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des théorémes 1 et 1’ ainsi qu’une discussion superficielle de la position du
th. 2 dans la théorie des corps de classes des schémas arithmétiques. Le reste
de I’article est consacré a la démonstration de ce théoreme.

2. PREPARATION

On rappelle ici quelques résultats en cohomologie galoisienne; une réfé-
rence de base est le livre de Serre [15].

Si G est un groupe profini, / un sous-groupe normal fermé dans G, on
a pour tout G-module discret A la suite spectrale de Hochschild-Serre

EY = H'(G/I,H/(1,A)) = H(G,A).
La théorie générale des suites spectrales nous fournit maintenant le

LEMME 2.1. Si A est un module de torsion et I est de dimension
cohomologique 1, il existe un homomorphisme

8 : HY(G,A) — H'(G/I,H'(1,A))
appelé le résidu. Si, de plus, G/I est de dimension cohomologique i, cet

homomorphisme est en fait un isomorphisme.

REMARQUE. En fait, pour A fixé, il suffit de supposer que I soit de
p-dimension cohomologique 1 pour chaque p annulant un élément de A ; de
méme pour 1’énoncé sur G/I.

Un calcul sur les cochaines (cf. par exemple [5], p. 77 ainsi que [13],
Appendice A) montre la compatibilité suivante entre résidus et cup-produits.

LEMME 2.2. Soient G et I comme ci-dessus, A et B deux G-modules
discrets de torsion. Alors pour tout a € H'(G,A), b€ H/(G/I, H%(I1,B)),

Oitj—1(aUInf &\ (b)) = Bi_1(a) Ub.

La démonstration du théoreme 1’ est une application simple du lemme 2.1.

Démonstration du théoréme 1'. On sait que pour un corps muni d’une
valuation discrete hensélienne, le sous-groupe d’inertie du groupe de Galois
absolu est de p-dimension cohomologique 1 pour tout premier p différent
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de la caractéristique résiduelle. (En fait, on trouve dans la littérature plusieurs
démonstrations pour le cas complet, mais par exemple celle donnée par Serre
en termes d’algebres simples centrales dans [17] se transcrit immédiatement
au cas hensélien.) Tenant compte de la remarque précédente, on peut donc
appliquer le lemme 2.1 avec i =d, G le groupe de Galois absolu de F et
le groupe d’inertie, pour obtenir un résidu

23) 84 HN (G, u@%) — HY(G/1, H' U, u@%) = HU(G/I, y®4~V).

En effet, on vérifie aisément que H'(l, u®?) HYU, i) @ p2@=D en
tant que G/I-modules (noter que l’action de I sur u®? est triviale).
Puis la suite de Kummer et la valuation donnent des isomorphismes
H'(I, puy) = Fr/Fm = Z/mZ, ou F¥ est le groupe multiplicatif de
I’extension maximale non ramifiée de F.

Soient maintenant FV le corps résiduel de F, F® celui de F(, etc.
En répétant I’argument en haut et réécrivant les groupes de cohomologie en
termes de corps, on obtient (notant que u®Y = Z/mZ par convention) une
suite d’homomorphismes

HAYF, p2) — HYFY, pS9 D) — . - H'(FD,2/mZ) = 7./mZ,

F@ étant fini par hypothése. Mais alors il est de dimension cohomolo-
gique 1, et I’application successive d’un théoréme de transition en cohomologie
galoisienne (Serre [15], chap. 4.3, prop. 12) et du deuxieme énoncé du
lemme 2.1 montrent qu’il y a isomorphisme partout.

Soit maintenant F un corps quelconque. Rappelons que le K-groupe de
Milnor K F est défini comme le quotient de la d-iéme puissance tensorielle
du groupe multiplicatif F* par 1’idéal engendré par les €léments de la forme
fi®- - ®f; pour lesquels il existe 1 < i #j < d avec f;+f; = 1. (On
pose KM(F)=1Z.) Uimage d’un élément f; ® - - - ®f; dans K¥(F) sera notée
(fi,-- - Sa)-

Le lien avec la cohomologie galoisienne est donné par le symbole
cohomologique de Tate

e e KY(F)/mK)(F) — H(F, p2%

défini pour d = 0 comme !’identité¢ de Z/mZ, et pour d > 1 par cup-produit
a partir du bord de la suite de Kummer. (A priori, cet homomorphisme a
pour domaine (F*/F*™)®4. Le fait qu’il passe au quotient par les relations est
vérifié, par exemple, dans Tate [19] pour le cas typique d = 2.) On conjecture
la bijectivité du symbole pour tout d et m. La conjecture est vérifiée dans
plusieurs cas dont le plus important pour nous est le
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THEOREME (Merkouriev-Sousline). Le symbole hy, ;- est bijectif pour tout
m et F.

Notons qu’en fait nous n’utiliserons qu’un cas tres particulier de ce résultat
puissant, pour un corps de degré de transcendance 1 sur un corps de dimension
cohomologique 1. Ce cas peut d’ailleurs étre prouvé directement en modifiant
un joli argument géométrique de Bloch ([4], pp. 5.9-5.11).

Si de plus F est muni d’une valuation discréte v a corps résiduel x(v), il
existe un homomorphisme canonique 9%, : K\ | (F) — K}ff (k(v)) (cf. Bass-
Tate [3]), caractérisé par la formule

M —_— o
8d’v((w,u1, ww ey l/td>) = <u1, R ,Ltd>
ou w est une uniformisante, et les u; sont des unités avec image u; dans
k(v). Notons que la définition implique 82” Sy, . ,ugr1)) = 0 si tous les

u; sont des unit€s et que 80 , n’est autre que la valuation v.

Supposons maintenant F hensélien par rapport a v et donnons-nous un
entier m premier a la caractéristique de k(v). Alors on dispose d’une part
du résidu de Milnor 8d p» d’autre part du résidu 9, pour la cohomologie
galoisienne 2 valeurs dans u®?. Tenant compte de I’identification (2.3), les
deux sont li€s de facon agréable par le symbole cohomologique.

LEMME 2.4. Pour tout d 2 0, on a le diagramme commutatif

0,
HANF, p2@thy = g (k(v), p29)

d+1 d
hm F /I\ /I\hm w(v)
M

KM, (F) fmKY,  (F) —22 s KM (15(0)) /mKY (1(v))

Démonstration. 1’assertion est évidente pour d = 0. Mais on s’y réduit
immédiatement grace au lemme 2.2, tenant Compte de la compatibilité entre
cup-produits et inflations, et de I’égalité Inf” R H(U)(u) h}m r(u) pour une
unit€ u de F avec image u dans x(v).

REMARQUE. Par une compatibilité triviale entre les restrictions en coho-
mologie et les changements de base en K-théorie, on voit qu’il est superflu

de supposer F hensélien: on peut toujours passer par le hensélisé par rapport
a v et le lemme reste valable.
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Donnons enfin, comme promis, une explication informelle pourquoi le th. 2 s’appelle
une loi de réciprocité. D’abord, quelques rappels sur la théorie classique. Si F est
un corps local au sens classique, ¥ € H'(F, Z/mZ) un caractere d’ordre m de
son groupe de Galois absolu, et « un élément du groupe multiplicatif F*, on a
Smoe U x € HX(F, pm) =2 Z/mZ, ou b, est le cobord de la suite de Kummer pour la
multiplication par m. Ceci définit un homomorphisme

¢r - H'(F,Q/Z) — Hom(F*,Q/Z)

dont on sait (cf. [16], [17]) qu’il est le dual de I’application de réciprocité locale. Pour la
théorie globale, on introduit des ideles et on définit I’application de réciprocité globale
comme le produit des applications locales (on suppose ici pour simplifier qu’il n’y a
pas de places réelles). Ensuite, on vérifie que le produit est en fait une somme, et que
le fait que I’application passe au quotient par I’image diagonale du groupe multiplicatif
de notre corps global équivaut au fait que la suite d’Albert-Brauer-Hasse-Noether pour
le groupe de Brauer est un complexe (voir [18]).

Maintenant, on peut procéder de facon analogue pour le corps K du théoreme 2,
en remplacant les groupes multiplicatifs par les K;-groupes de Milnor. Pour les
localisés K,, on accouple x € H 1(Kp,Z/ mZ) avec a € Ky (Ky) pour obtenir
hf;Z’Kp (x) Uy € H3(Kp,u,‘§2) >~ 7/mZ en utilisant le th. 1, ce qui définit comme
en haut une application de réciprocité locale entre K3 (K,) et le groupe de Galois
absolu de K,. Ensuite, on peut définir des K-ideles de K ainsi qu’une application
de réciprocité globale comme le produit des applications locales; comme dans le cas
classique, le fait que cette application passe au quotient par I’image diagonale de K»(K)
se réduit via le symbole cohomologique a notre th. 2.

Remarquons enfin qu’en général, pour n’importe quel schéma normal, integre, de
dimension d et de type fini sur Z, on peut introduire la notion de K,-ideles et énoncer
des «lois de réciprocité». Le miracle est que par passage a un sous-schéma fermé
convenable et puis par localisation en des points de codimension 1 et 2, ces énoncés
se réduisent respectivement a la loi de réciprocité classique et a2 la Remarque suivant
le th. 2. Le cas local de dimension 2 est donc le cas qui, tous dévissages faits, reste
a traiter, mais la formulation du cas général appartient a la théorie des «chaines de
Parshin» pour laquelle on renvoie le lecteur a [9].

3. TOUJOURS PREPARATION, MAIS A LA WEIERSTRASS

Ce chapitre est consacré a quelques outils d’algebre commutative qui seront
utilisés dans la suite. Le résultat fondamental est la conséquence suivante du
théoréme de structure pour les anneaux locaux complets.

THEOREME (I. S. Cohen). Soit A un anneau local normal complet de
dimension 2, a corps résiduel ‘¥ (non nécessairement fini). Alors A est fini
sur un anneau de séries formelles de la forme Oy[[T]], ou Oy est I’anneau
des entiers d’un corps k complet pour une valuation discréte au méme corps
résiduel F.
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