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82 T. SZAMUELY

Donnons enfin, comme promis, une explication informelle pourquoi le th. 2 s’appelle
une loi de réciprocité. D’abord, quelques rappels sur la théorie classique. Si F est
un corps local au sens classique, ¥ € H'(F, Z/mZ) un caractere d’ordre m de
son groupe de Galois absolu, et « un élément du groupe multiplicatif F*, on a
Smoe U x € HX(F, pm) =2 Z/mZ, ou b, est le cobord de la suite de Kummer pour la
multiplication par m. Ceci définit un homomorphisme

¢r - H'(F,Q/Z) — Hom(F*,Q/Z)

dont on sait (cf. [16], [17]) qu’il est le dual de I’application de réciprocité locale. Pour la
théorie globale, on introduit des ideles et on définit I’application de réciprocité globale
comme le produit des applications locales (on suppose ici pour simplifier qu’il n’y a
pas de places réelles). Ensuite, on vérifie que le produit est en fait une somme, et que
le fait que I’application passe au quotient par I’image diagonale du groupe multiplicatif
de notre corps global équivaut au fait que la suite d’Albert-Brauer-Hasse-Noether pour
le groupe de Brauer est un complexe (voir [18]).

Maintenant, on peut procéder de facon analogue pour le corps K du théoreme 2,
en remplacant les groupes multiplicatifs par les K;-groupes de Milnor. Pour les
localisés K,, on accouple x € H 1(Kp,Z/ mZ) avec a € Ky (Ky) pour obtenir
hf;Z’Kp (x) Uy € H3(Kp,u,‘§2) >~ 7/mZ en utilisant le th. 1, ce qui définit comme
en haut une application de réciprocité locale entre K3 (K,) et le groupe de Galois
absolu de K,. Ensuite, on peut définir des K-ideles de K ainsi qu’une application
de réciprocité globale comme le produit des applications locales; comme dans le cas
classique, le fait que cette application passe au quotient par I’image diagonale de K»(K)
se réduit via le symbole cohomologique a notre th. 2.

Remarquons enfin qu’en général, pour n’importe quel schéma normal, integre, de
dimension d et de type fini sur Z, on peut introduire la notion de K,-ideles et énoncer
des «lois de réciprocité». Le miracle est que par passage a un sous-schéma fermé
convenable et puis par localisation en des points de codimension 1 et 2, ces énoncés
se réduisent respectivement a la loi de réciprocité classique et a2 la Remarque suivant
le th. 2. Le cas local de dimension 2 est donc le cas qui, tous dévissages faits, reste
a traiter, mais la formulation du cas général appartient a la théorie des «chaines de
Parshin» pour laquelle on renvoie le lecteur a [9].

3. TOUJOURS PREPARATION, MAIS A LA WEIERSTRASS

Ce chapitre est consacré a quelques outils d’algebre commutative qui seront
utilisés dans la suite. Le résultat fondamental est la conséquence suivante du
théoréme de structure pour les anneaux locaux complets.

THEOREME (I. S. Cohen). Soit A un anneau local normal complet de
dimension 2, a corps résiduel ‘¥ (non nécessairement fini). Alors A est fini
sur un anneau de séries formelles de la forme Oy[[T]], ou Oy est I’anneau
des entiers d’un corps k complet pour une valuation discréte au méme corps
résiduel F.




SUR LA LOI DE RECIPROCITE DE KATO 83

Voir Nagata [12], Cor. 31.6 pour une démonstration. Ce théoréme est tres
utile car la structure des anneaux de la forme O[[T]] est bien connue.

LEMME 3.1. Soit Oy comme en haut. Alors I’anneau O[[T]] est factoriel,
et ses éléments premiers sont uniformisante w de Ok, ainsi que les
« polynémes de Weierstrass », c’est-a-dire les polynomes irréductibles dans
Ox[T] de la forme T" + a, T" '+ -+ ag, ou tous les a; sont divisibles

par T.

Le lemme est une conséquence du théoréeme de préparation de Weierstrass.
Voir, par exemple, I’ouvrage de Lang [10].

Les idéaux premiers de hauteur 1 dans O[[T]] sont donc engendrés par
I’uniformisante 7 ou par un polyndme de Weierstrass. Les corps résiduels
correspondants sont respectivement F((T)) ou des extensions finies du corps
valué complet k, et par conséquent sont munis de valuations discretes
canoniques pour lesquelles ils sont complets. Mais il en est alors de méme pour
A (car il est fini sur Ox[[T]]), ce qui montre bien que les corps K, du th. 1
sont des corps locaux de dimension 2. Le théoréme 1 découle donc du th. 1.

Par ailleurs, ’anneau Oy[[T]] est le complété de 1’anneau local B =
Oi[T)x 7). Nous pouvons dériver du lemme 3.1 la description suivante du
hensélisé B" qui sera utilisée dans la démonstration du théoreme 2.

LEMME 3.2. L’anneau B" est un anneau local noethérien régulier, donc
factoriel, de dimension 2, dont le complété est Oy[[T]]. Ses éléments premiers
sont 'uniformisante w et les polynomes de Weierstrass. Par conséquent, le
morphisme naturel Spec Or[[T]] — Spec B" est bijectif, et les corps résiduels
des idéaux premiers correspondants sont identiques sauf pour (0) et (m), ou
le corps résiduel de Oi[[T]] est le complété de celui de B".

Démonstration. La premicre assertion résulte les propriétés générales de
la hensélisation (cf. [11], Chap. 1.4) et la troisieme est triviale a partir de la
seconde. Pour cette derniere, on remarque d’abord que O[[T]] étant fidelement
plat sur B", il suffit d’établir une bijection entre les idéaux premiers de
hauteur 1 de B et ceux de Oi[[T]]. Dans B, ce sont des idéaux principaux
engendrés par 7 ou par certains polyndmes irréductibles de Oy[T] contenus
dans (m,T). Soit f un tel polynome. Comme Oy[[T]] est fidelement plat sur
B, il existe un idéal premier de O[[T]] au-dessus de (f), engendré par un
polyndme de Weierstrass w selon le lemme 3.1. Mais comme les polynomes
de Weierstrass sont tous contenus dans B, on a forcément f = w, ce qui
donne la bijection désirée.
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