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L’Enseignement Mathématique, t. 43 (1997), p. 77-91

SUR LA LOI DE RECIPROCITE DE KATO
POUR LES ANNEAUX LOCAUX DE DIMENSION 2

par Tamas SZAMUELY

Nous nous proposons ici de donner une exposition compléte (dans le cas premier a
la caractéristique résiduelle) d’un résultat de Kazuya Kato, fondamental dans la théorie
des corps de classes en dimension supérieure, mais difficilement abordable dans la
littérature. I1 va sans dire que nous nous sommes fortement inspirés des travaux
originaux ([7], [8], [9] et [14]) dont nous espérons que ce texte facilitera 1’acces.

1. ENONCES

Soient A un anneau local normal complet de dimension 2, K son corps de
fractions et F son corps résiduel qui sera supposé fini dans la suite. Prenons
un idéal premier p de hauteur 1, et notons K, le corps de fractions du
hensélisé A’; de A en p. (Pour tout ce qui concerne les anneaux henséliens,

voir [11] et [12].) Fixons un entier positif m premier a la caractéristique
de F.

THEOREME 1. Pour tout premier p divisant m, la p-dimension coho-
mologique de K, est 3, et on a un isomorphisme

H*(K,, p&*) = 7./mZ .

Plus généralement, on dit qu’un corps F est un corps local de dimen-
sion d si F est muni d’une valuation discréte hensélienne pour laquelle son
corps résiduel est un corps local de dimension d — 1, un corps local de
dimension 0 étant un corps fini. Donc un corps local au sens classique est un
corps local complet de dimension 1 dans notre sens, et on va voir au chap. 3
que le corps K, du th. 1 est un corps local de dimension 2. Or, pour un

m premier a la caractéristique du «plus petit» corps résiduel de F, on a le
théoreme général suivant.
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THEOREME 1'. Pour tout premier p divisant m, la p-dimension coho-
mologique de F est d+ 1 et on a un isomorphisme

H™YF, p3h) = Z/m.

Pour d = 1, on récupere la détermination classique de la m-torsion du
groupe de Brauer d’un corps local (cf. par exemple [16], [17]). Le groupe du
th. 1 joue donc un rdle analogue a celui du groupe de Brauer dans le cas
classique.

Revenons maintenant 2 notre corps K, et soit w € H3(K, u;‘?z), wp Sa
restriction 8 H>(K,, u$?). On va voir au chap. 4 que w, = 0 pour presque
tout p, on obtient donc un homomorphisme

H (K, p52?) — D H Ky, i) = B Z/mZ.
p p

ou p parcourt les idéaux premiers de hauteur 1 dans A. En faisant la somme
suivant ces p, on obtient I’analogue suivant de la loi de réciprocité classique
de Takagi-Artin (pour cette derniere, cf. [18]):

THEOREME 2. La suite d’homomorphismes
H (K, i) — @ H>(Kp, pjy?) — Z/mZ
p

est un complexe.

REMARQUE. Tout comme le th. 1, le th. 2 admet une généralisation en
dimension supérieure qui se démontre essentiellement de la méme facon:
supposons en fait que le corps résiduel F de notre anneau A est un corps
local de dimension d —2 pour un d 2 2. Alors on a un complexe, avec les
mémes notations:

[{d-f—l([(7 M%d) s @ Hd-i—l(Kp’IuI’(%)d) N Z/mZ ‘
p

Ces théoremes sont dus a Kazuya Kato. En fait, il a démontré beaucoup
plus, car il a également traité€ le cas ou ’entier m est divisible par la carac-
téristique résiduelle. Ce cas, qui nécessite de longs calculs sur le complexe
de de Rham-Witt, ne sera pas examiné ici. Les deux chapitres qui suivent
contiennent des rappels de résultats divers utilisés dans la suite, les preuves
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des théorémes 1 et 1’ ainsi qu’une discussion superficielle de la position du
th. 2 dans la théorie des corps de classes des schémas arithmétiques. Le reste
de I’article est consacré a la démonstration de ce théoreme.

2. PREPARATION

On rappelle ici quelques résultats en cohomologie galoisienne; une réfé-
rence de base est le livre de Serre [15].

Si G est un groupe profini, / un sous-groupe normal fermé dans G, on
a pour tout G-module discret A la suite spectrale de Hochschild-Serre

EY = H'(G/I,H/(1,A)) = H(G,A).
La théorie générale des suites spectrales nous fournit maintenant le

LEMME 2.1. Si A est un module de torsion et I est de dimension
cohomologique 1, il existe un homomorphisme

8 : HY(G,A) — H'(G/I,H'(1,A))
appelé le résidu. Si, de plus, G/I est de dimension cohomologique i, cet

homomorphisme est en fait un isomorphisme.

REMARQUE. En fait, pour A fixé, il suffit de supposer que I soit de
p-dimension cohomologique 1 pour chaque p annulant un élément de A ; de
méme pour 1’énoncé sur G/I.

Un calcul sur les cochaines (cf. par exemple [5], p. 77 ainsi que [13],
Appendice A) montre la compatibilité suivante entre résidus et cup-produits.

LEMME 2.2. Soient G et I comme ci-dessus, A et B deux G-modules
discrets de torsion. Alors pour tout a € H'(G,A), b€ H/(G/I, H%(I1,B)),

Oitj—1(aUInf &\ (b)) = Bi_1(a) Ub.

La démonstration du théoreme 1’ est une application simple du lemme 2.1.

Démonstration du théoréme 1'. On sait que pour un corps muni d’une
valuation discrete hensélienne, le sous-groupe d’inertie du groupe de Galois
absolu est de p-dimension cohomologique 1 pour tout premier p différent
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de la caractéristique résiduelle. (En fait, on trouve dans la littérature plusieurs
démonstrations pour le cas complet, mais par exemple celle donnée par Serre
en termes d’algebres simples centrales dans [17] se transcrit immédiatement
au cas hensélien.) Tenant compte de la remarque précédente, on peut donc
appliquer le lemme 2.1 avec i =d, G le groupe de Galois absolu de F et
le groupe d’inertie, pour obtenir un résidu

23) 84 HN (G, u@%) — HY(G/1, H' U, u@%) = HU(G/I, y®4~V).

En effet, on vérifie aisément que H'(l, u®?) HYU, i) @ p2@=D en
tant que G/I-modules (noter que l’action de I sur u®? est triviale).
Puis la suite de Kummer et la valuation donnent des isomorphismes
H'(I, puy) = Fr/Fm = Z/mZ, ou F¥ est le groupe multiplicatif de
I’extension maximale non ramifiée de F.

Soient maintenant FV le corps résiduel de F, F® celui de F(, etc.
En répétant I’argument en haut et réécrivant les groupes de cohomologie en
termes de corps, on obtient (notant que u®Y = Z/mZ par convention) une
suite d’homomorphismes

HAYF, p2) — HYFY, pS9 D) — . - H'(FD,2/mZ) = 7./mZ,

F@ étant fini par hypothése. Mais alors il est de dimension cohomolo-
gique 1, et I’application successive d’un théoréme de transition en cohomologie
galoisienne (Serre [15], chap. 4.3, prop. 12) et du deuxieme énoncé du
lemme 2.1 montrent qu’il y a isomorphisme partout.

Soit maintenant F un corps quelconque. Rappelons que le K-groupe de
Milnor K F est défini comme le quotient de la d-iéme puissance tensorielle
du groupe multiplicatif F* par 1’idéal engendré par les €léments de la forme
fi®- - ®f; pour lesquels il existe 1 < i #j < d avec f;+f; = 1. (On
pose KM(F)=1Z.) Uimage d’un élément f; ® - - - ®f; dans K¥(F) sera notée
(fi,-- - Sa)-

Le lien avec la cohomologie galoisienne est donné par le symbole
cohomologique de Tate

e e KY(F)/mK)(F) — H(F, p2%

défini pour d = 0 comme !’identité¢ de Z/mZ, et pour d > 1 par cup-produit
a partir du bord de la suite de Kummer. (A priori, cet homomorphisme a
pour domaine (F*/F*™)®4. Le fait qu’il passe au quotient par les relations est
vérifié, par exemple, dans Tate [19] pour le cas typique d = 2.) On conjecture
la bijectivité du symbole pour tout d et m. La conjecture est vérifiée dans
plusieurs cas dont le plus important pour nous est le
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THEOREME (Merkouriev-Sousline). Le symbole hy, ;- est bijectif pour tout
m et F.

Notons qu’en fait nous n’utiliserons qu’un cas tres particulier de ce résultat
puissant, pour un corps de degré de transcendance 1 sur un corps de dimension
cohomologique 1. Ce cas peut d’ailleurs étre prouvé directement en modifiant
un joli argument géométrique de Bloch ([4], pp. 5.9-5.11).

Si de plus F est muni d’une valuation discréte v a corps résiduel x(v), il
existe un homomorphisme canonique 9%, : K\ | (F) — K}ff (k(v)) (cf. Bass-
Tate [3]), caractérisé par la formule

M —_— o
8d’v((w,u1, ww ey l/td>) = <u1, R ,Ltd>
ou w est une uniformisante, et les u; sont des unités avec image u; dans
k(v). Notons que la définition implique 82” Sy, . ,ugr1)) = 0 si tous les

u; sont des unit€s et que 80 , n’est autre que la valuation v.

Supposons maintenant F hensélien par rapport a v et donnons-nous un
entier m premier a la caractéristique de k(v). Alors on dispose d’une part
du résidu de Milnor 8d p» d’autre part du résidu 9, pour la cohomologie
galoisienne 2 valeurs dans u®?. Tenant compte de I’identification (2.3), les
deux sont li€s de facon agréable par le symbole cohomologique.

LEMME 2.4. Pour tout d 2 0, on a le diagramme commutatif

0,
HANF, p2@thy = g (k(v), p29)

d+1 d
hm F /I\ /I\hm w(v)
M

KM, (F) fmKY,  (F) —22 s KM (15(0)) /mKY (1(v))

Démonstration. 1’assertion est évidente pour d = 0. Mais on s’y réduit
immédiatement grace au lemme 2.2, tenant Compte de la compatibilité entre
cup-produits et inflations, et de I’égalité Inf” R H(U)(u) h}m r(u) pour une
unit€ u de F avec image u dans x(v).

REMARQUE. Par une compatibilité triviale entre les restrictions en coho-
mologie et les changements de base en K-théorie, on voit qu’il est superflu

de supposer F hensélien: on peut toujours passer par le hensélisé par rapport
a v et le lemme reste valable.
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Donnons enfin, comme promis, une explication informelle pourquoi le th. 2 s’appelle
une loi de réciprocité. D’abord, quelques rappels sur la théorie classique. Si F est
un corps local au sens classique, ¥ € H'(F, Z/mZ) un caractere d’ordre m de
son groupe de Galois absolu, et « un élément du groupe multiplicatif F*, on a
Smoe U x € HX(F, pm) =2 Z/mZ, ou b, est le cobord de la suite de Kummer pour la
multiplication par m. Ceci définit un homomorphisme

¢r - H'(F,Q/Z) — Hom(F*,Q/Z)

dont on sait (cf. [16], [17]) qu’il est le dual de I’application de réciprocité locale. Pour la
théorie globale, on introduit des ideles et on définit I’application de réciprocité globale
comme le produit des applications locales (on suppose ici pour simplifier qu’il n’y a
pas de places réelles). Ensuite, on vérifie que le produit est en fait une somme, et que
le fait que I’application passe au quotient par I’image diagonale du groupe multiplicatif
de notre corps global équivaut au fait que la suite d’Albert-Brauer-Hasse-Noether pour
le groupe de Brauer est un complexe (voir [18]).

Maintenant, on peut procéder de facon analogue pour le corps K du théoreme 2,
en remplacant les groupes multiplicatifs par les K;-groupes de Milnor. Pour les
localisés K,, on accouple x € H 1(Kp,Z/ mZ) avec a € Ky (Ky) pour obtenir
hf;Z’Kp (x) Uy € H3(Kp,u,‘§2) >~ 7/mZ en utilisant le th. 1, ce qui définit comme
en haut une application de réciprocité locale entre K3 (K,) et le groupe de Galois
absolu de K,. Ensuite, on peut définir des K-ideles de K ainsi qu’une application
de réciprocité globale comme le produit des applications locales; comme dans le cas
classique, le fait que cette application passe au quotient par I’image diagonale de K»(K)
se réduit via le symbole cohomologique a notre th. 2.

Remarquons enfin qu’en général, pour n’importe quel schéma normal, integre, de
dimension d et de type fini sur Z, on peut introduire la notion de K,-ideles et énoncer
des «lois de réciprocité». Le miracle est que par passage a un sous-schéma fermé
convenable et puis par localisation en des points de codimension 1 et 2, ces énoncés
se réduisent respectivement a la loi de réciprocité classique et a2 la Remarque suivant
le th. 2. Le cas local de dimension 2 est donc le cas qui, tous dévissages faits, reste
a traiter, mais la formulation du cas général appartient a la théorie des «chaines de
Parshin» pour laquelle on renvoie le lecteur a [9].

3. TOUJOURS PREPARATION, MAIS A LA WEIERSTRASS

Ce chapitre est consacré a quelques outils d’algebre commutative qui seront
utilisés dans la suite. Le résultat fondamental est la conséquence suivante du
théoréme de structure pour les anneaux locaux complets.

THEOREME (I. S. Cohen). Soit A un anneau local normal complet de
dimension 2, a corps résiduel ‘¥ (non nécessairement fini). Alors A est fini
sur un anneau de séries formelles de la forme Oy[[T]], ou Oy est I’anneau
des entiers d’un corps k complet pour une valuation discréte au méme corps
résiduel F.
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Voir Nagata [12], Cor. 31.6 pour une démonstration. Ce théoréme est tres
utile car la structure des anneaux de la forme O[[T]] est bien connue.

LEMME 3.1. Soit Oy comme en haut. Alors I’anneau O[[T]] est factoriel,
et ses éléments premiers sont uniformisante w de Ok, ainsi que les
« polynémes de Weierstrass », c’est-a-dire les polynomes irréductibles dans
Ox[T] de la forme T" + a, T" '+ -+ ag, ou tous les a; sont divisibles

par T.

Le lemme est une conséquence du théoréeme de préparation de Weierstrass.
Voir, par exemple, I’ouvrage de Lang [10].

Les idéaux premiers de hauteur 1 dans O[[T]] sont donc engendrés par
I’uniformisante 7 ou par un polyndme de Weierstrass. Les corps résiduels
correspondants sont respectivement F((T)) ou des extensions finies du corps
valué complet k, et par conséquent sont munis de valuations discretes
canoniques pour lesquelles ils sont complets. Mais il en est alors de méme pour
A (car il est fini sur Ox[[T]]), ce qui montre bien que les corps K, du th. 1
sont des corps locaux de dimension 2. Le théoréme 1 découle donc du th. 1.

Par ailleurs, ’anneau Oy[[T]] est le complété de 1’anneau local B =
Oi[T)x 7). Nous pouvons dériver du lemme 3.1 la description suivante du
hensélisé B" qui sera utilisée dans la démonstration du théoreme 2.

LEMME 3.2. L’anneau B" est un anneau local noethérien régulier, donc
factoriel, de dimension 2, dont le complété est Oy[[T]]. Ses éléments premiers
sont 'uniformisante w et les polynomes de Weierstrass. Par conséquent, le
morphisme naturel Spec Or[[T]] — Spec B" est bijectif, et les corps résiduels
des idéaux premiers correspondants sont identiques sauf pour (0) et (m), ou
le corps résiduel de Oi[[T]] est le complété de celui de B".

Démonstration. La premicre assertion résulte les propriétés générales de
la hensélisation (cf. [11], Chap. 1.4) et la troisieme est triviale a partir de la
seconde. Pour cette derniere, on remarque d’abord que O[[T]] étant fidelement
plat sur B", il suffit d’établir une bijection entre les idéaux premiers de
hauteur 1 de B et ceux de Oi[[T]]. Dans B, ce sont des idéaux principaux
engendrés par 7 ou par certains polyndmes irréductibles de Oy[T] contenus
dans (m,T). Soit f un tel polynome. Comme Oy[[T]] est fidelement plat sur
B, il existe un idéal premier de O[[T]] au-dessus de (f), engendré par un
polyndme de Weierstrass w selon le lemme 3.1. Mais comme les polynomes
de Weierstrass sont tous contenus dans B, on a forcément f = w, ce qui
donne la bijection désirée.
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4. REDUCTIONS

Le reste de ’article est consacré a la démonstration du théoreme 2. Gardons
les notations du chapitre 1. Tout d’abord, on va vérifier que w, = 0 pour
presque tous les yp de hauteur 1.

Soit X le sous-schéma ouvert de SpecA obtenu en enlevant le point
fermé. La suite de localisation en cohomologie étale (cf. Milne [11], Chap. III,
Prop. 1.25) nous fournit par fonctorialité le diagramme commutatif

H3 (K ,u? —— HiX, p$?)

(4.1) l F

H3(Kp7 2) —) H4(SpeCAp>Mm )

Ici la fleche verticale a droite est un isomorphisme par excision (Milne [11],
Chap. III, Cor. 1.28). Quant a la fleche horizontale en bas, en continuant la
suite de localisation on obtient la suite exacte

H*(Spec AL, uS?) — H>(K,, p3”) — Hy(SpecAq, pe?) — H*(Spec Ay, u?) .

Mais les termes aux deux extrémités sont nuls car Afj étant hensélien, sa
cohomologie est la méme que celle de son corps résiduel K(p) (cf. Artin [2],
Chap. III., Thm. 4.9), ce qui est un corps de dimension cohomologique 2, on
I’a vu. Ceci démontre le second isomorphisme.

Soit maintenant S un ensemble fini de points fermés de X, et considérons
la suite de localisation

HY (X — 8, p2%) — Hy(X, p>) — HY (X, p3?).

Ici, on a H§(X, p3%) = @, s Hy(X, p2?), donc par passage 2 la limite sur
les S (ce qui est permis dans notre cas par Milne [11], Chap. III, Lemma 1.16),
on a la suite exacte

(4.2) H (K, 12%) — @ Hy (X, p3%) — H* X, ™).

En particulier, I'image d’un élément w € H>(K, 4$?) par un homomorphisme
H3(K, p&* — HY(X,p$?) est nulle pour presque tout p. Mais par (4.1),
cette image n’est autre que la restriction w, € H>(K,, u®?), et on obtient le
résultat.

Ensuite, on va utiliser le théoreme de Cohen pour montrer le
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LEMME 4.3. Dans I’énoncé du théoréme 2, on peut supposer A = Or[IT1].

Démonstration. Soit A comme au th. 2, et notons par K le corps de
fractions d’un anneau de la forme Of[[T]] sur lequel A est fini selon Cohen.
Alors pour tout idéal premier p de hauteur 1 de O[[T]], on a un diagramme
commutatif

H3K. p$?) —— @ H Ky 1)
plp

CorJ{ l > Cor

H3(K. 22 ——  H3(K;. 132

En effet, il existe un tel diagramme pour tous les H' (i 2 0), et il suffit de
vérifier la fonctorialité pour i = 0. On peut supposer de plus que I’extension
K | K est séparable et I’assertion est alors une conséquence du théoréme sur
les extensions de valuations (cf. Serre [16], chap. I, §2.3).

D’autre part, par le th. 1, on a un diagramme

H3(Ky. 12?) — Z/mZ

- |

H3(I~<—5f 182 =, Z./mZ

m

dont la commutativité se vérifie de la méme maniere que ’énonc€ analogue
(cf. Serre, loc. cit.) pour le groupe de Brauer d’un corps local (de dimension 1).
Ces deux diagrammes impliquent la réduction cherchée.

On suppose donc désormais A = Oy[[T]].

CONVENTION. On va noter par A° le hensélisé de 'anneau Oi[T]x.1),
avec le méme O que dans la définition de A. Son corps de fractions sera noté
K®°. Par contre, en général, nous continuerons de noter par B" tout anneau

qui est comme dans le lemme 3.2. Veuillez accepter toutes nos excuses pour
cet inconvénient.

L'idée de la démonstration du théoreme 2 est de comparer la suite
d’homomorphismes figurant dans 1’énoncé a un complexe auxiliaire en
K-théorie de Milnor par le symbole cohomologique. Or I'image de A9 .
est contenue dans H"(K.u}%"), donc pour pouvoir bénéficier de cet outil
il faut remplacer H>(K, u2?) par exemple par H*(K, u®?). Comme F est

fini, la suite spectrale de Hochschild-Serre nous fournit un homomorphisme
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H*(K, 2% — H'(F.H*(K™, u2?%), oi K™ est le corps de fractions du
hensélisé strict A™. Mais cet homomorphisme n’est un isomorphisme que si
K" est de p-dimension cohomologique 2 pour tout p divisant m, ce qui n’est
pas clair. Par contre si I’on remplace A par A°, le corps de fractions K°° du
hensélisé strict le sera bien, étant un corps de degré de transcendance 1 sur
un corps de dimension cohomologique 1 (cf. Serre [15], chap. 4.3, prop. 11).
La réduction suivante est donc:

LEMME 4.4. On peut remplacer A par A° dans I’énoncé du th. 2.

Démonstration. La suite de localisation (4.2) nous fournit par fonctorialité
le diagramme commutatif

H3(Ko”u;512) d> . @ H40(XO,LL,%2) H4(XO,IUJ%2)
pO

“w | 1 1

H (K, p2?) D HI X, p2?) ——— H'X,p2"
p

mn

olt X° = SpecA°—{(w,T)}, et p° parcourt les points fermés de X° qui sont en
bijection avec ceux de X selon le lemme 3.2. Tenant compte de I’identification
(4.1), pour achever la réduction il suffit de montrer que 1’homomorphisme
vertical au milieu induit un isomorphisme Imd° = Imd. Une chasse au
diagramme montre alors que pour cela il suffit de voir deux choses:

(1) Dans le diagramme (4.5), I’homomorphisme vertical a droite est injectif.

(2) Pour tous les p et p° correspondants, I’homomorphisme naturel
4 o 2 4 ®2
HpO(X ‘,iu‘m )_%Hp(X,:u'm )

est un isomorphisme.

Pour prouver (1), on considere les isomorphismes
X =2 X° Xspecas SpecA = 1im (X° Xspec 4> SpecR),

ot la limite projective est prise suivant les Spec R, avec R un sous-anneau de A
de type fini sur A°. Pour un tel anneau, le morphisme naturel A° — R possede
une section par le théoreme d’approximation d’Artin [1], donc le morphisme
H*(X°, 42%) — H*(X°® Xspecao SpecR, u2?) a également une section et on
obtient le résultat par passage a la limite (tenant de nouveau compte de [11],
Chap. III, Lemma 1.16).
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Pour (2), considérons le diagramme commutatif suivant, obtenu en super-
posant (4.1) et le diagramme analogue pour A°.

H3(K®, 1®2) Ho (X, p3?)

h

1%

©2) HYX, p3%) \

\ Hgo (Spec(Ago ", M%z)

H (K, 1

IR

H3 (Ko, %)

\ :

H3(Ky, 1% H,(Spec A}, p1f7°)

1%

1%

Notre tiche est de montrer que I’homomorphisme 4 du diagramme est un
isomorphisme ce qui équivaut a dire que f I’est. Mais par le th. 1, les groupes
H*(K,, p$?) et H* (K3, 1$*) sont tous les deux isomorphes a Z/mZ ; reste
donc a voir que ces isomorphismes sont compatibles avec f. Par construction,
I’isomorphisme du th. 1 est obtenu comme le composé de deux résidus pour
la suite spectrale de Hochschild-Serre, donc la compatibilité en question est
évidente par fonctorialité.

5. CONCLUSION

Comme promis, on va maintenant construire, suivant Kato, un complexe
en K-théorie de Milnor que ’on va ensuite comparer a travers le symbole
cohomologique avec le complexe hypothétique du th. 2.

Soit B" un anneau comme dans le lemme 3.2, K* son corps de fractions.
On suppose que le corps résiduel de B” est parfait. (En fait, des hypotheses
plus faibles suffisent, cf. la Remarque ci-dessous.) Si g parcourt les idéaux
premiers de hauteur 1 de B, on définit le complexe

(M) Ko(K") 5 @ Ky (k(9)) -2 Ko(F) > Z
q

comme suit: I’homomorphisme « est somme directe des résidus de Milnor
8’1"{ q (cf. chap. 2) attachés aux valuations discrétes de K" induites par les
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divers ¢ (on voit tout de suite qu’il n’y a qu'un nombre fini de résidus qui
n’annulent pas un élément donné de K(K")), et =5 fqvq, OU v, est la
valuation induite sur le corps résiduel x(q) de g par 1’idéal maximal de B",
fq son degré résiduel. (En fait, v, = aqu et la multiplication par f, est
précisément la norme Ko (k(vq)) — Ko(F).)

LEMME 5.1. (M) est un complexe.

Démonstration. Par le lemme 3.2, le groupe multiplicatif de K" est
engendré par les unités de B", I’uniformisante 7, la variable T et les éléments
de la forme P/T", ou P est un polyndme de Weierstrass de degré n. Il suffit
donc de vérifier I’égalité [a((a,b)) = 0 quand a et b sont parmi ces
générateurs. Les cas ou a ou b est une unité, ou bien a =, b =T, sont
triviaux. Si P est de Weierstrass, [Sa((m,P)) = n —eqf; = 0, (ou e, est
I’indice de ramification de vq) car F est supposé parfait. Vu la multiplicativité
et ’anticommutativité des symboles (a,b) (cf. Bass-Tate [3]), il nous reste a
traiter les cas ou a = P/T", b= Q/T*, ou bien a = P/T", b= T. Sur de
tels (a,b) le résidu 8[1”’(70 est trivial, donc on peut se borner aux autres places
de Kj. Or elles peuvent €tre identifiées a des places du corps de fonctions
F(T) par le morphisme naturel Spec B: — Spec F[T]. Si v est une place de
F(T), triviale sur F, qui ne provient pas d’une place de B, on a, grice i la
normalisation par 1/7",

oY ((a, b)) = {

Maintenant si v, est la valuation de k, p une place de F(T), v, le
prolongement unique de v, sur le corps résiduel x(p) avec degré résiduel f,,
on a la formule v; o Ny /x = fpvp, ce qui nous donne

Ba{a,b)) = vx 0 Y  Nuyw 0 01p((a, b))
p
ou p parcourt les places de F(T) triviales sur F (y compris la place a I'infini,
car v,(1) = 0). Mais la loi de réciprocité de Bass-Tate ([3], chap. 1.5) nous
dit que Zp Nyip /i) © 8% = 0, ce qui acheve la démonstration.

1 sib=T etwv estlaplace a I'infini;

0 sinon.

REMARQUE. Le complexe du lemme peut étre largement généralisé; en fait, il peut
étre construit pour n’importe quel anneau local noethérien excellent de dimension 2.
Pour voir Sa = 0 dans ce cas, on montre d’abord par un argument de normes que
I’on peut remplacer 1’anneau par son complété, puis par un autre argument de normes
et le théoreme de Cohen on se réduit au cas de O[[T]], ce qui se traite comme dans
le lemme ci-dessus. On n’a pas besion d’hypotheése sur le corps résiduel; le fait que
I’anneau soit excellent assure la validité de la formule n = ef .
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Enfin, nous signalons que Kato {7] définit un complexe encore plus général, pour
n’importe quel schéma excellent, qui est un analogue du complexe de Gersten-Quillen
en K-théorie de Milnor. Mais la vérification du fait que ce soit un complexe se réduit
immédiatement au cas mentionné ci-dessus.

Maintenant rien ne nous empéche de finir la démonstration du th. 2.
Soient A°, K° comme au chapitre précédent, A°° le hensélisé strict de A°
avec corps de fractions K°. A°° n’est autre que le hensélisé de O[T 1), et
comme on I’a déja remarqué, K°° est de dimension cohomologique 2. Donc
la suite spectrale de Hochschild-Serre induit un isomorphisme H3 (K°, ,UJ%Q) &
H'(F,H*(K°°, 19?)). De méme, si p° est un idéal premier de hauteur 1 de A°,
la suite spectrale de Hochschild-Serre en cohomologie étale (cf. Milne [11],
p. 106) induit un isomorphisme H>(K3o, ui?) = H' (F, H*(K®° % go K20, %)) ,
car on a pour tout i 2 0 des isomorphismes
(5.2) H(K°® xgo Ko, p3%) =2 ela H' (K3, p&?)

1700 o
(ou les p°° sont les idéaux premiers de A°° au-dessus de p°) et les corps
Kys. sont de dimension cohomologique 2. Quant a la vérification de (5.2),
on peut supposer i = 0, puis remplacer les anneaux en question par leurs
complétés, et alors on peut de nouveau invoquer [16], chap. I, par. 2.3, le
théoreme sur les extensions de valuations.

Considérons le diagramme commutatif

H'(F, Ky(K°%)m) =@ H'F, @ KyKS)/m) & H'(F,Z/mZ)

P poolpo
! | | =
H'(F,H (K>, u$) =@ H'(F, @ H KL, u%?) > H'(F, Z/mZ)~7/m1.
pe peefpe
= l = | =
H(K®, %) — @ HKpo,nd)  — H'(F,Z/mZ)

pO

(ou, bien sir, K3(K°°)/m veut dire K5(K°°)/mK,(K°°) etc.) Remarquons que
I’homomorphisme marqué 9" est induit par le composé€ de deux résidus de
Milnor, comme dans le complexe (M) (noter, cependant, que tous les fyoo sont
€gaux a 1), et O est induit par le composé de deux résidus de Hochschild-
Serre. Donc la commutativité du deuxieéme quadrant en haut est assurée par
le lemme 2.4; la commutativité du premier est triviale. La ligne en bas est
essentiellement la suite du th. 2, la seule différence étant que le composé des
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deux résidus qui induit I’isomorphisme du th. 1 tombe dans H'(k(vy), Z/mZ),
il faut donc ajouter une corestriction pour 1’extension finie de corps «(vy) | F
pour arriver & H'(F,Z/mZ). Mais I’isomorphisme de ce dernier groupe avec
Z/mZ n’est pas affecté par les corestrictions. Enfin les deux quadrants en bas
commutent par des propriétés formelles de la suite spectrale de Hochschild-
Serre. Une application du lemme 5.1 (avec A°° i la place de B") montre que
la premiere ligne est un complexe. D’autre part, le théoreme de Merkouriev-
Sousline et le fait que F soit de dimension cohomologique 1 entrainent
la surjectivité du premier homomorphisme vertical en haut. Une chasse au
diagramme montre alors que la ligne en bas est aussi un complexe, ce qu’il
fallait démontrer.

[1]

(2]
[3]

[4]
[5]
[6]

[7]

(8]
[9]

[10]
[11]
[12]
[13]

[14]

REFERENCES

ARTIN, M. Algebraic approximation of structures over complete local rings.
Pub. Math. IHES 36 (1969), 23-58.

—— Grothendieck Topologies. Harvard University, 1961.

BASS, H. and J. TATE. The Milnor Ring of a Global Field, in: H Bass (ed.),
Algebraic K -theory II. Springer LNM 342, 1973.

BLOCH, S. Lectures on Algebraic Cycles. Duke University, 1980.
FROSSARD, E. These. Université de Paris-XI, Orsay, 1995.

KATO, K. A generalization of local class field theory by using K-groups II.
J. Fac. Sci. Univ. Tokyo 27 (1980), 603-683.

—— Milnor K-theory and the Chow group of zero-cycles, in: Bloch et al.
(eds.), Applications of Algebraic K-Theory to Algebraic Geometry and
Number Theory. Contemp. Math., vol. 55, 241-263, AMS, Providence,
1986.

—— A Hasse principle for two-dimensional local fields. J. ‘reine angew.
Math. 366 (1986), 142-183.

KaATO, K. and S. SAITO. Global class field theory of arithmetic schemes, in:
S. Bloch et al. (eds.), Applications of Algebraic K-Theory to Algebraic
Geometry and Number Theory. Contemp. Math., vol. 55, 255-331, AMS,
Providence, 1986.

LANG, S. Algebra (3rd ed.). Addison-Wesley, 1993.

MILNE, J. S. Etale Cohomology. Princeton University Press, 1980.

NAGATA, M. Local Rings. Wiley-Interscience, New York, 1952.

PERRIN-RIOU, B. Systémes d’Euler et représentations p-adiques. Prépublication
Orsay 96-04.

SAITO, S. Class field theory for curves over local fields. J. Number Theory 21
(1985), 44-80.

IRy { W



[15]
[16]
[17]

[18]

[19]

SUR LA LOI DE RECIPROCITE DE KATO 91

SERRE, J.-P. Cohomologie Galoisienne (5° éd.). Springer LNM 5, 1984.
—— Corps locaux. Hermann, Paris, 1968.

—— Local class field theory, in J. W. S. Cassels and A. Frohlich (eds),
Algebraic Number Theory. Academic Press, London-New York, 1967,
129-162.

TATE, J. Global class field theory, in: J. W. S. Cassels and A. Frohlich (eds),
Algebraic Number Theory. Academic Press, London-New York, 1967,
163-203.

—— Relations between K, and Galois cohomology. Invent. Math. 36 (1976),
257-274.

(Regu le 27 novembre 1996)

Tamas Szamuely

Equipe Arithmétique et Géométrie Algébrique, URA D0752
Université de Paris-Sud

Mathématiques, Batiment 425

F-91405 Orsay

France







	SUR LA LOI DE RÉCIPROCITÉ DE KATO POUR LES ANNEAUX LOCAUX DE DIMENSION 2
	1. ÉNONCÉS
	2. Préparation
	3. Toujours préparation, mais à la Weierstrass
	4. RÉDUCTIONS
	5. Conclusion
	...


