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82 T. SZAMUELY

Donnons enfin, comme promis, une explication informelle pourquoi le th. 2 s'appelle
une loi de réciprocité. D'abord, quelques rappels sur la théorie classique. Si F est
un corps local au sens classique, x E Hl(F,Z/mZ) un caractère d'ordre m de

son groupe de Galois absolu, et a un élément du groupe multiplicatif F*, on a

6maU x E H2(F, pm) Z/mZ, où 6m est le cobord de la suite de Kummer pour la
multiplication par m. Ceci définit un homomorphisme

c Pf: Hl(F,Q/Z).->Hom(F*,Q/Z)

dont on sait (cf. [16], [17]) qu'il est le dual de l'application de réciprocité locale. Pour la
théorie globale, on introduit des idèles et on définit l'application de réciprocité globale
comme le produit des applications locales (on suppose ici pour simplifier qu'il n'y a

pas de places réelles). Ensuite, on vérifie que le produit est en fait une somme, et que
le fait que l'application passe au quotient par l'image diagonale du groupe multiplicatif
de notre corps global équivaut au fait que la suite d'Albert-Brauer-Hasse-Noether pour
le groupe de Brauer est un complexe (voir [18]).

Maintenant, on peut procéder de façon analogue pour le corps K du théorème 2,

en remplaçant les groupes multiplicatifs par les Ki-groupes de Milnor. Pour les
localisés Kp, on accouple x E Hl(Kp,Z/mZ) avec a 6 Kf(Kp) pour obtenir

ÉipWUx E H3(Kp,/i®2) Z/mZ en utilisant le th. 1, ce qui définit comme

en haut une application de réciprocité locale entre Ko (Kp) et le groupe de Galois
absolu de Kp Ensuite, on peut définir des iG -idèles de K ainsi qu'une application
de réciprocité globale comme le produit des applications locales; comme dans le cas

classique, le fait que cette application passe au quotient par l'image diagonale de K2VK)
se réduit via le symbole cohomologique à notre th. 2.

Remarquons enfin qu'en général, pour n'importe quel schéma normal, intègre, de
dimension cl et de type fini sur Z, on peut introduire la notion de Kci -idèles et énoncer
des «lois de réciprocité». Le miracle est que par passage à un sous-schéma fermé
convenable et puis par localisation en des points de codimension 1 et 2, ces énoncés
se réduisent respectivement à la loi de réciprocité classique et à la Remarque suivant
le th. 2. Le cas local de dimension 2 est donc le cas qui, tous dévissages faits, reste
à traiter, mais la formulation du cas général appartient à la théorie des «chaînes de
Parshin» pour laquelle on renvoie le lecteur à [9].

3. Toujours préparation, mais à la Weierstrass

Ce chapitre est consacré à quelques outils d'algèbre commutative qui seront

utilisés dans la suite. Le résultat fondamental est la conséquence suivante du

théorème de structure pour les anneaux locaux complets.

THÉORÈME (I. S. Cohen). Soit A un anneau local normal complet de

dimension 2, à corps résiduel ¥ (non nécessairement fini). Alors A est fini
sur un anneau de séries formelles de la forme Ok[[T]], où Ok est Vanneau

des entiers d'un corps k complet pour une valuation discrète au même corps
résiduel F.
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Voir Nagata [12], Cor. 31.6 pour une démonstration. Ce théorème est très

utile car la structure des anneaux de la forme Ok[[T]] est bien connue.

LEMME 3.1. Soit Ok comme en haut. Alors Vanneau Okl[T]] est factoriel,

et ses éléments premiers sont l'uniformisante tt de Ok, ainsi que les

«polynômes de Weierstrass », c'est-à-dire les polynômes irréductibles dans

Ok[T] de la forme Tn + an^{Tn~x + • • • + a0, où tous les a{ sont divisibles

par 7r.

Le lemme est une conséquence du théorème de préparation de Weierstrass.

Voir, par exemple, l'ouvrage de Lang [10].

Les idéaux premiers de hauteur 1 dans Ok[[T]\ sont donc engendrés par

l'uniformisante ir ou par un polynôme de Weierstrass. Les corps résiduels

correspondants sont respectivement F((T)) ou des extensions finies du corps

valué complet k, et par conséquent sont munis de valuations discrètes

canoniques pour lesquelles ils sont complets. Mais il en est alors de même pour
A (car il est fini sur Ok[[T]]), ce qui montre bien que les corps Kv du th. 1

sont des corps locaux de dimension 2. Le théorème 1 découle donc du th. L.
Par ailleurs, l'anneau Ok[[T]] est le complété de l'anneau local B

Ok[T]{7rj). Nous pouvons dériver du lemme 3.1 la description suivante du

hensélisé Bh qui sera utilisée dans la démonstration du théorème 2.

LEMME 3.2. L'anneau Bh est un anneau local noethérien régulier, donc

factoriel, de dimension 2, dont le complété est Ok[[T]]. Ses éléments premiers
sont l'uniformisante ir et les polynômes de Weierstrass. Par conséquent, le

morphisme naturel SpecO^[[L]] —§• Specif est bijectif et les corps résiduels

des idéaux premiers correspondants sont identiques sauf pour (0) et (tt), où

le corps résiduel de Ok[[T]] est le complété de celui de Bh.

Démonstration. La première assertion résulte les propriétés générales de

la hensélisation (cf. [11], Chap. 1.4) et la troisième est triviale à partir de la
seconde. Pour cette dernière, on remarque d'abord que Ok[[T]\ étant fidèlement

plat sur Bh, il suffit d'établir une bijection entre les idéaux premiers de

hauteur 1 de B et ceux de Ok[[T]]. Dans B, ce sont des idéaux principaux
engendrés par ir ou par certains polynômes irréductibles de Ok[T] contenus
dans (7r, T). Soit / un tel polynôme. Comme Ok[[T]] est fidèlement plat sur
B, il existe un idéal premier de Ok[[T]] au-dessus de (/), engendré par un
polynôme de Weierstrass w selon le lemme 3.1. Mais comme les polynômes
de Weierstrass sont tous contenus dans B, on a forcément / w, ce qui
donne la bijection désirée.


	3. Toujours préparation, mais à la Weierstrass

