n -f- N) J a(t) dt.

u > 1

Démonstration. En sommant pour n 1,..., N - 1 l'équation :

Pain) - Ra(n + 1) a(n),

il vient:
n

a(n) a( 1) + • • • + a(A/" — 1) + Pa(N).
n>\

Il suffit alors (cf. proposition 3.1) de remplacer Ra(N) par J2n>oa^n~^N)

a{t) dt.

Exemple 9. Pour N >2, on a:

n 1 1 ^ 1

7 V - 1 + • • • + In(N) + y —- •^ n N - 1 yn + N
71 >1 ">0

4.3. Dérivation

Si a est une fonction analytique de type exponentiel a < tt dans le demi-

plan P, alors sa dérivée da est une fonction analytique de type exponentiel

a < tt dans le demi-plan P. De plus, en dérivant l'équation aux différences,

on obtient la relation :

Pda — d(Ra) + a{l)

où le terme a( 1) provient du fait que f}2 d(Ra)(t)dt Ra(2) — Ra(l) — —a( 1).
Plus généralement, on montre par récurrence sur n que

Ra>,a d"(Ra) + d"-1a(l).

4.4. Sommation par parties

Si a et b sont deux fonctions analytiques de type exponentiel respectivement

aa < n et ab < tt dans le demi-plan P {x \ > 0}, alors le

produit ab est analytique de type exponentiel a < aa + dans le demi-plan
P. Soient alors u et v deux fonctions analytiques de type exponentiel
respectivement au < tt et av < tt dans le demi-plan P avec au + av < tt D'après
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les propriétés de linéarité et de translation vues aux paragraphes précédents,
on a:

r
y^(w(ft) — u(n +1)) v(n)
n> i

r
u(n + 1) {y{n -f 1) — v(n)) 4- u( 1) u(l) — f u{t)v(t)dt.

n> 1 h

Cette formule est pour la sommation de Ramanujan l'analogue de la classique
formule de sommation par parties d'Abel. En particulier en remplaçant u par
Ra, on obtient:

r r r2
^2a(n)v(n) 1) (v(n +1) - v(n)) /

n> 1 n> 1
^1

En remplaçant à présent v par R& dans la formule précédente, on obtient
alors :

-R R

^ a{n) Rb(n)+ ^ Z>(«)

Ra(n)
>1

R

y^ a(n) &(w) + <z(w) £(w) — / /?/,(£) d/1,

rc>l «>1

R R R

n>l n>l n>l

ce qui peut encore s'écrire:

R n 1Z n

n> 1 1 n>l 1

^ R RR «2

b(k) + ^ £0) a(fc)

n>l 1

R 7

y^ <z(w) Z?(tî) + a(w) yy b(ri)+ )] <if.

n>l «>1 «>1
1

Cette dernière formule admet deux cas particuliers intéressants :

Proposition 4.2.

R /? R n

y fl(n) y <9a(^) + y <9a(X) y «(^)
n> 1 1 n> 1 1

R RR ^
R

y] a(n) da(ri) + y^ a(n) y da(ri) + 2aW2 ~~ '

n>l n>l n> 1 n>l
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Démonstration. En appliquant la formule (1) avec b(x) da(x), et en

utilisant la propriété de dérivation vue au §4.3, il vient:

n2 p2 11^/ Ra{t)Rda{t)dt=/ Ra{t)dRa{t)dt=-[R2a\\ -a(\)2-a(l)Y,a{n).
''] n>\

Proposition 4.3.

7L n

EE a(k) - E a(n) — ^2 na{n) — E d la(n).
TL n

3
TL TL TL

2
n> 1 1 n>l jtt>l n> 1

avec d la(x) f*a(t)dt.

Démonstration. En appliquant la formule (1) avec b(x) 1, on obtient:

TL TL n 2 j tL TL

22naT)+E E + / tRaV) dt= ^E a(n) + a(n).
n2>\ /?> 1 ]

^ w>l ri> 1

Posons A(v) f*a(t)dt. On a de sorte que (en intégrant par
parties)

j //vyx//=-A>,(1).

La proposition en résulte.

Exemple 10. (Sommes harmoniques: cf. [Bl] pp. 251-253, [AV], [BB]).

n n n n 01112 Hn
2 lnW

2 7 +
2

~
2

ln(27r) '
n>\ *>1

n
«>1 „>1

2 2 2

2Ef C(2)-i+72+ f
n>1 •>!

n U n

E| + E En=C0)-it1fl2),7?2 ^ ft fc2
n>{ n> 1 1

avec :

" 1

« E •

1
*
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Remarque 5. D'après la formule:

f t"-lLi2(t) dt'
Jo n n

où Lh désigne le dilogarithme (cf. [L] p. 20), on obtient en sommant:

Il en découle, d'après l'exemple précédent, la relation:

4.5. SÉPARATION DES TERMES PAIRS ET IMPAIRS

PROPOSITION 4.4. Si a est une fonction analytique de type exponentiel

a < 7t/2 dans le demi-plan {x | 9f(x) >0}, on a:
il tz iz r2

a(2n) + a(2n H- 1) a{n) — a{ 1) — / Ra(2t) dt.
n> 1 n> 1 n> 1

^1

Démonstration. D'après l'équation aux différences vérifiée par Ra, on

peut écrire:

Ra(2x) — Ra(2x + l) a(2x),

Ra(2x ~h 1) — Ra (2(x + 1)) a(2x H- 1).

En ajoutant, on obtient:

Ra(2x) — Ra (2(x 4- 1)) a(2x) + a(2x + 1).

On a donc :

71

^2(«(2«)+ a(2n+ 1)) -
n> 1

Par la propriété de linéarité, il vient:

n n ^2

V a(2n) + a{2n + 1) Ra(2) — / Ra{2t) dt,
n>\ n> 1

Jl

et de plus, Ra{2) Ra( 1) — a( 1).

Ra(2t) dt.
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Exemple 11.

/!> 1

4.6. Utilisations de développements en série entière

PROPOSITION 4.5. Si a est la fonction entière de type exponentiel r < tt

définie par:
a(x) avec \ak\ < Crk t^ kl

k> 0

alors :

iz oc n r\ oo

n>\ k=0 ' n> 1
0 *=1

Démonstration. Montrons que Ra o ff • On sait que

— 1~flri'(A) • Considérons la fonction :

OC'

a<_
f-r, (k\I)!(£+1)! "+U

En utilisant la fonction génératrice

te" ^LC

— 1 72!
n>0

r",

on constate que pour r < r < tt il existe une constante C, telle que pour
tout x, on ait

|ß*+i(*)| <c,rVW + 1)!

Ceci permet de vérifier que la fonction:

V~^ ak OLk

(Err)T-(Eri)!Bt+!W

vérifie les trois conditions qui caractérisent Ra.
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Exemple 12. Pour 0 < y < tt, le développement en série entière de la
fonction x i—> sm^ :

sin(*y) _ ^2k^2k+î
Y Z—'*>o^+1>!

permet d'écrire la somme de Ramanujan:

k

xry

n
Esin(ny) fy sin(x) 1

—=L —**-?
l

J 0

Remarque 6. La série précédente converge également au sens de Cauchy,
et la relation de la proposition 3.3 s'écrit:

sin(rcy) sin(ny) f°° sin(x) f°° sin(x) 1 tt — y
> > h / ax—\ dx — - y ——Z^ n n y L X 2 2

n> 1

REMARQUE 7. La proposition précédente ne s'applique pas si l'on ne

suppose pas la fonction a entière. Par exemple, si on l'appliquait à la fonction
2q+ï

x ^ avec # enLer >0 et y > 0, le développement en série entière :

A V ^ <1*1 < 2tt)
exy _ l /s k\ 11

Bl

k> o

permettrait d'écrire la somme de Ramanujan:

nv yyyz \ r a+i
4-/ eny __ i y2q+\ Joet_i2q+l4q + 4y',
n> 1

En fait, cette formule n'est pas valable car d'après l'exemple 8 (cf. §3.2), on

a la relation :

n n2q+ly ^ n2q+ly 1 f°° t2q+{

En ^ y ^ xp n - y
__

1 / i -

eny _ 1
~ 2^ eny _ J y2q+l J é - \ '

n> 1 n= 1 7 Jy

ce qui donnerait:

^ yyyy i r &+i
Z eny-1 y2q+l Jo e' -1 2q+ln= 1
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Or, cette relation est fausse, comme on le voit en faisant tendre y vers l'infini.

Remarquons que pour y — 2tï et q 2p, la relation précédente donne :

E f - h si P 0

e2nn _ I ï j > jn=\ \ 4p+2 f —

alors que l'on a (cf. [B2] p. 256 et p. 262):

y, n4p+1
_ f - 8^ si p 0

L e2«n Z1
~ ] fteg si 1

77=1 V 8/7+4 1 —

PROPOSITION 4.6. Soit f(x) X+>i w/îp sérié? entière de rayon de

convergence p > 1. O/r suppose que la fonction * l—>/ (~) analytique de

type exponentiel a < ix dans le demi-plan P, alors :

TZ co 72. oo / ^

E-A1/«) E C(:E + Cl7 + E Ck+1 - £
72>1 *=1 77>1 &=1 ^

Démonstration. Posons a(x) / (f). On a le développement convergent
à l'infini :

a(x) X]
77>1

Le mineur de a est donc la fonction entière de type exponentiel 1 /p < 1 :

2(0-E (£- 1)!
k>l v y

Par définition de la somme de Ramanujan, on a:

n r+ oo / J 1 \
E a(«) / " T 3(0 <*£

72 > 1
/o V1 ~~

+°° / 1 1 \ ck— 1

6 ^

/O

1 + v- 0
7=7"? (Jfa(i- 1)!

L'hypothèse p > 1 permet de majorer les 1+ et ainsi de permuter les
signes Jet dans la formule précédente. Il vient alors :

+(„>+ « fV£+L^I)++. D
77 >1 &=1 /o
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Exemple 13. Le développement en série entière en 0 de la fonction
x i—» xe~vc :

ŷ kl
k>0

permet d'écrire la somme de Ramanujan:

n>1 k=1 X

4.7. Dépendance analytique par rapport à un paramètre

PROPOSITION 4.7. Soit D un ouvert de C. Soit a(Z)X) analytique dans

D x P. On suppose que pour tout compact K C D, il existe des constantes

Ck et tk < TT telles que pour tout x G P avec \x\ > 1 et tout z C K on ait
\a{z.x)\ < CkcTk^x'. Alors z i—» a(z,n) est analytique dans D. De plus,
on a:

(n
\ n

y a(z,n)I - y «) •

n>1 J n>1

Démonstration. On sait (cf. appendice) qu'on peut choisir un représentant
de la transformée de Borel de a tel que pour tout z G K C D (où K est

un compact quelconque), on ait \B(a)(z,x)\ < Cek^ avec 0 < k < 1. Soit

Ra(Zyl) J e~^ i_g- — Cette intégrale dépend analytique-
ment du paramètre z, la fonction à intégrer étant majorée uniformément en

z G K par une fonction intégrable.

COROLLAIRE 4.1. La fonction Z ^ J2n>\ h est une fonction entière. Pour

tout z G C — {1}, on a:

n
£i=<fe)-_L-,' nz z — 1

n> 1

n 1

Z é yiZ

Démonstration. Le fait que z i—>• Y^>\ & est analytique dans C est une

conséquence immédiate de la proposition précédente. La première égalité étant
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vérifiée pour > 1, par prolongement analytique elle est donc vraie pour
tout z G C — {1}. La seconde égalité s'obtient par dérivation par rapport
à z.

Remarque 8. Les formules précédentes restent valables pour z 1

en remplaçant les membres de droite par leurs limites en 1, et on a le

développement (cf. [Bl] p. 164):

A-J nz A^ A^/ nn> 1 k~ 1 n> 1

5. Exemples d'utilisation

5.1. Développement en série de la fonction ç
La fonction 0 vérifie l'équation:

1p(z.+ 1) 0(z) + - •

z
Par ailleurs, d'après l'exemple 6 (cf. §3.1), on a pour 9î(z) > -1 :

0(1 + z) ln(l +
n + zn> 1

Supposons |z| < 1 et posons /(x) on a

n> 1 n> 1 x 7

Le développement en série entière en 0 de la fonction / :

k> 1

de rayon de convergence p|>l, permet d'écrire la somme de Ramanujan
de cette série sous la forme:

£rL 7+D<-,)V(«1:+l)-r) '

n>\ k> 1 \ KJ

On en déduit le développement de i/j :

0(z)= -- - 7-53(-1)*_1CWz*_1.
k>2
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5.2. Calcul de Y^>\ n2q lnW

PROPOSITION 5.1. Si q désigne un entier naturel > alors:

K

n> 1

avec

n2q ln(n) » —^ K

(2q + l)2 (2q + 1)
2q+l% ^'

(B2q+1, ip) / 52^+I 0) ^0) dx.
Jo

u

/ 0

Démonstration. On commence par montrer le

Lemme 5.1. 57 ß £e//<? gwe a(0) <9ß(0) •••== d2q la(0) 0,
alors

7Z,
p i J p \

V"a(«)= / a(t) dt +————-/^ J0 (2^+l)!t/0

Démonstration. Soit /HA") g a(t)dt. On applique la formule d'Euler-
MacLaurin avec reste intégral sur [0,1] à la fonction RA. Il vient:

q
dRA(0) + dRA( 1) ^ pßnjo

i ,i

o (2q+l)\J0
B2q+i(x) d2q+2Rdx.

n> 1

Comme [d2nRA]J — 0 pour tout n < q, on a:

Ôf?A(0) + ÔÂA(l) 1 ,,a2«+2iww
s 7S—mr / ß2?+i Wodx.2 (2q +1)! J0

En utilisant la propriété Rg«f dnRf + 9"~'/( 1), on obtient:

Ra(l)=f a(t)dt+
1

[B2q+\{x)Rd2,+ia{x)dx.Jo(2? +1)! J

On applique le lemme à la fonction a— x2q ln(x), cette fonction vérifie

[ait)dt—-
*

2
et •

Jo (2 q+ l)2 *
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Remarque 9. D'après le corollaire 4.1 (cf. §4.7), on a aussi:

fln2qin(n) -(2^TW~(:'{-2q)-
n> 1

En dérivant l'équation fonctionnelle de la fonction :

C(Z) 2(2TT)z_lr(l - z) CCI - Z) sin (y)
on obtient pour q entier > 1 l'égalité (cf. [Bl] pp. 273-276):

U 1 12/71 '

n2q ln(») - + 1)2
+ 1)?+

2(27r)2ç ^ + ^ '

«>1

De la proposition précédente, on déduit alors l'égalité:

(B2q+Ui,)^ (2« + 1) Ä C(2ç + 1) •

Remarque 10. Pour |x| < 1, on a le développement:

1

2x
COt(TTX) -y + ^2 C(2k)x2t 1

k> 1

Posons :

/« ---7-E^2fc+1)x2fc-
Jfc> 1

D'après le développement de pj vu au paragraphe précédent, on a la

décomposition :

7T

V>(v) /(*) - - COt(TTX)

La fonction x i—> cot(7rx) est une fonction impaire par rapport au point j. De

la formule de réflexion:

^(1 — x) » 1p(x) + 7r COt(7tx)

on déduit que la fonction / est une fonction paire par rapport au point ^. La
fonction x i—» B2q+i(x) étant impaire par rapport au point | il résulte alors
de la décomposition de ip précédente les égalités :

(B2q+\,iß)-y (ß2?+i,cot(7T et =0,
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ce qui se traduit par les deux systèmes infinis d'équations:

53 C(^k)(x2k
1

,B2q+1) rq + ^ (2q + 1) ^ '

k> 1

53 ^){x2ki Biq+1 ~ ~rq •>

k>\

avec rq (^,B2q+l)

5.3. Une solution de l'équation de la chaleur
En dérivant sous le signe » on vérifie aisément que la fonction

^ 1 _E±E
«(?.x.y) } e 4^+'>

est solution de l'équation de la chaleur:

dtu d2x u + d2yu •

D'après le noyau de l'équation de la chaleur, on en déduit que

1 [2 _£±vi
w(l,0,0) — / e 4 y) dxdy

4TT 7r
c'est-à-dire, après passage en coordonnées polaires:

^ 1 r00 ^ 1 MyJ—^f e-»Yl-e-ändu.
J VI —1— 1 L y 77« -h 1 Jo ^ n

n> 1 n> 1

Or, d'après l'exemple 13 (cf. §4.6), on sait que:
TZ

-j oo / t \ JeE(«*+«- L
«>1 fc=l V 7

et d'autre part:
* 1

7=1- ln(2) + —— •

22+1
n>l

On en déduit l'identité:
n CO 00 /
/ rVf-inm+n- k I k\

ln(2) 1 Ie~u ]T< U C(* + 1) " j) £

qui traduit le fait que la série 1)*(C(£ + 1) - }) est Borel-sommable

et que
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X)(-l)* (c(*+l)-l) ln(2) — 1,
k> 1

^ '

où désigne la somme de Borel de la série.

6. Interpolation de Newton et sommation de Ramanujan

Étant donnée une suite (an)n>i, il est très facile, par l'intermédiaire
des séries de Newton, de construire formellement une fonction a telle que
a(n) an pour tout n > 1. On a la formule d'interpolation de Newton :

À'Wl)
a(x) a{ 1) + — (x — 1) (x — 2)... (x — n).z—^ n\

n> 1

Cette formule fait intervenir le calcul des différences n -ièmes :

n

A"a(l) ^(-l )n~kCknak+l.
k=0

Du développement de Newton de a :

a(x) a(l) + —
n>1

n'

on déduit formellement l'égalité:

k>\ k> 1 n> 1
H ' k> 1

Calculons à présent £^>, (fc ~ 1)(& - 2 )...(k-n)Del'équation aux
différences :

{x-1) (x -2)... (X- n -1) ~x(x-1)... (x- -{n +1) (x 1)...
il découle que:

D
1

"(A-IH.V-2)...(*-n) ~WTï(x -l)(x-2)... (x 1) + + 1),

avec :

7/7+1 / x(x — 1)... (x —
Jo

On a donc:
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1Z
In+1

yn — i) — z) {K — n)
k> 1

et

7Zl n + 1

v—1Y 1 A / xdx -k>lDe plus, les intégrales 7n+i sont données par la fonction génératrice:

E —E—/ fM

n+1 ^
1 1

Z —

n>0 ("+!)! lnd+JC) z

PROPOSITION 6.1. 5/ a est une fonction analytique bornée dans le demi-

plan P, alors:
n °° A"a(l)Ya(n) Y: n\ n+ln>I n=0

Démonstration. On commence par démontrer le

LEMME 6.1. Si a est une fonction analytique bornée dans le demi-plan P,
alors les Ana( 1) forment une suite bornée.

Démonstration. Par le théorème des résidus on a:

A-0(l) ^ f îM TA,2i7r Jjn (x —1)... (x —(n+ 1))

où est le lacet entourant les points 1,2,... ,n + 1 composé d'un segment
3

2
vertical passant par le point ~ et du cercle de centre n+l et de rayon n+l
Sur le cercle, on a:

|0- l).. .0 - 0 +1)1 > 0+ l)!,

et sur le segment, on a

10 - 1)... (x - (n + 1)1 > •

La majoration de Ànn(l) provient du fait que le cercle est de longueur
27r(n + 1) et que le segment est de longueur < 2y/n + 1 ce qui permet de

majorer l'intégrale sur le segment à l'aide de la formule de Stirling.
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La série X)«>o (n+iy. A,7ß(l) est absolument convergente car les Ana( 1) sont

majorés par une constante et la série X^n>o(~^n (i+T)T est converêente (Par

un théorème taubérien classique). D'autre part, d'après des propriétés connues
des séries de Newton (cf. [G]) la fonction :

vérifie les trois propriétés caractéristiques de la fonction Ra.

Exemple 14. D'après le calcul de Ana pour a(x) ~ ~ :

n\
Ana(x) (-ir-x(x -f 1).. • (x + n)

il vient:
1Z

ln-\-1
/v ^ uo

E — E(-1)"-X—J yi —1— y X—/
„> on+xtzo x(x+

Pour tout entier N>2,on en déduit, d'après l'exemple 9 (cf. §4.2), l'égalité :

1 °°
7 1 + ' ' ' + 77—7 " ln(lV) + Y(-ir /n+1

N-l ^ N(N + 1)... (N + ri) (n 4- 1)

Remarque 11. De la relation :

n—k

** 1 + E S'k(x ~ 1) (x 2)... (x -
n— 1

avec :

p=0

on déduit, en prenant la somme de Ramanujan des deux membres, la relation :

1 ~ Bk+\ _ sp 4+1
k+1

n—0
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Remarque 12. Le développement formel de Ra :

Ra(x) - / a(t)dt - ^2 7~T~TU öwa(v),
«>o

permet d'écrire formellement l'égalité:

(n+ 1)!
n>l n>0

En général, la série de droite diverge au sens de Cauchy. Cependant, on pourrait
montrer que sous certaines hypothèses sur a, cette série est Borel-sommable

et que

n> 1 n>0
^ }'

où Y2n>\ désigne la somme de Borel. Par exemple:

7-1+- + +
n> 1

D'autre part, on a vu (cf. proposition 6.1) que sous certaines hypothèses,

on a:
1Z oo j

£*<»> £ i
n> 1 n=0 V 7

Remarquons que l'égalité formelle:

-y g"+1
dna{\)y In+\, A"a(l)

(« +1)! Hh 1)!
«>0 n>0

peut se déduire directement des développements formels :

/ =i yjn+^dn
«>0

uE-^A"ln(7 + A) A ^ (« + 1)!
n>u

ainsi que de la relation :

9 In E — ln(7 + À).
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7. Appendice: Transformation de Laplace-Borel

Dans cet appendice, on donne une présentation de la transformation de

Laplace-Borel bien adaptée au cadre de cet article. Pour un exposé plus

systématique, le lecteur pourra se référer par exemple à [M].

7.1. Notations

Soit U un voisinage sectoriel de l'infini d'ouverture > tt du plan C de

la variable complexe x. Nous désignons par O(U) l'algèbre des fonctions

holomorphes dans l'ouvert U du plan complexe.

Nous dirons que a G 0(U) est de type exponentiel r > 0 clans U si

pour tout e > 0 et pour tout demi-plan fermé S G U il existe une constante
C C(S. e) > 0 telle que pour tout x G S, on ait la majoration :

L'ensemble des fonctions a Ö(U) de type exponentiel r > 0 dans U forme
un espace vectoriel que nous noterons (9(£/)exp(/). L'ensemble des fonctions
a G 0(U) de type exponentiel quelconque forme quant à lui une algèbre que
l'on note 0(î/)exp.

7.2. Transformation de Borel

7.2.1. Transformée de Borel

Soit P l'ouvert du plan complexe défini par P := {x | £K(x) > 0}.
Considérons l'application analytique xh a(x) que l'on suppose appartenir à

l'espace vectoriel 0(Pfxp(r) (r>0). Soit dans ces conditions une demi-
droite (orientée vers l'infini) dans l'ouvert On définit la transformée de
Borel Bd associée à d par:

Pour fixer les idées, on notera kl'originede la demi-droite d'intégration et
l'on supposera que k 6]0,1], On identifiera la direction à l'infini de cette
demi-droite d d(9) via son angle polaire 6, |0| < tt/2. La transformée de
Borel Bd(a) s'écrit alors

\a(x)\ < Ce(r+eM

" 2; / e*a(x) dx --fi f e,e'ei + teie) ew dt.2nr JdW) 2m J0
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La condition de convergence de cette intégrale découle de notre hypothèse sur

a : on sait que pour tout e > 0, il existe une constante C C(e,k) > 0 telle

que pour tout t > 0 et tout 6 G [—tt/2, H-tt/2]

\a(k + tew)\ < C,de sorte que

ete'^a{k+ tew)ew<Ce(r+e/2)* e-e,/2

On en déduit que la condition

Vt(ewO < -(r + e)

fournit une majoration uniforme en £ de l'intégrant par une fonction intégrable.
Le théorème de convergence dominée de Lebesgue nous montre donc que
Bd(e)(ci) est une fonction holomorphe dans le demi-plan ouvert:

UM{£ G C | < ~r}.
La décomposition précédente nous fournit également sans peine une estimation

sur la croissance à l'infini de Bd(ß)(a) ' notons S' un demi-plan fermé contenu
dans l'ouvert Ur{6). Nous pouvons supposer que pour e > 0 assez petit ce

demi-plan fermé S' est contenu dans le domaine des £ tels que la condition

< ~{r + e)

soit satisfaite. Dans ces conditions, il existe une constante C > 0 telle que

pour tout t > 0,

e,e'e^a{k+ tei9)eie < Ce{r+cl2)ke'a/1,

et par conséquent pour tout £ G S',

Çe(r+e/2)k
\Bd(0)(a)\ < J\i\

67T

De là découle que
Ur(0).

admet une croissance de type exponentiel k dans

Ur(0)

Figure 1
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En faisant varier 6 dans l'intervalle fermé [—7t/2, +tt/2] et en application

du théorème de Cauchy, la transformée de Borel se prolonge analytiquement

en une fonction Bk(a) qui est analytique dans l'ouvert

Ur := U Ur(9)
ÖG[ —7r/2,+7T/2]

du plan complexe C que l'on a représenté sur la figure 1. Remarquons

d'ailleurs que la constante C intervenant dans les majorations précédentes

peut être choisie de façon indépendante du choix de Vangle polaire
0 E [—TT/2, +tt/2]. On en déduit que la transformée de Borel Bk(a) est

de type exponentiel k à l'infini, autrement dit on a le

LEMME 7.1. Si a e 0(P)exp(r) alors Bk(a) E 0(Urfxp(k).

Notons à présent que le changement d'origine k —> kf de d se traduit par:

Bk>(a) Bk(a) + h(a\k>

avec h(a)k,k> E (9(C)exp(r) où r Sup (k,kf). Ceci nous amène à poser la

définition suivante:

Définition 2. Soit x a(x) une fonction analytique appartenant à

l'espace vectoriel ü(P)exp(r). La transformée de Borel de a, notée 13(a), est

une fonction analytique définie dans l'ouvert Ur qui coïncide dans cet ouvert
avec l'une des fonctions Bk(a) modulo l'addition d'un élément de l'algèbre
e>(C)exp.

7.2.2. Dépendance suivant un paramètre

Les propriétés précédentes de la transformée de Borel se transposent au

cas où a dépend d'un paramètre de la façon suivante.

Définition 3. Soit D un ouvert de CL On notera GDÇP)exp(r) l'espace
vectoriel des fonctions a : (x,z) ^ a(x,z) holomorphes dans l'ouvert P x D
telles que: pour tout demi-plan fermé S contenu dans l'ouvert P, pour tout
compact K C D et pour tout e > 0, il existe Ca Ca(S, K, e) > 0 tel que
pour tout x E S on ait la majoration (uniforme en z) :

| a(x,z)|< C>(''+e)M
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LEMME 7.2. On suppose que a appartient à Vespace ö/)(P)exp^. Alors
Bk(a) définit une fonction holomorphe dans l'ouvert Ur x D; de plus pour
tout fermé S' contenu dans l'ouvert Ur, pour tout compact K C D et pour
tout e > 0, il existe C C(Sf,K,e) > 0 tel que pour tout £ G S' on ait la

majoration (uniforme en z) :

I Bk(a)(Cz)\<Ce(*+e)l«l.

Autrement dit, B]fa) G (9/)(t/r)exp(^.

De plus si zse=(zi,,.., z„), -§^Bk(a)

Démonstration. Il suffit de reprendre la preuve du lemme 7.1 et de conclure

par le théorème de convergence dominée de Lebesgue.

7.3. Transformation de Laplace

7.3.1. Transformée de Laplace

Définition 4. Soit k > 0 et / g 0(Ur)txv^k\ où Ur est le voisinage
sectoriel introduit précédemment. On définit la transformée de Laplace de /
par:

Cf(x)= [ e-*f(OdÇt

où 7 est le chemin représenté sur la figure 2.

Figure 2

Remarquons tout de suite que l'hypothèse de croissance faite sur

/ G 0(Urfxp^ implique (en utilisant les mêmes arguments qu'à la sous-
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section précédente) l'analyticité de Cf dans l'ouvert Pk du plan complexe

des a, voisinage sectoriel de l'infini défini par

Pk := {x G C | 93(x) > k}

L'étude sur sa croissance à l'infini est l'objet du lemme suivant:

LEMME 7.3. Si f G 0(Urfx?{k) alors la fonction Cf appartie?it à Vespace

vectoriel ö{Pkf^{r).

Démonstration. Pour montrer que Cf est de type exponentiel dans l'ouvert

Pk, considérons un demi-plan fermé S contenu dans cet ouvert: pour e > 0

assez petit nous pouvons supposer que le secteur fermé S est inclus dans le

domaine des x tels que la condition

93(x) >(k + e)

soit satisfaite. En utilisant notre liberté de déformation du chemin 7 à l'aide
d'une homotopie -laissant invariantes les directions à l'infini nous pouvons
aussi supposer que 7 s'écrit comme la somme:

— du chemin compact orienté C(r -f p) consistant à parcourir le demi-cercle
situé dans le domaine 93(Ç) < 0, de rayon a + p, où p est un réel positif
que l'on peut prendre aussi petit que l'on veut;

— de la réunion de deux demi-droites orientées 7(r + p) et 7(r + p), demi-
droites horizontales dont la première est d'extrémité i(r + p) et la seconde

d'origine — /(r + p).

Considérons l'intégrale sur 7(r + p).

I dç e-*r+p)f+ /(r +
J^fir+p) J 0

dt.

Suivant notre hypothèse sur /, il existe une constante C > 0 telle que pour
tout t > 0, on ait :

|/(f + i(r+ p)) I < Ce(k+e'2){r+P) e"£f/2

de sorte que pour tout x G 5,

I e~x'f(t + i(r + e)) \<Ce(k+e/2){r+P)e~,/2

et par conséquent pour tout x G S.

e-*M)dÇ
y(r+p)

2Ce{k+e/7)(r+p)
< e(r+p)\x\
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L'intégrale sur 7(r + p) se traite de la même façon, avec une conclusion

identique. En ce qui concerne l'intégrale sur le chemin compact C(r + p),
il suffit de majorer le module de / par une constante (par compacité) pour
conclure.

7.3.2. Dépendance suivant un paramètre

La transformation de Laplace «à paramètre» ne pose pas de difficulté
particulière: avec les notations de la sous-section précédente énonçons le

Lemme 7.4. Si f G öD(Urf^{k) où D un ouvert de Cn, la fonction
Cf définit une fonction holomorphe dans l'ouvert P^xD ; de plus pour tout
demi-plan fermé S C Pk, pour tout compact K C D et pour tout e > 0, il
existe une constante C C(S> K,e) > 0 telle que pour tout x G S, on ait la

majoration (uniforme en z):

\Cf(x,z)\<Ce(r+^,

autrement dit: Cf G Od(Pk)txv("r)•

De plussi Z- (Ji Zn), -§r£(f) £(%:/)

Démonstration. Il suffit de reprendre la preuve du lemme 7.3 et de conclure

par le théorème de convergence dominée de Lebesgue.

7.3.3. La transformation de Laplace-Borel

Le lemme qui suit est une simple remarque.

LEMME 7.5. Si f G C>(C)exP, on a Cf 0.

Mais cela nous permet de définir sans ambiguïté la transformée de Laplace

CB(a) de la transformée de Borel d'un élément a G 0(P)exp^ : pour tout

k> 0,

CB(a) := CBk(a).

Par conséquent, CB(a) définit une fonction analytique dans l'ouvert P (faire
tendre k vers 0). Plus précisément:



LA SOMMATION DE RAMANUJAN 127

Théorème 2. Soit a G ö(F)exp(r). Alors

C(B(a)) a

dans Vouvert P.

Démonstration. Soit x G S où S est le secteur fermé de l'ouvert P

représenté sur la figure 3. D'après les définitions de L et B on a:

C(B{a))(x)= [ •«*«/>(*)<£

où B{a) (0 est défini par :

B(d)(0T /
Jd+

si £ est sur 7+, et par :

mi0 ~é^Jd

si £ est sur 7_, où les chemins d+ 7+ et 7_ sont représentés sur
la figure 3. On a donc:

C(B(a)){x)= [ e7.'-f a(y)dyd£+e~x^[J7+2i7r •/</+ A- 2i7T Jd_

: d+/

<
Cela donne en permutant l'ordre d'intégration:

r («„)) w - - e"~"s d(a<y)e'"'e«)^

Figure 3
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En intégrant £ —» e^~x) ^ le long de 7+ et de 7_, on obtient :

1 f e(y~x^ 1 f Jy~x) Co

C(B{a)) 0) - / a(y)<7y+—- / a(y)dy.
2itt Jd+ y-x 2itt Jd_ y-x

Si C# désigne le lacet représenté sur la figure 4, on a d'après la formule de

Cauchy:
1 f e(j~x)

a(x) -—~ / a(y)dy.
2i7T Jcr y~x

Figure 4

En faisant tendre R vers l'infini on voit que C(B(a)) (x) a(x) pour tout

x e s.

7.4. Le cas intégrable

Supposons que la fonction a appartienne à l'espace vectoriel ö(Vß)exp^

(r > 0) où Vß désigne l'ouvert

Vß {xC\{0} I < < ß}

avec 7t/2 < ß < n.
Reprenons les notations de la sous-section 7.2; en particulier Ur{0) désigne
le demi-plan

Ur(9) := R G C I m.(ei90 < -r}
En adaptant les résultats de 7.2 on voit que le représentant Bßa) de la

transformée de Borel de a se prolonge analytiquement :
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— sur l'ouvert
U+ := (J Ur(9)

ee[-ß,o]

en une fonction notée B^(a) G 0(U7+)exp(/c) ;

— sur l'ouvert

U7-= U ^(0
ee[0,ß]

en une fonction notée Bf(ci) G 0(U~)&xp^ (voir figure 5).

Figure 5

Faisons à présent l'hypothèse suivante:

Hypothèse 1. La fonction B^(a) (resp. Bf (a)) se prolonge analytique-

ment dans l'ouvert Uq (resp. Uf

Désignons alors par *[/^ le voisinage sectoriel de l'infini défini par
*U13 := Uq fi Uf. Une application du théorème de Cauchy montre alors

la proposition suivante.

PROPOSITION 7.1. Sous les hypothèses précédentes, la fonction a, appelée
le mineur de a, définie pour £ G par: a(Q B^(a)(Q — Bf(a)(Ç), ne

dépend pas de k et on a:

2(0 a— [ e'X^ a(x) d>x
>2itt Jt

où r est le chemin représenté sur la figure 6. De plus, a G ö(* £/^)exp(0).

Le fait que a appartienne à l'espace vectoriel 0(*£/^)exp(°) est une
conséquence directe des propriétés de croissance à l'infini de B^(a) et Bf(a)
en faisant tendre k vers zéro.
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PROPOSITION 7.2. Si la fonction a possède un développement
a(x) — Yln> 1 convergent à l'infini, alors la fonction a est entière et

a(0 — Y^n> 1 an •

Démonstration. Le développement ^2n>î est uniformément convergent

pour \x\ > R. En prenant pour contour T un cercle de centre 0 et de

rayon R' > R, on a :

2(0 -— [ ex^ an — dx —an [ e~x^ — dx,2inJr ^ V 2Î7t^ n Jt xn

ce qui fournit l'expression désirée par un simple calcul de résidus.

Ajoutons à présent l'hypothèse suivante:

HYPOTHÈSE 2. L'origine est une singularité intégrable de B{a).

Nous pouvons écrire sous ces conditions l'égalité:

ç /»+00

e~*B(a)(OdÇ= e~*â(OdÇ,
J'y J 0

de sorte que le résultat qui suit est un simple corollaire du théorème 2.
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COROLLAIRE 7.1. Sous les hypothèses précédentes, on a:

pOO

a(x)= / e~*Ô(0 dÇ
J0

pour tout x dans l'ouvert Vß, où la fonction analytique a désigne le mineur

de a.

7.5. Quelques propriétés

La proposition suivante est une conséquence immédiate du théorème 2.

Proposition 7.3. L'opérateurde dérivation '<) se transforme par B en

l'opérateur de multiplication par —f,

B
d

Dérivation — ^ multiplication par (-<0,
ox

C

tandis que l'opérateur de translation Eu de vecteur u > 0 se transforme par
B en l'opérateur de multiplication par e~^f

B

Translation Ew multiplication par (e~.
C
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