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LA SOMMATION DE RAMANUJAN

par B. CANDELPERGHER, M. A. COPPO et E. DELABAERE

RESUME. 11 s’agit de donner une présentation rigoureuse de la méthode de
sommation de Ramanujan et d’étudier les propri€tés de cette sommation.

1. INTRODUCTION

Au début du chapitre VIII de ses Notebooks (cf. [B1]), Ramanujan
introduit un procédé de sommation des séries basé sur la formule sommatoire
d’Euler-MacLaurin. Plus précisément, Ramanujan se sert de la formule de
développement des sommes partielles:

a(1)+a(2)+...—|—a(x—1):C+/a(x)dx+2%ak_la(x)
k>1

pour associer a la série > -, a(n) la constante C qu’il appelle la constante de
la série. Ainsi, par exemple, la constante de la série harmonique 2”21 % est la
constante d’Euler. Ramanujan observe que la constante C «a de mystérieuses
relations avec la série », et qu’elle est « comme le centre de gravité d’un corps »,
aussi n’hésite-t-il pas a la substituer a la série. Le procédé de Ramanujan,
implicitement employé par Euler pour sommer la série harmonique (cf. [E]),
peut étre justifié par des calculs formels (cf. §2).

Dans [H], Hardy étudie ce procédé a I'aide de la formule d’Euler-
MacLaurin, pour des séries liées a la fonction (, en laissant subsister une
certaine ambiguité sur la borne de I’intégrale.

Dans cet article, on donne une présentation rigoureuse du procédé de
Ramanujan. Pour cela, on introduit un cadre analytique cohérent pour assurer

Mots-clés : Séries divergentes. Formule sommatoire d’Euler-MacLaurin. Equation aux diffé-
rences. Transformation de Laplace-Borel. Fonctions zéta.
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qu’une série Zn>1 a(n) admet une et une seule somme de Ramanujan, celle-ci
étant définie comme la valeur en 1 de 'unique solution de 1’équation aux
différences R(x)—R(x+1) = a(x) vérifiant la condition: flz R(t)dt = 0 (cf. §3).
Ceci permet de développer dans ce cadre les propriétés de cette sommation
(cf. §4) et d’établir un lien avec I’interpolation de Newton (cf. §6).

II convient de noter que le procédé de Ramanujan n’est pas un procédé
de sommation au sens usuel: si la série ) ., a(n) converge au sens habituel,
sa somme de Cauchy (c’est-a-dire la limite de la suite des sommes partielles
de la série) ne coincide pas en général avec la somme de la série au sens de
Ramanujan (cf. §3.1, exemple 2). Les liens existant entre les deux procédés
de sommation sont explicités au paragraphe 3.2.

2. DEVELOPPEMENTS D’EULER-MACLAURIN FORMELS

Soit a une fonction analytique dans le demi-plan P = {x | fA(x) > 0}.
Dans cette partie, on considere la série

Za(n)za(l)—}—a@)—l—...

n>1

comme une expression formelle. Soit R(x) le «reste de la série a Iordre x »
défini formellement par:

R(x) = Za(ner) =ax)+alx+1)+....
n>0
Par définition de R, on a:
> a(m) = R(1),
n>1

et la «fonction» R est solution formelle de 1’équation aux différences:
Rx) —R(x+ 1) =ax).

Soit E D'opérateur de translation défini par Ef(x) = f(x + 1), que ’on peut
encore écrire grice i la formule de Taylor: E = ¢2, 0 := 0, désignant
I’opérateur de dérivation ordinaire. Si [ désigne l'opérateur d’identité,
’équation aux différences précédente peut s’écrire & I’aide des opérateurs
E et [ sous la forme:

({—E)R=a.

En inversant, on obtient:
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ce qui peut encore s’écrire:

R=-—
0

Le développement de Taylor formel:

0 B
68—1:1+Z—];!_8

k>1

permet alors d’obtenir ce que nous appellerons le développement formel de R :
Bi
a1 B Bk k-1
R(x) = =07 'a(x) Z o 0" a(x) .
k>1
Par définition de R, on a:
> am) =a(l) +a)+ - +alx— 1)+ RW®),
n>1
et en remplacant R(x) par son développement formel, il vient 1’égalité :
B
Za(n) =al)+a@)+ - +alx—1) — 0~ la(x) — Z 7{—’:— O lax).
n>1 k>1

Cette derniere expression justifie formellement le procédé de Ramanujan.
Le choix du développement formel:

R(x) = — / a(t) dt — Z % o a(x)
L >1 0

consiste & prendre pour O 'a la primitive de a qui s’annule en 1. Ceci
revient a imposer a la solution formelle R de 1’équation aux différences la

condition : ,
/ R(t)dt =0.
1

En effet, posons A(x) = flv a(t)dt. En écrivant

I
A=I—-E)——A,
I—E

et en procédant comme précédemment, il vient:

x—H B
A(x) = / AWydr+> k—’,‘ [0F AT
x k>1
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2 2
A1) =0= / A(f) dt + Z % [0 2a)? = —/ R(t)dt .
1 : 1

k>1

La condition précédente suffit pour déterminer la solution formelle de
I’équation aux différences, elle ne suffit pas pour avoir I'unicité d’une solution
analytique car elle laisse I’arbitraire de lui ajouter une solution périodique non
constante telle que 1’intégrale de 1 a 2 soit nulle. Pour résoudre ce probleme
nous allons faire des hypotheéses supplémentaires sur la fonction a.

3. SOMMATION DE RAMANUJAN
ET TRANSFORMATION DE LAPLACE-BOREL

3.1. SOMMATION DE RAMANUJAN

THEOREME 1. Soit x — a(x) une fonction analytique de type exponentiel
a < 27 dans le demi-plan P = {x | R(x) > 0}. L’équation aux différences :
R(x) —R(x+ 1) = alx)

admet une unique solution analytique de type exponentiel o < 2w dans P,
notée R,, vérifiant la condition :

2
/ R, (t)dt=0.
1

Démonstration. a) Existence. En prenant la transformée de Borel (cf. ap-
pendice) de I’équation aux différences, on obtient:

B(R) (&) — e *BR) (&) = B(a) (€) .

On en déduit que:

BR) (§) = B(a) (§) -

1 —e ¢

Il suffit alors de prendre la transformée de Laplace de & — T—i——é B(a) (&)
pour obtenir une solution de 1’équation aux différences. Celle-ci est analytique
de type exponentiel o (o < 27) dans P.

b) Unicité. Il s’agit de montrer que si f de type exponentiel o < 27 est
solution de 1’équation f(x) —f(x+ 1) = 0, alors f est constante. Il est clair
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que la condition d’analyticité de f dans le demi-plan P et la périodicité de f
impliquent que f est entiere. La périodicité de f permet d’écrire

fx) = g(e®™),

oi la fonction g est la fonction analytique dans C — {0} définie par
9(2) = f(5=1n(z)). Le développement de Laurent de g en 0 se traduit

par le développement de Fourier de f :
f()C) _ Z Cne'.Zimzx’
neZl

ou les coeffficients ¢, sont donnés par les formules intégrales:

rl'l

1 /[? 1 .
ch=— | f <t+ — ln(r)> e 2™ gt pour tout 7 > 0.
1 2im

La condition f de type exponentiel o < 27 permet de majorer les |c,| :

1 (@46 [1n(r o+e€
— Ce = MO avec ( )
i 27

I1 suffit de faire tendre r vers O et vers +oo pour obtenir ¢, = 0 pour

tout n # 0. La condition de nullité de I’intégrale sur [1,2] implique alors
Co — 0. D

<1.

€] %

REMARQUE 1. D’apres la démonstration du théoreme précédent, la
fonction R, peut s’écrire:

: 1
&m:/fﬁQ_rQB@@&+@,
i

ou la constante Cyp dépend du représentant choisi pour B(a) (qui n’est définie
qu’a I’addition prés d’une fonction analytique dans C de type exponentiel).
D’apres les propriétés de la transformation de Borel, la fonction

mﬁ—/éﬁlam@mg
Y

est une primitive de a. On peut donc écrire :

_ * _xt 1 1
Ra(x) = Aamm+Le (L%%—E-B@@M£+Q.

Cette derniere intégrale sur v ne dépend plus du choix de B(a). En écrivant:

/amm:/?ﬂﬂiamgwﬁi/fﬂi&mﬁma
1 ¥ é % 5
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on vérifie facilement que la condition de nullit€é sur I’intégrale de R, sur
[1,2] se traduit par C; = 0. Finalement on a:

Ra(x) = — / Ca(r)di+ / e—«*f< L 1) Ba) (€) d€ .
1 ~ 1 —e¢ é

Si I’on suppose en outre que le mineur a existe (cf. appendice §7.4), on peut
écrire la fonction R, sous la forme d’une intégrale sur [0, oo :

R()“—/x ) di /m g (1 1)”)d
al\X) = la() + o e <1—€—§—6 a(f €

En particulier, on a alors:
R,(1) /+x % 1 : a(&) dé
a = e - — = a .
0 l—e=t ¢ .

DEFINITION 1. Soit x — a(x) une fonction analytique de type expo-
nentiel a < 7w dans le demi-plan P = {x | fA(x) > 0}. On appelle somme de
Ramanujan de la série ) ., a(n) et on note ZZ; a(n) le nombre R,(1).

REMARQUE 2.  On pourrait définir, pour une fonction a analytique de
type exponentiel « < 27 dans le demi-plan P = {x | R(x) > 0}, la somme
de Ramanujan de la série comme la valeur en 1 de la fonction R, :

R

Za(n) = R,(1).

n>1

Cependant pour « > 7 ce procédé de sommation ne vérifierait pas:

R R
a(n) = b(n) pour tout entier n > 1 1mplique Z a(n) = Z b(n),
n>1 n>1

comme le montre I’exemple suivant (cf. exemple 5):

R 1 R
in(nr) = — al 0=0.
Z sin(n) - alors que Z

n>1 n>1

En fait, pour a et b de type exponentiel o < 7, la condition: a(n) = b(n)
pour tout entier n > 1 implique a = b d’apres le théoreme d’unicité de
I’interpolation de Carlson (cf. [Bo] p. 153).
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EXEMPLE 1. Soit a(x) = % On a a(§) = 1. D’apres la remarque 1, il
vient :

+oo _at 1 1 2
Ra(x) - —IH(X) +/(; € 1 — 6_5 - E 5 — —w(x)7

ou I’on utilise la notation habituelle ) = 1_1“__ En particulier:

R (1) = e 1 l)df—ﬂ
a()—/o € (1—6—5——5 =7,

ou v désigne la constante d’Euler. D’apreés la définition de la somme de
Ramanujan, il vient:

EXEMPLE 2. La fonction ¢ d’Hurwitz (cf. [C]), définie pour R(x) > 0
et R(z) > 1 par

o0

1
((x,z2) = Z TEE (somme de Cauchy),
n=>0

vérifie I’équation aux différences:

(x,2) —Cx+1,2) = —

2 Ool 1
3 d - _dt: ¢
/1 o) /1 1t z—1

ainsi que 1’égalité

Pour 1
a(x) = =
on a donc: {
Ra(x) = ((x,2) — 1
On en déduit pour R(z) > 1, la somme de Ramanujan :
R
1 1
> =@ —
N —1’
n>1

avec

C@=Cla=3 .
n=1
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Par ailleurs, on a a(§) = & Doul expression de la somme de Ramanujan
sous forme d’intégrale :

R

R T At 1 1
n>1ﬁzaﬁ5/0 ’ <1—65 5)6 &

REMARQUE 3. Le choix de la normalisation ff R,(t)dt = 0 permet
d’écrire :

R R
: 1 .1
lim E — = lim — =7
z—1Tt n* z—1+ nt
n>1 n>1

EXEMPLE 3. Soit k un entier > 0. La fonction R: x — —B’;:;‘ix) , ou Bi(x)

désigne le k-ieme polyndme de Bernoulli, vérifie I’équation aux différences:

R(x) — R(x+ 1) = x*,

2 1
RX)dx = —— .
/1 CEdE k+1

ainsi que 1’égalité:

k

Pour a(x) = x*, on a donc:

1 — Big1(x)
k+ 1

On en déduit les sommes de Ramanujan:

R
1-B
n>1 T

R, (x) =

R
>i-1
n>1

EXEMPLE 4. La fonction R: x — —1n(F(x)) vérifie 1’équation aux

différences :
R(x) ~ R(x+1) = In(v),

ainsi que 1’égalité

2
/ In(T(n)) dt = —1 + %ln(%r).
1
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Pour a(x) = In(x), on a donc:
R,(x) = —In(T(x) — 1+ %m(zw).

On en déduit la somme de Ramanujan:

Z In(n) = -1+ = 1n(27r)

n>1

EXEMPLE 5. Soit « tel que 0 < || <, on a:

ax eoz(x—i—l) — eax(l . ea),

2 a
/ eo‘xdx:(ea—l)f—-
1 8%

Il en résulte que pour a(x) = e**, on a:

e

ox o
4

e
Rolx) = 1—ea+g‘

Par conséquent :

R
1 1
Z 1 — e~ Q

n>1

En particulier, en prenant o = if, et en s€parant partie réelle et imaginaire, il
vient:

Zsin( 1) c tt cost
nt) = — cot — — 1
2 2
n>1
R .
1 sin ¢
Zcos(nt) =-3 + —
n>1 t

PROPOSITION 3.1. Pour $R(x) > 0, on définit Y% a(n +x) par:

R R
Za(n—l—x) = Za(n+x— 1).
n>0 n>1

On a la relation :

R

R,(x) = Za(n +x) — / a(t)dr.
n>0 1
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Démonstration. On considere la fonction b(y) = a(y +x—1). On a:

2 x+1
Rb(y):Ra(y+x—1)—/ Ra(t+x~l)dt:Ra(y+x—l)~/ R,(t)dr .
1

X

D’ou
R

x+1
Ry(1) = a(n+x—1) = Ry(x) — / R, (1) dt.

n>1

Or L "' R.(t)dt = —a(x), et le résultat en découle.  []

dx Jx

EXEMPLE 6.

SR YA N
g—nﬂ"“(x)“w(’”“/o e (1_6_5—5 .

3.2. LIENS AVEC LA SOMMATION DE CAUCHY

Dans ce paragraphe, a désigne une fonction analytique de type exponentiel
a < m dans le demi-plan P = {x | RR(x) > 0}.

PROPOSITION 3.2. Si R,(x) tend vers une limite finie quand x — oo, alors
la série anl a(n) converge au sens de Cauchy, et en notant Z:O:l a(n) sa
somme de Cauchy, on a la relation:

R o0 N
> atm) =" a(m) - Jim a(r)dt .
n>1 n=1 el

Démonstration. Soit N un entier naturel > 1. En sommant pour -
n=1,...,N—1 I"équation:

Ry(n) — Ry(n+ 1) = a(n),

il vient:
R()—R,N)=a(l)+---+alN —1).
D’ou:
R
Za(n) —a(l)4---+aN — 1) + R,(N).
n>1

En faisant tendre N vers I’'infini, on obtient la relation :
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R e}

Z a(n) = Z a(n) + NILH;O R,(N).

n>1 n=1

En intégrant entre n et n+ 1 1’équation aux différences
Ry(x) = Ro(x + 1) = al),

puis en sommant pour n = 1,...,N — 1, il vient:

N+1 N
— / R, (t)dt = / a(t) drt.
N 1

En faisant tendre N vers l'infini, on obtient la relation:

N
— lim R,(N) = lim / a(t)dt . O
—> OO 1

N—o0o

REMARQUE 4. Si R,(x)+ f f a(t) dt tend vers zéro quand x — +o0, alors
la série ) >1 (a(n) f ot a(t) dz‘) converge au sens de Cauchy, et on a:

R o0 n+1
Za(n)zz <a(n) / a(z‘)a’t) .

n>1 n=1 n

EXEMPLE 7.

La proposition 3.2 admet une sorte de réciproque :

PROPOSITION 3.3.  Si la série ) >oan+x) converge (au sens de Cauchy)
normalement sur tout compact de P = {x | R(x) > 0} er y définit une fonction
analytiqgue de type exponentlel a < m alors:

n=

R,(x) = a(n + x) — / Z a(n + x)dx .
0

n=0

Si on suppose en outre que f | a(t)dt converge alors.

oo

R, (x) = Z a(n + x) — / a(t)dt.
1

n=0
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En particulier, on a la relation :

R oo

Za(n) = Za(n) — /OO a(t)dt.

n>1 n=1 1

P i . o0 2 (o]
Démonstration. La fonction x — Y ° a(n +x) — [ >~ a(n + x)dx
vérifie clairement les trois conditions qui caractérisent la fonction R,. De plus,
on a:

00
1

2 o ) o aptl
/ Za(ner)dx:Z/ a(n—l—x)dx:Z/ a(t)dt:/ aidr. [
I =0 n=0 1 1 /1

EXEMPLE 8. En appliquant la proposition précédente a la fonction
=2 avec y > 0, il vient la relation :

eV —1
R o0 o0
ny ny 1 t
= — — dt.

n>1 n=1

X =

4. PROPRIETES DE LA SOMMATION

4.1. LINEARITE

Si a et b sont deux fonctions analytiques de type exponentiel o, < 7 et
ap < 7 respectivement dans le demi-plan P = {x | R(x) > 0}, alors pour
tout A\, u dans C, Aa+ pb est une fonction analytique de type exponentiel
(majoré par) a := Max(ay,, ap) < 7 dans le demi-plan P et on a:

R/\a—Hw = ARq + LRy .

Il en résulte que I’application qui a une série »_ a(n) associe sa somme de
Ramanujan est C-linéaire.

4.2. TRANSLATION

Si a est une fonction analytique de type exponentiel v < 7 dans le demi-
plan P, alors pour tout entier N > 1 la translatée E"(a) est une fonction
analytique de type exponentiel o« < 7 dans le demi-plan P et on a la
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PROPOSITION 4.1. Pour tout entier N > 1,

R

R N
> a(m) =a(l) + - +alN — 1)+Za(n+N)—/ a(t)dt.
1 ,

n>1 n>0

Démonstration. En sommant pour n =1,...,N — 1 I'équation:
Ra(n) — Ry(n + 1) = a(n),

il vient:
R

Za(n) —a()+ -+ a — 1) + R,(N).

n>1

Il suffit alors (cf. proposition 3.1) de remplacer R,(N) par Zfzo a(n+N) —
le a(t)dt. [

EXEMPLE 9. Pour N > 2, on a:

L 1 L
=N 14— I+ Y ——-

4.3. DERIVATION

Si a est une fonction analytique de type exponentiel v < 7 dans le demi-
plan P, alors sa dérivée Oa est une fonction analytique de type exponentiel
o < 7 dans le demi-plan P. De plus, en dérivant I’équation aux différences,
on obtient la relation:

Roq = O(R,) +a(1),
ol le terme a(1) provient du fait que [ A(R,)() df = Rq(2) — Ro(1) = —a(1).

Plus généralement, on montre par récurrence sur n que

Rong = O™M(R,) + 0" 1a(1).

4.4. SOMMATION PAR PARTIES

Si a et b sont deux fonctions analytiques de type exponentiel respective-
ment o, < ™ et ap < m dans le demi-plan P = {x | R(x) > 0}, alors le
produit ab est analytique de type exponentiel o < o, 4 oy, dans le demi-plan
P. Soient alors u et v deux fonctions analytiques de type exponentiel respec-
tivement o, < 7w et o, < 7 dans le demi-plan P avec o+, <7 . D’apres
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les propriétés de linéarité et de translation vues aux paragraphes précédents,
on a:

R

> (u() — u(n + 1)) v(n)

n>1

R 2
=Y un+1) (v(a+ 1) — o) + u(D (1) - / W) v(0) dt.
1

n>1

Cette formule est pour la sommation de Ramanujan I’analogue de la classique
formule de sommation par parties d’Abel. En particulier en remplacant u par
R,, on obtient:

R

R 2
Za(n) v(n) = ZRa(n + 1) (v(n +1)— U(n)) + R,(1)v(l) — / R,(t)v(t) dt.
1

n>1 n>1

En remplagant a présent v par R, dans la formule précédente, on obtient
alors:

R R
> a(m) Re(n) + > b(n) Ra(n)
n>1 n>1

— Z a(n) b(n) + }: a(n) Z b(n) — / Ru(1) Ry(1) dt,

n>1 n>1 n>1

ce qui peut encore s’écrire:

Z a(n) Z b(k) + Z b(n) Z a(k)

(1) n>1 n>1
- Z a(n) b(n) + Z a(n) Z b(n) + / R, (D) Ry(D)] dt .
n>1 n>1 n>1

Cette derniere formule admet deux cas particuliers intéressants :

PROPOSITION 4.2.

Z a(n) Z da(k) + Z (961(11) Z a(k)

n>1 n>1

R
= Z a(n) da(n) + Z a(n) Z Oa(n) + —;—cz(l)2 —a(l) Z a(n) .

n>1 n>1 n>1 .n>1
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Démonstration. En appliquant la formule (1) avec b(x) = Ja(x), et en
utilisant la propriété de dérivation vue au §4.3, il vient:

. : 1 | ®
/1 R.(t) Rpu(t) dt = /1 Ra(t)c?Ra(t)dt:E[Rg]f:Ea(l)z—a(l)z an). [

n>1

PROPOSITION 4.3.

R R
Z Z a(k) = Z a(n) — Z na(n) — Z 0~ tan),
n>1 n>1 n>1 n>1

avec 0~ la(x) = flx a(r) dt.

Démonstration. En appliquant la formule (1) avec b(x) = 1, on obtient:

2 R R
Z na(n) + Z Z a(k) + / (R, () dt = %Z a(n)+ > a(n).
n>1 n>1 ! n>1 n>1

Posons A(x) = f}x a(t)dr. On a OR4 = R, de sorte que (en intégrant par
parties)

2
/ IR, (1) dt = Ry(1).
1

La proposition en résulte. [

EXEMPLE 10. (Sommes harmoniques: cf. [B1] pp. 251-253, [AV], [BB]).

R R R 1 1
== 1= I = 27+5—— In(27),
n>] n>1 a1

R
H,
227_@)44—7 +/ VA0 dt,

R

D Hu=

n>1

hJ]uo
S M~

n>1
= H,
2. +Z Zkz =((3) - 1+,
nZl n>1

dvec .

=

n 1
- Z_.
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REMARQUE 5. D’apres la formule:

Hy
b
n2

1
|
/ iy () dt = ((2)~ —
0 n
ou Li, désigne le dilogarithme (cf. [L] p. 20), on obtient en sommant:
R

A 1 , H,
/0 (1 — + ln(t)>le(f)df:7C(2)—Z§'

n>1

Il en découle, d’apres ’exemple précédent, la relation:

RNl L 1
;ZZ:EZCG)_H/O (1_[+1n(t))le(I)dt.

4.5. SEPARATION DES TERMES PAIRS ET IMPAIRS

PROPOSITION 4.4. Si a est une fonction analytique de type exponentiel
a < 7/2 dans le demi-plan {x | R(x) > 0}, on a:

R R R 2
Z a(2n) + Z a2n + 1) = Z a(n) — a(l) — / R,(20)dt .
n>1 n>1 n>1 !

Démonstration. D’apres ’équation aux différences vérifiée par R,, on
peut écrire :
R,(2x) — R,2x + 1) = a(2x),
R/2x+1) —R,(2x+ 1) = ax+1).
En ajoutant, on obtient:
Ra(2x) = Ra(2(x + 1)) = a(2x) + ax + 1).

On a donc:
T

2
> (a@n) +a2n + 1)) = Ru(2) — / R.(2t)dt .
1

n>1
Par la propriété de linéarité, il vient:

R R 2
> a@n) + D a@n+1) = Ra(2) - / R,(20)dt
n>1 n>1 1

et de plus, R,(2) = R,(1) —a(1). [
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EXEMPLE 11.
R
1 1 1
}: . = —(y+In@) -1+ 5 In@3).
n>1 27’l T 1 2 2

4.6. UTILISATIONS DE DEVELOPPEMENTS EN SERIE ENTIERE

PROPOSITION 4.5. Si a est la fonction entiere de type exponentiel T <T
définie par:

alx) = Z %v‘ avec o] < Ccrr,

k>0
alors :
R oC 3 R 1 1 oo -
k k 2k—1
an:Z—Zn: atdt——ozo—z B .
Z ) k! _/0 ® 2 (2k)!
n>1 k=0 n>1 k=1
Démonstration. Montrons que R, = ) ;5o 7 Re. On sait que
R« = % Considérons la fonction:

= 87 674
~ By .
U G n G o

En utilisant la fonction génératrice

on constate que pour 7 < r < 7, il existe une constante C, telle que pour
tout x, on ait ’

|Bep1(0)] < Cor*e ™ (k4 1))

Ceci permet de vérifier que la fonction:

= 047 (675
x - B,
~ ; G+l Gt o™

vérifie les trois conditions qui caractérisent R,.  []
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EXEMPLE 12.  Pour 0 <y < 7, le développement en série entiere de la
fonction x — S22 .

sin —1)
Cy) Z (=D elerss
X = (2k + 1)!

permet d’écrire la somme de Ramanujan:

L sin(ny) / Y sin(x) 1
E — dx — — y .
n 0o X 2

n>1

REMARQUE 6. La série précédente converge également au sens de Cauchy,
et la relation de la proposition 3.3 s’écrit:

fo's) . R . . .
sin(ny) sin(ny) / °° sin(x) / ° sin(x) 1 T—y
Z n Z n i v PR 0 x Y 2

n=1 n>1

REMARQUE 7. La proposition précédente ne s’applique pas si 1’on ne

suppose pas la fonction a entiere. Par exemple, si on 1’appliquait a la fonction
2g+1

x+— 5= avec q entier > 0 et y > 0, le développement en série entiére :

2q XY ﬁzq k
x exy_l-;;()k!x Ky (x| < 2m)

permettrait d’écrire la somme de Ramanujan:

n2q+1y 1 /y 291 qu+] N qu+2
0

= dt .
e~ —1  y2tl el — 1 +2q+1 4q+4y,

n>1

En fait, cette formule n’est pas valable car d’apres I’exemple 8 (cf. §3.2), on
a la relation:

R
ev —1 e —1 yatl [ e —1 "

n>1 n=1

ce qui donnerait:

2ty ] /y 2q+1 i Boys1 N By
oy —1 et Jo 17 g1 ag 4

n=1
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Or, cette relation est fausse, comme on le voit en faisant tendre y vers I'infini.
Remarquons que pour y = 27 et g = 2p, la relation précédente donne:

B 1 L
s {7'_25 sip=0

Buapta
n=1 4p+2

alors que I’on a (cf. [B2] p. 256 et p. 262):
O ptl _{ %—gll; sip=20

827‘_” —1

sip>1

e27rn _
n=1

Bupio

St d sip>1

PROPOSITION 4.6.  Soit f(x) = >~ cxX* une série entiére de rayon de

convergence p > 1. On suppose que la fonction x v f (%) est analytique de
type exponentiel o < w dans le demi-plan P, alors:

R oo
Zf(l/n) ZCkZ —0174‘;@(_}_1 (g(k—}—l)—%) .

n>1 n>1

Démonstration. Posons a(x) = f (%) . On a le développement convergent

1
a) =) o

n>1

a ’infini:

Le mineur de a est donc la fonction entiere de type exponentiel 1/p < 1:

N gk—l
ag)=> T

k>1

Par définition de la somme de Ramanujan, on a:

R

+co i 1 1
Za<n>:/0 e (1_e~5~—> as)ds
n>1
+o0 o
:/0 ‘ <l—e5 )Zkk—l)‘

k>1

L’hypothese p > 1 permet de majorer les |cg| et ainsi de permuter les
signes [ et > dans la formule précédente. Il vient alors:

_ 1 k—1
Za(n)—ch/ £<1~€§_E> (]f_l)!d@ []

n>1
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EXEMPLE 13. Le développement en série entiere en 0 de la fonction

X+ xe ¥
- __ Z (—1)k ko k1
- K-
k>0

permet d’écrire la somme de Ramanujan:

Z—e

(_ ) (C(k+1)—l>
n>1

4.7. DEPENDANCE ANALYTIQUE PAR RAPPORT A UN PARAMETRE

PROPOSITION 4.7. Soit D un ouvert de C. Soit a(z,x) analytique dans
D x P. On suppose que pour tout compact K C D, il existe des constantes
Ck et 7x < m telles que pour tout x € P avec |x| > 1 et tout z € K on ait
la(z, x)| < Cxe™ . Alors 7 +— 23;1 a(z,n) est analytique dans D. De plus,
on a:

R R
9, Z a(z,n) | = Z d,a(z,n).
n>1 n>1

Démonstration. On sait (cf. appendice) qu’on peut choisir un représentant
de la transformée de Borel de a tel que pour tout z € K C D (ou K est
un compact quelconque), on ait |B(a)(z,x)] < Cekl?l avec 0 < k < 1. Soit
Rz, 1) = [, et (== — %) B(a) (£)dé. Cette intégrale dépend analytique-
ment du parametre z, la fonction a intégrer €tant majorée uniformément en

z € K par une fonction intégrable.  []

COROLLAIRE 4.1. La fonction z — ZnR>1 % est une fonction entiere. Pour
tout z€ C— {1}, on a:

R
1 1
> =@ —
nZln
R
In(n) 1
; = =@+ —

. . . R .
Démonstration. Le fait que z — > ni est analytique dans C est une
conséquence immédiate de la proposition précédente. La premiere égalité étant
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vérifiée pour P(z) > 1, par prolongement analytique elle est donc vraie pour
tout z € C — {1}. La seconde égalité s’obtient par dérivation par rapport
az. O

REMARQUE 8. Les formules précédentes restent valables pour z = 1
en remplacant les membres de droite par leurs limites en 1, et on a le
développement (cf. [B1] p. 164):

R B k
le: Z( )(—l)kzln(:)‘

n>1 n>1

5. EXEMPLES D’UTILISATION

5.1. DEVELOPPEMENT EN SERIE DE LA FONCTION 1)

La fonction v vérifie I’équation :

1
¢(z+1):¢(z)+—z-'

Par ailleurs, d’aprés I’exemple 6 (cf. §3.1), on a pour $i(z) > —1:
R

w(l+z):ln(l+z)—z :

n+z'

Supposons |z| < 1 et posons f(x) = on a

1+xz
1 1
- Z f <Z> .
n>1
Le développement en série entiere en O de la fonction f :

_Z( 1)tk k

R

k>1
de rayon de convergence p = , ;> 1, permet d’écrire la somme de Ramanujan
de cette série sous la forme:
LA
=y + D2 (Gt + 1) — =
ZHZ Y ,;( K <<(+> )

On en déduit le développement de 1) :

1
Y@= - =y =) D

k>2
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5.2. CALCUL DE ZZ; n*? In(n)

PROPOSITION 5.1.  Si q désigne un entier naturel > 1, alors:

R

% . 1 B 1
;n ') = ~ 5= ~ Gy B ),

avec

i
(Bag+1,v) :/0 Boy1(x) (x) dx.

Démonstration. On commence par montrer le

LEMME 5.1. Si a est telle que a(0) = 0a(0) = --- = 8%~ 1a(0) = 0,
alors
R 1 1 1
- | a®dt+—— | B Ripesi ,(x) dx.
;aw /O ) (2q+1)!/0 294100 Rgaare1,(x) dx

Démonstration. Soit A(x) = f(;c a(t)dt. On applique la formule d’Euler-
MacLaurin avec reste intégral sur [0, 1] a la fonction R4. Il vient:

1

1 1
aanA} eE / By y1(x) O R4(x) dx .
0 - JO

OR4(0) + ORa(1) i [Bz,l

2 2n!
n>1

Comme [0?"R4]3 = 0 pour tout n < g, on a:

ORA(0) + ORa(1) 1
2 (g + 1)

]
/ Boy1(x) %12 Ry (x) dx .-
Jo

En utilisant la propriété Rgy = 0"Ry + 0" 'f(1), on obtient:

qu_H ()C) R324+1a()€) dx . D

1 1 1
R,(1) :/0 a(t)dt + —(2q+ D1 /0

On applique le lemme a la fonction a(x) = x%4 In(x), cette fonction vérifie

1
_ 1 2g+1 _
/0 a(t)dt = o7 T 17 et 09 alx) = L]
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REMARQUE 9. D’aprés le corollaire 4.1 (cf. §4.7), on a aussi:

R

! :
D In(n) = = G — (200

n>1

En dérivant I’équation fonctionnelle de la fonction ( :
—1 . (T2
((z) =2@2n) " T'(1 —2)¢(1 —z)sin (—2—> s
on obtient pour g entier > 1 I’égalité (cf. [B1] pp. 273-276):

R
2 o 1 el @ Q9!
Z n~In(n) = 20+ 17 + (=17 2my4 (Rg+1).

n>1
De la proposition précédente, on déduit alors I’égalite :

(— 1) (29)!
(Bagy1,%) = —— (2g+ 1) 2y

C2qg+1).

REMARQUE 10. Pour |x| < 1, on a le développement:

ot =~ + 3 (@R

k>1

Posons:

= =5 7= C@k+ D,

k>1

D’apres le développement de ¢ vu au paragraphe précédent, on a la
décomposition :

wm:ﬂ@-%ummy

La fonction x — cot(7x) est une fonction impaire par rapport au point % De
la formule de réflexion:

W(l — x) = P(x) + 7 cot(mx) ,

on déduit que la fonction f est une fonction paire par rapport au point % La
fonction x — By,41(x) étant impaire par rapport au point 1, il résulte alors
de la décomposition de 1 précédente les égalités:

.
(Bog+1,%) = —§<qu+1,00t(7fx)> et (Byg41,f) =0,
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ce qui se traduit par les deux systémes infinis d’équations :

D C@R(*T Bogyr ) =1y + (‘—)(2 +1) ((2 i

k>1

(2g+ 1),

> CQk+ 1), By ) = — 1y,

k>1

avec r, = <2 ,Bogt1) .

5.3. UNE SOLUTION DE L’EQUATION DE LA CHALEUR

s : R s © . A ,
En dérivant sous le signe > ', on vérifie aisément que la fonction

R

1 242
u(t,x,y) = e Fntn
5:5,) Z n+t
n>1
est solution de 1’équation de la chaleur:
aﬂ/l = 82 u —|— 82

wH
D’apres le noyau de I’équation de la chaleur, on en déduit que
1 z _-r2+,v2
u(1,0,0) = — e+ u0,x,y)dxdy,
4 R

c’est-a-dire, apres passage en coordonnées polaires:

1 Oo—u 1—
\;Hl:/o S e du

Or, d’apres ’exemple 13 (cf. §4.6), on sait que:

k

s 1 & > u
@Zﬁe +Z( 1yt <g<k+1)——> ok

et d’autre part:

=

—1~1n(2)+z

n>1

On en déduit 1’identité :

ln(2)—1—/ —“Z< l)k<(k+1)——>—du

qui traduit le fait que la série ZkZI(—l)k (¢(k+ 1) — 1) est Borel-sommable
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B

SOy (ak . %) — @) -1,

k>1

ot 5°F désigne la somme de Borel de la série.

6. INTERPOLATION DE NEWTON ET SOMMATION DE RAMANUJAN

Etant donnée une suite (@n)n>1, 1l est trés facile, par I'intermédiaire
des séries de Newton, de construire formellement une fonction a telle que
a(n) = a, pour tout n > 1. On a la formule d’interpolation de Newton :

A'a(1)
n!

a(x) = a(l)+ ) x—Dx—=2)...(x—n).

n>1
Cette formule fait intervenir le calcul des différences n-iémes:
n
—k ok
A'a(1) =) (~1)"* Clagy .
k=0

Du développement de Newton de a :

Ana'(l) x—Dx—2)...(x —n),

n

a(x) = a(l) + Z

n>1

on déduit formellement 1’égalité :

>t =aY 1+ TS 1y ge-2). - m.

n:
k>1 k>1 n>1 k>1

Calculons a présent Z,Z;l (k — 1)k —2)...(k — n). De I’équation aux
différences :

x=—D@x=2)..x—=n—=1D—x(x—1)...(x—n) = —(n+DE—-1...(x—n),

il découle que:

Ri—1y(x=2)...omn) = — =—D&x=2)...c—n—D+1Ly /(n+1),

n—+1
avec:

1
In+1:/ x(x—=1)...(x — n)dx.
0

On a donc:
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= I
d k=1 k—2)...(k—n) =",

o1 n—+1

et
R

: 1
21:11:/0 xdx:z-

>1

De plus, les intégrales [, sont données par la fonction génératrice :

> =R
— (n+ D! In(l1+2) =z

PROPOSITION 6.1.  Si a est une fonction analytique bornée dans le demi-

plan P, alors:
R o0

Datm =3I

n>1 n=0

Démonstration. On commence par démontrer le
LEMME 6.1. Si a est une fonction analytique bornée dans le demi-plan P,
alors les A"a(l) forment une suite bornée.

Démonstration. Par le théoreme des résidus on a:

. _nl a(x)
Baly = 2m/¥n x—=1D...(x—(m+D) a,

ou 7, est le lacet entourant les points 1,2,... ,n+1 composé d’un segment
vertical passant par le point % et du cercle de centre n+ 1 et de rayon n+1.
Sur le cercle, on a:

x—=1D...x—(n+ 1] > (n+ D!,

et sur le segment, on a

2n+ 1!

(x=1D...x=(m+1)| > ST

La majoration de A"a(l) provient du fait que le cercle est de longueur -
2w(n + 1) et que le segment est de longueur < 2+/n+ 1 ce qui permet de
majorer 1’intégrale sur le segment a ’aide de la formule de Stirling. []
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La série ano (’f'jl')! A"a(1l) est absolument convergente car les A"a(1) sont

1 4 EefR.q In
majorés par une constante et la série ) . ,(—1)" o :11)! est convergente (par
un théoreme taubérien classique). D’autre part, d’apres des propriétés connues
des séries de Newton (cf. [G]) la fonction:

A'a(l) ﬂ Int1 n
XH—%%m+mgeb@—2”(w%mH»+%%m+mAam

vérifie les trois propriétés caractéristiques de la fonction R,. [

EXEMPLE 14. D’apres le calcul de A"a pour a(x) = i :

n!
A" (1) ’
@ = x(x+1)...(x+n)
1l vient: ‘
ERZ . i(—l)" ! b1
n>0 B+ X n=0 X(X-+-1),._(x.+,n) (n-+»1)

Pour tout entier N > 2, on en déduit, d’apres I'exemple 9 (cf. §4.2), I’égalité :

B _—l_—‘_ o0 i 1 Int )
Y=l IH(N)+§:_2( 1)N(N+1)...(N+n)(nJrl)

REMARQUE 11. De la relation:

n=k

xk:1+ZSZ(x—1)(x~2)...(x—n),

n=1

avece .

Yl_l n k _1 - n— k
Sk~HAx<1>—aZO<—1> PG+ 1,
p___

on déduit, en prenant la somme de Ramanujan des deux membres, la relation :

n=k
I =By e
k+ 1 “E:&n+1'
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REMARQUE 12. Le développement formel de R, :

R,(x) = — /Ix a(t)dt — Z (B"+11)‘ 0"a(x),

n>0
permet d’écrire formellement 1’égalité:
i B
R.(1) = = — L 9a(l).
o(1) ;am) ;O o e

En général, la série de droite diverge au sens de Cauchy. Cependant, on pourrait
montrer que sous certaines hypothéses sur a, cette série est Borel-sommable

et que
R B

Bﬂ n

n>1 n>0

. B L.
ou anl désigne la somme de Borel. Par exemple:

1 B,
y=1+- +-———ln(N)+Z( i
n>1
D’autre part, on a vu (cf. proposition 6.1) que sous certaines hypotheéses,

on a:
R o0

I, )
> an) = };6 (n fl)! A'a(1) .

n>1

Remarquons que 1’égalité formelle:

Byi1 ., _ L1 "
_Z sy 0alh = > G 2

n>0

peut se déduire directement des développements formels:

n+1 n
71" 5 Z(nw ,

I 1 1ﬁ+l
—_— = - An7
In(Z + A) A+n§:6(n+l)!

ainsi que de la relation:

O=InE=1In(l+A).
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7. APPENDICE: TRANSFORMATION DE LAPLACE-BOREL

Dans cet appendice, on donne une présentation de la transformation de
Laplace-Borel bien adaptée au cadre de cet article. Pour un expos€ plus
systématique, le lecteur pourra se référer par exemple a [M].

7.1. NOTATIONS

Soit U un voisinage sectoriel de 1’infini d’ouverture > 7 du plan C de
la variable complexe x. Nous désignons par O(U) I’algébre des fonctions
holomorphes dans 1’ouvert U du plan complexe.

Nous dirons que a € O(U) est de type exponentiel r > 0 dans U si
pour tout € > 0 et pour tout demi-plan fermé § € U 1l existe une constante
C = C(S.¢) > 0 telle que pour tout x € §, on ait la majoration:

la(x)| < Celr+olxl

L’ensemble des fonctions a € O(U) de type exponentiel » > 0 dans U forme
un espace vectoriel que nous noterons O(U)**P") . ’ensemble des fonctions
a € O(U) de type exponentiel quelconque forme quant a lui une algébre que
I’on note O(U)**P.

7.2.  TRANSFORMATION DE BOREL

7.2.1. Transformée de Borel

Soit P P'ouvert du plan complexe défini par P := {x | R() > 0}.
Considérons I'application analytique x — a(x) que 1’on suppose appartenir a
’espace vectoriel O(P)®P") (r > (). Soit dans ces conditions d une demi-
droite (orientée vers I’infini) dans ’ouvert P. On définit la transformée de
Borel B, associée a d par:

Ba(@) ©) = —— | e at)dx.
2im /4
Pour fixer les idées, on notera & I’origine de la demi-droite d’intégration et
'on supposera que k €]0.1]. On identifiera la direction 3 D’infini de cette
demi-droite d = d(6) via son angle polaire 6, |§| < 7/2. La transformée de
Borel B,(a) s’écrit alors

1 XE x)d 1 k€ e el € k iy i
—— ecax)dx = ——e e’ Sa t .
27 J o, >im i (k +te'”) e dt
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La condition de convergence de cette intégrale découle de notre hypothése sur
a : on sait que pour tout € > 0, il existe une constante C = C(e, k) > 0 telle
que pour tout > 0 et tout 0 € [—7/2, 47 /2]

|a(k + tei0)| < Celre/2| ke

i()l
)

de sorte que

e Salk + teie)eiel < Celrte/Dk (B OFrten p—et/2

On en déduit que la condition

R(E?E) < —(r+e)
fournit une majoration uniforme en ¢ de I’intégrant par une fonction intégrable.
Le théoreme de convergence dominée de Lebesgue nous montre donc que
Bawy(a) est une fonction holomorphe dans le demi-plan ouvert:

U,(9) = {€ € C|REP¢) < —r}.

La décomposition précédente nous fournit également sans peine une estimation
sur la croissance a I’infini de Byg)(a) : notons S’ un demi-plan fermé contenu
dans I’ouvert U,(f). Nous pouvons supposer que pour € > 0 assez petit ce
demi-plan fermé S’ est contenu dans le domaine des & tels que la condition

R(E) < —(r+0)
soit satisfaite. Dans ces conditions, il existe une constante C > 0 telle que
pour tout ¢ > 0,

0 . .
o' §a(k + tezQ)eze < Ce(r—l—e/Z)ke—et/Z :

et par conséquent pour tout & € ',

|Bagy(@)| < —— gMEl
€T

De la découle que Byp)(a) admet une croissance de type exponentiel k dans
U,(8). :

B T S i

FIGURE 1
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En faisant varier 6 dans I’intervalle fermé [—m /2, +7/2] et en application
du théoréme de Cauchy, la transformée de Borel se prolonge analytiquement
en une fonction Bi(a) qui est analytique dans 1’ouvert

U, = g U,(6)

oel—m/2,+m/2]

du plan complexe C que 1’on a représenté sur la figure 1. Remarquons
d’ailleurs que la constante C intervenant dans les majorations précédentes
peut étre choisie de facon indépendante du choix de [’angle polaire
6 € [—7m/2,+7/2]. On en déduit que la transformée de Borel Bi(a) est
de type exponentiel k& a I’infini, autrement dit on a le

LEMME 7.1. Si a € OP)*P") glors Bi(a) € OU,)PW |

Notons a présent que le changement d’origine k — k' de d se traduit par:
By (a) = By(a) + M

avec h(a)rp € O(C)**™ o 7 = Sup (k,k’). Ceci nous amene a poser la
définition suivante:

DEFINITION 2.  Soit x + a(x) une fonction analytique appartenant a
’espace vectoriel O(P)®*P") . La transformée de Borel de a, notée B(a), est
une fonction analytique définie dans I’ouvert U, qui coincide dans cet ouvert

avec l'une des fonctions Bi(a) modulo 1’addition d’un élément de 1’algebre
O(C)*P,

7.2.2. Dépendance suivant un parametre

Les propriétés précédentes de la transformée de Borel se transposent au
cas ou a dépend d’un parametre de la facon suivante.

DEFINITION 3. Soit D un ouvert de C”. On notera Op(P)*P") I’espace
vectoriel des fonctions a : (x,z) — a(x,z) holomorphes dans ’ouvert P x D
telles que: pour tout demi-plan fermé S contenu dans 1’ouvert P, pour tout
compact K C D et pour tout € > 0, il existe C, = C,(S,K,€) > 0 tel que
pour tout x € § on ait la majoration (uniforme en z):

la(x, 2)| < C e tolxl
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LEMME 7.2. On suppose que a appartient a ’espace Op(P)*P"). Alors
Bi(a) définit une fonction holomorphe dans ’ouvert U, X D; de plus pour
tout fermé S contenu dans ’ouvert U,, pour tout compact K C D et pour
tout € > 0, il existe C = C(S',K,€) > 0 tel que pour tout £ € S’ on ait la
majoration (uniforme en z):

|Bu(a) (£,2)| < Cetolel,

Autrement dit, Bi(a) € Op(U,)*P®.
De plus si 2= (z1,..,22), 3-Bu(@) = Bi(5-a).

Démonstration. 11 suffit de reprendre la preuve du lemme 7.1 et de conclure
par le théoreme de convergence dominée de Lebesgue. [

7.3. TRANSFORMATION DE LLAPLACE

7.3.1. Transformée de Laplace

DEFINITION 4.  Soit k > 0 et f € OU,)*®® ot U, est le voisinage
sectoriel introduit précédemment. On définit la transformée de Laplace de f
par: '

LF) = / eEf () de
Y

ou v est le chemin représenté sur la figure 2.

FIGURE 2

Remarquons tout de suite que [’hypothése de croissance faite sur
f € OWU,)™® implique (en utilisant les mémes arguments qu’a la sous-
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section précédente) ’analyticité de Lf dans 'ouvert P du plan complexe
des x, voisinage sectoriel de I’infini défini par

Py :={xe C|RXx > k}.

L’étude sur sa croissance & 1’infini est I’objet du lemme suivant:

LEMME 7.3. Si f € O(U)™% dlors la fonction Lf appartient a I’espace
vectoriel O(P)P" .

Démonstration. Pour montrer que Lf est de type exponentiel dans 1’ouvert
P, considérons un demi-plan fermé S contenu dans cet ouvert: pour € > 0
assez petit nous pouvons supposer que le secteur fermé S est inclus dans le
domaine des x tels que la condition

Rx) > (k+€)

soit satisfaite. En utilisant notre liberté de déformation du chemin ~ a I’aide
d’une homotopie laissant invariantes les directions a 1’infini nous pouvons
aussi supposer que < s écrit comme la somme:

— du chemin compact orienté C(r+ p) consistant a parcourir le demi-cercle
situé dans le domaine (&) < 0, de rayon a + p, ou p est un réel positif
que ’on peut prendre aussi petit que 1’on veut;

— de la réunion de deux demi-droites orientées ~(r + p) et v(r + p), demi-
droites horizontales dont la premiere est d’extrémité i(r+ p) et la seconde
d’origine —i(r + p).

Considérons 'intégrale sur ~(r + p),

/ e—xéf(g) dé = o~ X(rt+p) /T vg_-"“f(z‘ + i(r + ,0)) dt .
~(r+p) 0

Suivant notre hypothese sur f, il existe une constante C > O telle que pour
tout r > 0, on ait:

f (£ + iCr + p)) | < Celkte/Dtp) pgmetf2 glhter
de sorte que pour tout x € S,
‘e—‘”f(t +i(r+ 5)) l < Celkte/Dtp) p—et/2
et par conséquent pour tout x € S,

(k+e/2) (r+p)
l/ e—-‘ff(g) dg‘ < 2Ce e(/‘+P)|x| )
F(r+p)

€
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L’intégrale sur ~(r + p) se traite de la méme facon, avec une conclusion
identique. En ce qui concerne 'intégrale sur le chemin compact C(r + p),
il suffit de majorer le module de f par une constante (par compacité) pour
conclure. [

7.3.2. Dépendance suivant un parameétre

La transformation de Laplace «a parametre» ne pose pas de difficulté
particuliere : avec les notations de la sous-section précédente énongons le

LEMME 7.4. Si f € Op(U)™® o D un ouvert de C", la fonction
Lf définit une fonction holomorphe dans I’ouvert Py x D ; de plus pour tout
demi-plan fermé S C Py, pour tout compact K C D et pour tout € > 0, il
existe une constante C = C(S,K,e) > 0 telle que pour tout x € S, on ait la
majoration (uniforme en z): '

|1£f(x,2)] < Cem+l,
autrement dit: Lf € Op(P)*P")
De plus si z = (z1,...,2,), a%/j(f) = ,C(—a-a;f).

Démonstration. 1l suffit de reprendre la preuve du lemme 7.3 et de conclure
par le théoreme de convergence dominée de Lebesgue. [

7.3.3. La transformation de Laplace-Borel

Le lemme qui suit est une simple remarque.
LEMME 7.5. Si f € O(C)*®, on a Lf =0.

Mais cela nous permet de définir sans ambiguité la transformée de Laplace
LB(a) de la transformée de Borel d’un élément a € O(P)*P") : pour tout
k>0,

LB(a) .= LBy(a).

Par conséquent, L£B(a) définit une fonction analytique dans ’ouvert P (faire
tendre k vers 0). Plus précisément:
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THEOREME 2. Soit a € O(P)**P") . Alors
,C(B(a)) =a
dans ’ouvert P.

Démonstration. Soit x € § ot § est le secteur fermé de 1’ouvert P
représenté sur la figure 3. D’apres les définitions de £ et B on a:

£(B@) )= [ e B@ @ de
ol B(a) () est défini par: ’Y

B@© = -5 [ et
Si € est sur 4, et par:

B@© =5 [ efavay

si & est sur y_, ou les chemins di , d_ , . et y_ sont représentés sur
la figure 3. On a donc:

ﬁ(B(a)) (x) :/ e_xg;l/ et a(y) a’yd§+/ e_xg—_,—I/ & a(y) dyde .
e 2im J4u _ 2w J,

FIGURE 3

Cela donne en permutant I’ordre d’intégration :

£(B@) (x) = / / e da(y) dy— — / €€ dea(y) dy .
d+ J v+ 2i d— Jy—

i
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En intégrant £ — e¥9¢ e long de v, et de y_, on obtient:

1 V=) &o 1 =% &o

E(B(a)) x) = —— ay)dy + —

2im Jypo Yy —x 2T Jyo y—x

a(y)dy .

Si Cr désigne le lacet représenté sur la figure 4, on a d’apres la formule de
Cauchy :

1 e(y—x) &o
a(x) = ~75; / a(y)dy .
T Je, Yy —X

FIGURE 4

En faisant tendre R vers I’infini on voit que £(B(a)) (x) = a(x) pour tout |
xeS. [

7.4. LE CAS INTEGRABLE

Supposons que la fonction a appartienne & 1’espace vectoriel O(Vg)xP(")
(r > 0) ou Vg désigne I'ouvert

Vg :={x € C\{0} | =6 < Arg(x) < 5},

avec /2 < pB < m.
Reprenons les notations de la sous-section 7.2; en particulier U,(6) désigne
le demi-plan

U0) .= {£ € C| R < —r}.

En adaptant les résultats de 7.2 on voit que le représentant Bi(a) de la
transformée de Borel de a se prolonge analytiquement:
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— sur ouvert
ut= |J 0O
oc[—B,0]
en une fonction notée B,j (a) € O(Uj)exp(k) :
— sur ouvert
vy = |J U®

6€l0, 5]

en une fonction notée By (a) € O(U; )*™® (voir figure 5).

FIGURE 5

Faisons a présent I’hypotheése suivante:

HYPOTHESE 1. La fonction B,j(a) (resp. B, (a)) se prolonge analytique-
ment dans [’ouvert UJ (resp. Uy ).

Désignons alors par *UP le voisinage sectoriel de Dinfini défini par
*UP = U NU; . Une application du théoréme de Cauchy montre alors
la proposition suivante.

PROPOSITION 7.1. Sous les hypothéses précédentes, la fonction a, appelée
le mineur de a, définie pour & € *UP par: a(€) = B, (a) (€) — By (a) (€), ne
dépend pas de k et on a: ‘

~ 1 ’
() = 5= [ eatas,
20T r
ou T est le chemin représenté sur la figure 6. De plus, a € O(*UP)expO)

Le fait que @ appartienne a I’espace vectoriel O(*UP)*PO) est une
conséquence directe des propriétés de croissance a I’infini de B,j (a) et B, (a)
en faisant tendre k vers zéro.

[ ———
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FIGURE 6

PROPOSITION 7.2. Si la fonction a possede un développement
a(x) = Zn>1an;l,; convergent a l’infini, alors la fonction a est entiére et

n—1

ag) = anl an(s_—l)! :

Démonstration. Le développement ) ., a, xi est uniformément conver-
gent pour |x| > R. En prenant pour contour I" un cercle de centre 0 et de
rayon R’ > R, on a:

1
x& — _ —x§
a(é) = / Z an dx = 2z7r an/ = dx ,
ce qui fournit ’expression désirée par un simple calcul de résidus. [
Ajoutons a présent I’hypothese suivante :
HYPOTHESE 2. L’origine est une singularité intégrable de B(a).
Nous pouvons écrire sous ces conditions 1’égalité :
+o0o
[ =@ ©de= [ e aga.
Jy 0

de sorte que le résultat qui suit est un simple corollaire du théoréeme 2.
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COROLLAIRE 7.1. Sous les hypothéses précédentes, on a:
o0
o) = / e aE) d
0
pour tout x dans I'ouvert Vg, ou la fonction analytique a désigne le mineur

de a.

7.5. QUELQUES PROPRIETES

La proposition suivante est une conséquence immédiate du théoreme 2.

PROPOSITION 7.3. L’opérateur de dérivation O se transforme par BB en
’opérateur de multiplication par —&,

B
Deérivation o = multiplication par (—§),
X
L

tandis que [’opérateur de translation E¥ de vecteur w > 0 se transforme par
B en l’opérateur de multiplication par e~ v,

B

Translation E¥ = multiplication par (e”“%).
L
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