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Pour (2), considérons le diagramme commutatif suivant, obtenu en

superposant (4.1) et le diagramme analogue pour

H\K°,ß]f)

Notre tâche est de montrer que l'homomorphisme h du diagramme est un

isomorphisme ce qui équivaut à dire que / l'est. Mais par le th. 1, les groupes
H3(Kp, fi®2) et H*(K°0, /i;f:2) sont tous les deux isomorphes à Z/raZ; reste

donc à voir que ces isomorphismes sont compatibles avec /. Par construction,

l'isomorphisme du th. 1 est obtenu comme le composé de deux résidus pour
la suite spectrale de Hochschild-Serre, donc la compatibilité en question est

évidente par fonctorialité.

5. Conclusion

Comme promis, on va maintenant construire, suivant Kato, un complexe
en K-théorie de Milnor que l'on va ensuite comparer à travers le symbole
cohomologique avec le complexe hypothétique du th. 2.

Soit Bh un anneau comme dans le lemme 3.2, Kh son corps de fractions.
On suppose que le corps résiduel de Bh est parfait. (En fait, des hypothèses
plus faibles suffisent, cf. la Remarque ci-dessous.) Si q parcourt les idéaux
premiers de hauteur 1 de Bh, on définit le complexe

(M) K2(Kh) -A © K,(K(q))^ Z
q

comme suit: l'homomorphisme a est somme directe des résidus de Milnor
dfq (cf. chap. 2) attachés aux valuations discrètes de Kh induites par les
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divers q (on voit tout de suite qu'il n'y a qu'un nombre fini de résidus qui
n'annulent pas un élément donné de K2(Kh)), et ß ^2fqvq% °ù vq est la
valuation induite sur le corps résiduel k(q) de q par l'idéal maximal de Bh,

fq son degré résiduel. (En fait, vq d^v et la multiplication par fq est

précisément la norme ^(^C^q)) —> ^o(F).)

LEMME 5.1. (M) est un complexe.

Démonstration. Par le lemme 3.2, le groupe multiplicatif de Kh est

engendré par les unités de Bh, l'uniformisante n, la variable T et les éléments
de la forme P/Tn, où P est un polynôme de Weierstrass de degré n. Il suffit
donc de vérifier l'égalité ßa.((a,b)) — 0 quand a et b sont parmi ces

générateurs. Les cas où a ou b est une unité, ou bien a 7r, b T, sont
triviaux. Si P est de Weierstrass, ßa((n,P)) n — eqfq 0, (où eq est

l'indice de ramification de vq car F est supposé parfait. Vu la multiplicativité
et l'anticommutativité des symboles (a,b) (cf. Bass-Tate [3]), il nous reste à

traiter les cas où a P/Tn, b Q/Tk, ou bien a P/Tn, b — T. Sur de

tels (a, b) le résidu <9^(7r) est trivial, donc on peut se borner aux autres places
de Kh. Or elles peuvent être identifiées à des places du corps de fonctions
F(T) par le morphisme naturel Spec B\ —» SpecF[T]. Si v est une place de

F(T), triviale sur F, qui ne provient pas d'une place de on a, grâce à la

normalisation par 1 /Tn,

Maintenant si vn est la valuation de k, p une place de F(T), vp le

prolongement unique de vn sur le corps résiduel n(p) avec degré résiduel fp,
on a la formule v^ o N^pyk =fpvp, ce qui nous donne

où p parcourt les places de ¥(T) triviales sur F (y compris la place à l'infini,
car IVO) 0). Mais la loi de réciprocité de Bass-Tate ([3], chap. 1.5) nous

dit que ° 0, ce qui achève la démonstration.

Remarque. Le complexe du lemme peut être largement généralisé ; en fait, il peut
être construit pour n'importe quel anneau local noethérien excellent de dimension 2.

Pour voir ßa 0 dans ce cas, on montre d'abord par un argument de normes que
l'on peut remplacer l'anneau par son complété, puis par un autre argument de normes
et le théorème de Cohen on se réduit au cas de Ok[[T\], ce qui se traite comme dans
le lemme ci-dessus. On n'a pas besion d'hypothèse sur le corps résiduel; le fait que
l'anneau soit excellent assure la validité de la formule n ef.

d\,v((a,b)) |
1 si b T et v est la place à l'infini;
0 sinon.

ßa((a, b})V N<v)/k ° p(A
p
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Enfin, nous signalons que Kato [7] définit un complexe encore plus général, pour
n'importe quel schéma excellent, qui est un analogue du complexe de Gersten-Quillen
en -théorie de Milnor. Mais la vérification du fait que ce soit un complexe se réduit
immédiatement au cas mentionné ci-dessus.

Maintenant rien ne nous empêche de finir la démonstration du th. 2.

Soient A°, K° comme au chapitre précédent, A°° le hensélisé strict de A°

avec corps de fractions K°. A°° n'est autre que le hensélisé de 0%r[T]tyjy, et

comme on l'a déjà remarqué, K°° est de dimension cohomologique 2. Donc

la suite spectrale de Hochschild-Serre induit un isomorphisme H3(K°, jif2)
H1 (F, H2(K°°, (i®2)). De même, si p° est un idéal premier de hauteur 1 de A°,
la suite spectrale de Hochschild-Serre en cohomologie étale (cf. Milne [11],

p. 106) induit un isomorphisme H3(K°0, jif2) H1 (F, H2(K°° xKo K°Q, Afif2)),
car on a pour tout i A 0 des isomorphismes

(5.2) H'(K°°xkoK;o,At,f)=©
p°° |p°

(où les p°° sont les idéaux premiers de A°° au-dessus de p°) et les corps
sont de dimension cohomologique 2. Quant à la vérification de (5.2),

on peut supposer i 0, puis remplacer les anneaux en question par leurs
complétés, et alors on peut de nouveau invoquer [16], chap. I, par. 2.3, le
théorème sur les extensions de valuations.

Considérons le diagramme commutatif

Hl(F, K2(K°°)/m)—>© Z/'(F, ©
p° p00|p°

I I 1-
H](F, H\K°°^f2)) ^© H\F, © H,A F, Z/mZ)SZ/mZ

P° p°°|p°

U Is I-
H3(K°, fi®2)—> © H\K;o,iif2) —> //'(F,

P°

(où, bien sûr, K2(K°°)/m veut dire K2(K°°)etc.)Remarquons que
rhomomorphisme marqué dM est induit par le composé de deux résidus de
Milnor, comme dans le complexe (M) (noter, cependant, que tous les fp°° sont
égaux à 1), et d est induit par le composé de deux résidus de Hochschild-
Serre. Donc la commutativité du deuxième quadrant en haut est assurée par
le lemme 2.4; la commutativité du premier est triviale. La ligne en bas est
essentiellement la suite du th. 2, la seule différence étant que le composé des
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deux résidus qui induit l'isomorphisme du th. 1 tombe dans H\n(vp),Z/mZ),
il faut donc ajouter une corestriction pour l'extension finie de corps k(vp) | F

pour arriver à Hl(J?,Z/mZ). Mais l'isomorphisme de ce dernier groupe avec

ZjmZ n'est pas affecté par les corestrictions. Enfin les deux quadrants en bas

commutent par des propriétés formelles de la suite spectrale de Hochschild-
Serre. Une application du lemme 5.1 (avec A°° à la place de Bh) montre que
la première ligne est un complexe. D'autre part, le théorème de Merkouriev-
Sousline et le fait que F soit de dimension cohomologique 1 entraînent

la surjectivité du premier homomorphisme vertical en haut. Une chasse au

diagramme montre alors que la ligne en bas est aussi un complexe, ce qu'il
fallait démontrer.
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