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des théorèmes 1 et l7 ainsi qu'une discussion superficielle de la position du

th. 2 dans la théorie des corps de classes des schémas arithmétiques. Le reste

de l'article est consacré à la démonstration de ce théorème.

2. Préparation

On rappelle ici quelques résultats en cohomologie galoisienne; une
référence de base est le livre de Serre [15].

Si G est un groupe profini, I un sous-groupe normal fermé dans G, on
a pour tout G-module discret A la suite spectrale de Hochschild-Serre

E\> A(G//,//J'(/,A)) =>

La théorie générale des suites spectrales nous fournit maintenant le

LEMME 2.1. Si A est un module de torsion et I est de dimension

cohomologique l, il existe un homomorphisme8i:Hi+\G,A) -> H'(G/I,Hl(I,A))

appelé le résidu. Si, de plus, G/I est de dimension cohomologique i, cet
homomorphisme est en fait un isomorphisme.

Remarque. En fait, pour A fixé, il suffit de supposer que I soit de

p -dimension cohomologique 1 pour chaque p annulant un élément de A ; de
même pour l'énoncé sur G//.

Un calcul sur les cochaînes (cf. par exemple [5], p. 77 ainsi que [13],
Appendice A) montre la compatibilité suivante entre résidus et cup-produits.

LEMME 2.2. Soient G et I comme ci-dessus, A et B deux G-modules
discrets de torsion. Alors pour tout a G H1 {G, A), b G W (G/fH°(I,B)),

di+j-x(aUInf c/n^))U b.

La démonstration du théorème 1' est une application simple du lemme 2.1.

Démonstration du théorème 1'. On sait que pour un corps muni d'une
valuation discrète hensélienne, le sous-groupe d'inertie du groupe de Galois
absolu est de p-dimension cohomologique 1 pour tout premier p différent
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de la caractéristique résiduelle. (En fait, on trouve dans la littérature plusieurs
démonstrations pour le cas complet, mais par exemple celle donnée par Serre

en termes d'algèbres simples centrales dans [17] se transcrit immédiatement
au cas hensélien.) Tenant compte de la remarque précédente, on peut donc

appliquer le lemme 2.1 avec i m d, G le groupe de Galois absolu de F et 7

le groupe d'inertie, pour obtenir un résidu

(2.3) dd: Hd+l(G,n®d)- Hd(G/Is*Hd(G/I,.
En effet, on vérifie aisément que Hl(I,ß®d) Hl(I,fjLm) ® ^d~V) en

tant que G/7-modules (noter que l'action de 7 sur \i®d est triviale).
Puis la suite de Kummer et la valuation donnent des isomorphismes
771(7. fim) F*r/F= Z/mZ, où F*r est le groupe multiplicatif de

l'extension maximale non ramifiée de F.
Soient maintenant F(1) le corps résiduel de F, celui de F(1), etc.

En répétant l'argument en haut et réécrivant les groupes de cohomologie en

termes de corps, on obtient (notant que /x®° ZjmZ par convention) une
suite d'homomorphismes

Hd+\F,fj%d) -> 77d(Fil\fj®{d-n) -> > H\F{d\Z/mZ) Z/mZ,
F^d) étant fini par hypothèse. Mais alors il est de dimension cohomolo-

gique 1, et l'application successive d'un théorème de transition en cohomologie
galoisienne (Serre [15], chap. 4.3, prop. 12) et du deuxième énoncé du

lemme 2.1 montrent qu'il y a isomorphisme partout.

Soit maintenant F un corps quelconque. Rappelons que le K-groupe de

Milnor K^F est défini comme le quotient de la <7-ième puissance tensorielle
du groupe multiplicatif F* par l'idéal engendré par les éléments de la forme

fi 0 - - <g) fd pour lesquels il existe 1 ^ i ^ j ^ d avec fi F fj — 1. (On

pose Kq(F) Z.) L'image d'un élément f\ ® • • • (g>/j dans K^(F) sera notée(aLe lien avec la cohomologie galoisienne est donné par le symbole

cohomologique de Täte

hdm<F: (F)/mKj(F)Hd(F,
défini pour <7 0 comme l'identité de Z/mZ, et pour <7^1 par cup-produit
à partir du bord de la suite de Kummer. (A priori, cet homomorphisme a

pour domaine (F*/F*m)®d. Le fait qu'il passe au quotient par les relations est

vérifié, par exemple, dans Täte [19] pour le cas typique <7 2.) On conjecture
la bijectivité du symbole pour tout <7 et m. La conjecture est vérifiée dans

plusieurs cas dont le plus important pour nous est le
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THÉORÈME (Merkouriev-Sousline). Le symbole hfn F est bijectif pour tout

m et F.

Notons qu'en fait nous n'utiliserons qu'un cas très particulier de ce résultat

puissant, pour un corps de degré de transcendance 1 sur un corps de dimension

cohomologique 1. Ce cas peut d'ailleurs être prouvé directement en modifiant

un joli argument géométrique de Bloch ([4], pp. 5.9-5.11).

Si de plus F est muni d'une valuation discrète v à corps résiduel k(v), il
existe un homomorphisme canonique d^v : Kf+l(F) —> K% (k(v)) (cf. Bass-

Tate [3]), caractérisé par la formule

où uj est une uniformisante, et les ut sont des unités avec image Uj dans

k(v). Notons que la définition implique dfv((u\,..., i^+i)) 0 si tous les

U{ sont des unités et que Ôqv n'est autre que la valuation v.
Supposons maintenant F hensélien par rapport à v et donnons-nous un

entier m premier à la caractéristique de k(v). Alors on dispose d'une part
du résidu de Milnor d^F, d'autre part du résidu d(i pour la cohomologie
galoisienne à valeurs dans p®d. Tenant compte de l'identification (2.3), les

deux sont liés de façon agréable par le symbole cohomologique.

LEMME 2.4. Pour tout d S 0, on a le diagramme commutatif

Démonstration. L'assertion est évidente pour d 0. Mais on s'y réduit
immédiatement grâce au lemme 2.2, tenant compte de la compatibilité entre
cup-produits et inflations, et de l'égalité Inf^ hlmMv)(ü) hlm>F(u) pour une
unité ude Favec image 77 dans /•(<•).

Remarque. Par une compatibilité triviale entre les restrictions en
cohomologie et les changements de base en £-théorie, on voit qu'il est superflu
de supposer F hensélien : on peut toujours passer par le hensélisé par rapport
à v et le lemme reste valable.

d" ({<J, Ml,..., ud))(mi

Hd+\F,/j,®(d+V) (/,•( /•).

dM

K^+l(F)/mK^+l(F) —K?{k(v))/mK?(«(«)}
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Donnons enfin, comme promis, une explication informelle pourquoi le th. 2 s'appelle
une loi de réciprocité. D'abord, quelques rappels sur la théorie classique. Si F est
un corps local au sens classique, x E Hl(F,Z/mZ) un caractère d'ordre m de

son groupe de Galois absolu, et a un élément du groupe multiplicatif F*, on a

6maU x E H2(F, pm) Z/mZ, où 6m est le cobord de la suite de Kummer pour la
multiplication par m. Ceci définit un homomorphisme

c Pf: Hl(F,Q/Z).->Hom(F*,Q/Z)

dont on sait (cf. [16], [17]) qu'il est le dual de l'application de réciprocité locale. Pour la
théorie globale, on introduit des idèles et on définit l'application de réciprocité globale
comme le produit des applications locales (on suppose ici pour simplifier qu'il n'y a

pas de places réelles). Ensuite, on vérifie que le produit est en fait une somme, et que
le fait que l'application passe au quotient par l'image diagonale du groupe multiplicatif
de notre corps global équivaut au fait que la suite d'Albert-Brauer-Hasse-Noether pour
le groupe de Brauer est un complexe (voir [18]).

Maintenant, on peut procéder de façon analogue pour le corps K du théorème 2,

en remplaçant les groupes multiplicatifs par les Ki-groupes de Milnor. Pour les
localisés Kp, on accouple x E Hl(Kp,Z/mZ) avec a 6 Kf(Kp) pour obtenir

ÉipWUx E H3(Kp,/i®2) Z/mZ en utilisant le th. 1, ce qui définit comme

en haut une application de réciprocité locale entre Ko (Kp) et le groupe de Galois
absolu de Kp Ensuite, on peut définir des iG -idèles de K ainsi qu'une application
de réciprocité globale comme le produit des applications locales; comme dans le cas

classique, le fait que cette application passe au quotient par l'image diagonale de K2VK)
se réduit via le symbole cohomologique à notre th. 2.

Remarquons enfin qu'en général, pour n'importe quel schéma normal, intègre, de
dimension cl et de type fini sur Z, on peut introduire la notion de Kci -idèles et énoncer
des «lois de réciprocité». Le miracle est que par passage à un sous-schéma fermé
convenable et puis par localisation en des points de codimension 1 et 2, ces énoncés
se réduisent respectivement à la loi de réciprocité classique et à la Remarque suivant
le th. 2. Le cas local de dimension 2 est donc le cas qui, tous dévissages faits, reste
à traiter, mais la formulation du cas général appartient à la théorie des «chaînes de
Parshin» pour laquelle on renvoie le lecteur à [9].

3. Toujours préparation, mais à la Weierstrass

Ce chapitre est consacré à quelques outils d'algèbre commutative qui seront

utilisés dans la suite. Le résultat fondamental est la conséquence suivante du

théorème de structure pour les anneaux locaux complets.

THÉORÈME (I. S. Cohen). Soit A un anneau local normal complet de

dimension 2, à corps résiduel ¥ (non nécessairement fini). Alors A est fini
sur un anneau de séries formelles de la forme Ok[[T]], où Ok est Vanneau

des entiers d'un corps k complet pour une valuation discrète au même corps
résiduel F.
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