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L'Enseignement Mathématique, t. 43 (1997), p. 77-91

SUR LA LOI DE RÉCIPROCITÉ DE KATO

POUR LES ANNEAUX LOCAUX DE DIMENSION 2

par Tamâs Szamuely

Nous nous proposons ici de donner une exposition complète (dans le cas premier à

la caractéristique résiduelle) d'un résultat de Kazuya Kato, fondamental dans la théorie
des corps de classes en dimension supérieure, mais difficilement abordable dans la
littérature. Il va sans dire que nous nous sommes fortement inspirés des travaux
originaux ([7], [8], [9] et [14]) dont nous espérons que ce texte facilitera l'accès.

1. Énoncés

Soient A un anneau local normal complet de dimension 2, K son corps de

fractions et F son corps résiduel qui sera supposé/zm dans la suite. Prenons

un idéal premier p de hauteur 1, et notons Kp le corps de fractions du

hensélisé Ap de A en p. (Pour tout ce qui concerne les anneaux henséliens,
voir [11] et [12].) Fixons un entier positif m premier à la caractéristique
de F.

THÉORÈME 1. Pour tout premier p divisant m, la p -dimension coho-

mologique de Kp est 3, et on a un isomorphisme

//3(Kp,Mf) Z/mZ.

Plus généralement, on dit qu'un corps F est un corps local de dimension

d si F est muni d'une valuation discrète hensélienne pour laquelle son
corps résiduel est un corps local de dimension d - 1, un corps local de
dimension 0 étant un corps fini. Donc un corps local au sens classique est un
corps local complet de dimension 1 dans notre sens, et on va voir au chap. 3

que le corps Kp du th. 1 est un corps local de dimension 2. Or, pour un
m premier à la caractéristique du «plus petit» corps résiduel de F, on a le
théorème général suivant.
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THÉORÈME Y. Pour tout premier p divisant m, la p-dimension coho-

mologique de F est d + 1 et on a un isomorphisme

Hd+\F, p®d) JjjmL

Pour d — 1, on récupère la détermination classique de la m-torsion du

groupe de Brauer d'un corps local (cf. par exemple [16], [17]). Le groupe du
th. 1 joue donc un rôle analogue à celui du groupe de Brauer dans le cas

classique.

Revenons maintenant à notre corps K, et soit uj G H3(K,p®2), up sa

restriction à H3(KP, p®2). On va voir au chap. 4 que u;p 0 pour presque
tout p, on obtient donc un homomorphisme

H\K, /j,®2)->© H\KV,M®2) S ©
P P

où p parcourt les idéaux premiers de hauteur 1 dans A. En faisant la somme
suivant ces p, on obtient l'analogue suivant de la loi de réciprocité classique
de Takagi-Artin (pour cette dernière, cf. [18]):

THÉORÈME 2. La suite d'homomorphismes

H3(K,/j,®2)->© H3(Kp,H®2) -f
P

est un complexe.

Remarque. Tout comme le th. 1, le th. 2 admet une généralisation en

dimension supérieure qui se démontre essentiellement de la même façon:

supposons en fait que le corps résiduel F de notre anneau A est un corps
local de dimension d — 2 pour un d^L 2. Alors on a un complexe, avec les

mêmes notations:

Hd+\K, ß®d) 0 Hd+\Kv,n®d) - Z/mZ.
P

Ces théorèmes sont dus à Kazuya Kato. En fait, il a démontré beaucoup

plus, car il a également traité le cas où l'entier m est divisible par la
caractéristique résiduelle. Ce cas, qui nécessite de longs calculs sur le complexe
de de Rham-Witt, ne sera pas examiné ici. Les deux chapitres qui suivent

contiennent des rappels de résultats divers utilisés dans la suite, les preuves
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des théorèmes 1 et l7 ainsi qu'une discussion superficielle de la position du

th. 2 dans la théorie des corps de classes des schémas arithmétiques. Le reste

de l'article est consacré à la démonstration de ce théorème.

2. Préparation

On rappelle ici quelques résultats en cohomologie galoisienne; une
référence de base est le livre de Serre [15].

Si G est un groupe profini, I un sous-groupe normal fermé dans G, on
a pour tout G-module discret A la suite spectrale de Hochschild-Serre

E\> A(G//,//J'(/,A)) =>

La théorie générale des suites spectrales nous fournit maintenant le

LEMME 2.1. Si A est un module de torsion et I est de dimension

cohomologique l, il existe un homomorphisme8i:Hi+\G,A) -> H'(G/I,Hl(I,A))

appelé le résidu. Si, de plus, G/I est de dimension cohomologique i, cet
homomorphisme est en fait un isomorphisme.

Remarque. En fait, pour A fixé, il suffit de supposer que I soit de

p -dimension cohomologique 1 pour chaque p annulant un élément de A ; de
même pour l'énoncé sur G//.

Un calcul sur les cochaînes (cf. par exemple [5], p. 77 ainsi que [13],
Appendice A) montre la compatibilité suivante entre résidus et cup-produits.

LEMME 2.2. Soient G et I comme ci-dessus, A et B deux G-modules
discrets de torsion. Alors pour tout a G H1 {G, A), b G W (G/fH°(I,B)),

di+j-x(aUInf c/n^))U b.

La démonstration du théorème 1' est une application simple du lemme 2.1.

Démonstration du théorème 1'. On sait que pour un corps muni d'une
valuation discrète hensélienne, le sous-groupe d'inertie du groupe de Galois
absolu est de p-dimension cohomologique 1 pour tout premier p différent
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de la caractéristique résiduelle. (En fait, on trouve dans la littérature plusieurs
démonstrations pour le cas complet, mais par exemple celle donnée par Serre

en termes d'algèbres simples centrales dans [17] se transcrit immédiatement
au cas hensélien.) Tenant compte de la remarque précédente, on peut donc

appliquer le lemme 2.1 avec i m d, G le groupe de Galois absolu de F et 7

le groupe d'inertie, pour obtenir un résidu

(2.3) dd: Hd+l(G,n®d)- Hd(G/Is*Hd(G/I,.
En effet, on vérifie aisément que Hl(I,ß®d) Hl(I,fjLm) ® ^d~V) en

tant que G/7-modules (noter que l'action de 7 sur \i®d est triviale).
Puis la suite de Kummer et la valuation donnent des isomorphismes
771(7. fim) F*r/F= Z/mZ, où F*r est le groupe multiplicatif de

l'extension maximale non ramifiée de F.
Soient maintenant F(1) le corps résiduel de F, celui de F(1), etc.

En répétant l'argument en haut et réécrivant les groupes de cohomologie en

termes de corps, on obtient (notant que /x®° ZjmZ par convention) une
suite d'homomorphismes

Hd+\F,fj%d) -> 77d(Fil\fj®{d-n) -> > H\F{d\Z/mZ) Z/mZ,
F^d) étant fini par hypothèse. Mais alors il est de dimension cohomolo-

gique 1, et l'application successive d'un théorème de transition en cohomologie
galoisienne (Serre [15], chap. 4.3, prop. 12) et du deuxième énoncé du

lemme 2.1 montrent qu'il y a isomorphisme partout.

Soit maintenant F un corps quelconque. Rappelons que le K-groupe de

Milnor K^F est défini comme le quotient de la <7-ième puissance tensorielle
du groupe multiplicatif F* par l'idéal engendré par les éléments de la forme

fi 0 - - <g) fd pour lesquels il existe 1 ^ i ^ j ^ d avec fi F fj — 1. (On

pose Kq(F) Z.) L'image d'un élément f\ ® • • • (g>/j dans K^(F) sera notée(aLe lien avec la cohomologie galoisienne est donné par le symbole

cohomologique de Täte

hdm<F: (F)/mKj(F)Hd(F,
défini pour <7 0 comme l'identité de Z/mZ, et pour <7^1 par cup-produit
à partir du bord de la suite de Kummer. (A priori, cet homomorphisme a

pour domaine (F*/F*m)®d. Le fait qu'il passe au quotient par les relations est

vérifié, par exemple, dans Täte [19] pour le cas typique <7 2.) On conjecture
la bijectivité du symbole pour tout <7 et m. La conjecture est vérifiée dans

plusieurs cas dont le plus important pour nous est le
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THÉORÈME (Merkouriev-Sousline). Le symbole hfn F est bijectif pour tout

m et F.

Notons qu'en fait nous n'utiliserons qu'un cas très particulier de ce résultat

puissant, pour un corps de degré de transcendance 1 sur un corps de dimension

cohomologique 1. Ce cas peut d'ailleurs être prouvé directement en modifiant

un joli argument géométrique de Bloch ([4], pp. 5.9-5.11).

Si de plus F est muni d'une valuation discrète v à corps résiduel k(v), il
existe un homomorphisme canonique d^v : Kf+l(F) —> K% (k(v)) (cf. Bass-

Tate [3]), caractérisé par la formule

où uj est une uniformisante, et les ut sont des unités avec image Uj dans

k(v). Notons que la définition implique dfv((u\,..., i^+i)) 0 si tous les

U{ sont des unités et que Ôqv n'est autre que la valuation v.
Supposons maintenant F hensélien par rapport à v et donnons-nous un

entier m premier à la caractéristique de k(v). Alors on dispose d'une part
du résidu de Milnor d^F, d'autre part du résidu d(i pour la cohomologie
galoisienne à valeurs dans p®d. Tenant compte de l'identification (2.3), les

deux sont liés de façon agréable par le symbole cohomologique.

LEMME 2.4. Pour tout d S 0, on a le diagramme commutatif

Démonstration. L'assertion est évidente pour d 0. Mais on s'y réduit
immédiatement grâce au lemme 2.2, tenant compte de la compatibilité entre
cup-produits et inflations, et de l'égalité Inf^ hlmMv)(ü) hlm>F(u) pour une
unité ude Favec image 77 dans /•(<•).

Remarque. Par une compatibilité triviale entre les restrictions en
cohomologie et les changements de base en £-théorie, on voit qu'il est superflu
de supposer F hensélien : on peut toujours passer par le hensélisé par rapport
à v et le lemme reste valable.

d" ({<J, Ml,..., ud))(mi

Hd+\F,/j,®(d+V) (/,•( /•).

dM

K^+l(F)/mK^+l(F) —K?{k(v))/mK?(«(«)}
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Donnons enfin, comme promis, une explication informelle pourquoi le th. 2 s'appelle
une loi de réciprocité. D'abord, quelques rappels sur la théorie classique. Si F est
un corps local au sens classique, x E Hl(F,Z/mZ) un caractère d'ordre m de

son groupe de Galois absolu, et a un élément du groupe multiplicatif F*, on a

6maU x E H2(F, pm) Z/mZ, où 6m est le cobord de la suite de Kummer pour la
multiplication par m. Ceci définit un homomorphisme

c Pf: Hl(F,Q/Z).->Hom(F*,Q/Z)

dont on sait (cf. [16], [17]) qu'il est le dual de l'application de réciprocité locale. Pour la
théorie globale, on introduit des idèles et on définit l'application de réciprocité globale
comme le produit des applications locales (on suppose ici pour simplifier qu'il n'y a

pas de places réelles). Ensuite, on vérifie que le produit est en fait une somme, et que
le fait que l'application passe au quotient par l'image diagonale du groupe multiplicatif
de notre corps global équivaut au fait que la suite d'Albert-Brauer-Hasse-Noether pour
le groupe de Brauer est un complexe (voir [18]).

Maintenant, on peut procéder de façon analogue pour le corps K du théorème 2,

en remplaçant les groupes multiplicatifs par les Ki-groupes de Milnor. Pour les
localisés Kp, on accouple x E Hl(Kp,Z/mZ) avec a 6 Kf(Kp) pour obtenir

ÉipWUx E H3(Kp,/i®2) Z/mZ en utilisant le th. 1, ce qui définit comme

en haut une application de réciprocité locale entre Ko (Kp) et le groupe de Galois
absolu de Kp Ensuite, on peut définir des iG -idèles de K ainsi qu'une application
de réciprocité globale comme le produit des applications locales; comme dans le cas

classique, le fait que cette application passe au quotient par l'image diagonale de K2VK)
se réduit via le symbole cohomologique à notre th. 2.

Remarquons enfin qu'en général, pour n'importe quel schéma normal, intègre, de
dimension cl et de type fini sur Z, on peut introduire la notion de Kci -idèles et énoncer
des «lois de réciprocité». Le miracle est que par passage à un sous-schéma fermé
convenable et puis par localisation en des points de codimension 1 et 2, ces énoncés
se réduisent respectivement à la loi de réciprocité classique et à la Remarque suivant
le th. 2. Le cas local de dimension 2 est donc le cas qui, tous dévissages faits, reste
à traiter, mais la formulation du cas général appartient à la théorie des «chaînes de
Parshin» pour laquelle on renvoie le lecteur à [9].

3. Toujours préparation, mais à la Weierstrass

Ce chapitre est consacré à quelques outils d'algèbre commutative qui seront

utilisés dans la suite. Le résultat fondamental est la conséquence suivante du

théorème de structure pour les anneaux locaux complets.

THÉORÈME (I. S. Cohen). Soit A un anneau local normal complet de

dimension 2, à corps résiduel ¥ (non nécessairement fini). Alors A est fini
sur un anneau de séries formelles de la forme Ok[[T]], où Ok est Vanneau

des entiers d'un corps k complet pour une valuation discrète au même corps
résiduel F.
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Voir Nagata [12], Cor. 31.6 pour une démonstration. Ce théorème est très

utile car la structure des anneaux de la forme Ok[[T]] est bien connue.

LEMME 3.1. Soit Ok comme en haut. Alors Vanneau Okl[T]] est factoriel,

et ses éléments premiers sont l'uniformisante tt de Ok, ainsi que les

«polynômes de Weierstrass », c'est-à-dire les polynômes irréductibles dans

Ok[T] de la forme Tn + an^{Tn~x + • • • + a0, où tous les a{ sont divisibles

par 7r.

Le lemme est une conséquence du théorème de préparation de Weierstrass.

Voir, par exemple, l'ouvrage de Lang [10].

Les idéaux premiers de hauteur 1 dans Ok[[T]\ sont donc engendrés par

l'uniformisante ir ou par un polynôme de Weierstrass. Les corps résiduels

correspondants sont respectivement F((T)) ou des extensions finies du corps

valué complet k, et par conséquent sont munis de valuations discrètes

canoniques pour lesquelles ils sont complets. Mais il en est alors de même pour
A (car il est fini sur Ok[[T]]), ce qui montre bien que les corps Kv du th. 1

sont des corps locaux de dimension 2. Le théorème 1 découle donc du th. L.
Par ailleurs, l'anneau Ok[[T]] est le complété de l'anneau local B

Ok[T]{7rj). Nous pouvons dériver du lemme 3.1 la description suivante du

hensélisé Bh qui sera utilisée dans la démonstration du théorème 2.

LEMME 3.2. L'anneau Bh est un anneau local noethérien régulier, donc

factoriel, de dimension 2, dont le complété est Ok[[T]]. Ses éléments premiers
sont l'uniformisante ir et les polynômes de Weierstrass. Par conséquent, le

morphisme naturel SpecO^[[L]] —§• Specif est bijectif et les corps résiduels

des idéaux premiers correspondants sont identiques sauf pour (0) et (tt), où

le corps résiduel de Ok[[T]] est le complété de celui de Bh.

Démonstration. La première assertion résulte les propriétés générales de

la hensélisation (cf. [11], Chap. 1.4) et la troisième est triviale à partir de la
seconde. Pour cette dernière, on remarque d'abord que Ok[[T]\ étant fidèlement

plat sur Bh, il suffit d'établir une bijection entre les idéaux premiers de

hauteur 1 de B et ceux de Ok[[T]]. Dans B, ce sont des idéaux principaux
engendrés par ir ou par certains polynômes irréductibles de Ok[T] contenus
dans (7r, T). Soit / un tel polynôme. Comme Ok[[T]] est fidèlement plat sur
B, il existe un idéal premier de Ok[[T]] au-dessus de (/), engendré par un
polynôme de Weierstrass w selon le lemme 3.1. Mais comme les polynômes
de Weierstrass sont tous contenus dans B, on a forcément / w, ce qui
donne la bijection désirée.
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4. Réductions

Le reste de l'article est consacré à la démonstration du théorème 2. Gardons
les notations du chapitre 1. Tout d'abord, on va vérifier que up 0 pour
presque tous les p de hauteur 1.

Soit X le sous-schéma ouvert de Spec A obtenu en enlevant le point
fermé. La suite de localisation en cohomologie étale (cf. Milne [11], Chap. III,
Prop. 1.25) nous fournit par fonctorialité le diagramme commutatif

»

H4 (Spec Aj, a*®2)

Ici la flèche verticale à droite est un isomorphisme par excision (Milne [11],
Chap. III, Cor. 1.28). Quant à la flèche horizontale en bas, en continuant la
suite de localisation on obtient la suite exacte

H\SptcAhp,-, H\KP,p®2) ^ #p(SPecÂp, /i®2) ^ tf4(SpecAAp, M®2).

Mais les termes aux deux extrémités sont nuls car Ap étant hensélien, sa

cohomologie est la même que celle de son corps résiduel n(p) (cf. Artin [2],
Chap. III., Thm. 4.9), ce qui est un corps de dimension cohomologique 2, on

l'a vu. Ceci démontre le second isomorphisme.
Soit maintenant S un ensemble fini de points fermés de X, et considérons

la suite de localisation

H\X-S,/i®2) -, H*S(X, At®2) - H\X, At®2).

Ici, on a HAs{X,p®2) ®pGiSH*(X, p®2), donc par passage à la limite sur
les S (ce qui est permis dans notre cas par Milne [11], Chap. III, Lemma 1.16),

on a la suite exacte

(4.2) H\K, m®2) - © H4p(X, M®2) - M®2).
P

En particulier, l'image d'un élément u G H3(K,p®2) par un homomorphisme
H3(K,p®2) —> Hp(X, pif2) est nulle pour presque tout p. Mais par (4.1),

cette image n'est autre que la restriction ujp G H3(Kpipf2), et on obtient le

résultat.

Ensuite, on va utiliser le théorème de Cohen pour montrer le

H\K^f2)
(4.1)
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LEMME 4.3. Dans Vénoncé du théorème 2, on peut supposer A — Ok[[T]].

Démonstration. Soit A comme au th. 2, et notons par K le corps de

fractions d'un anneau de la forme 0^[[T]] sur lequel A est fini selon Cohen.

Alors pour tout idéal premier p de hauteur 1 de Ok[[T]], on a un diagramme

commutatif

H\K.nf)» ©
p|p

Gorl l^Gor

HHK.nf) >

En effet, il existe un tel diagramme pour tous les H1 (i 0), et il suffit de

vérifier la fonctorialité pour z 0. On peut supposer de plus que l'extension

K | K est séparable et l'assertion est alors une conséquence du théorème sur

les extensions de valuations (cf. Serre [16], chap. I, §2.3).

D'autre part, par le th. 1, on a un diagramme

H3(Kp. jif2) —Z/mZ

H3(K~p.ßf,2) Z/mZ

dont la commutativité se vérifie de la même manière que l'énoncé analogue

(cf. Serre, loc. cit.) pour le groupe de Brauer d'un corps local (de dimension 1).

Ces deux diagrammes impliquent la réduction cherchée.

On suppose donc désonnais A — OfAlT]).

Convention. On va noter par A° le hensélisé de l'anneau

avec le même Ok que dans la définition de A. Son corps de fractions sera noté

K°. Par contre, en général, nous continuerons de noter par Bh tout anneau

qui est comme dans le lemme 3.2. Veuillez accepter toutes nos excuses pour
cet inconvénient.

L'idée de la démonstration du théorème 2 est de comparer la suite

d'homomorphismes figurant dans l'énoncé à un complexe auxiliaire en
K-théorie de Milnor par le symbole cohomologique. Or l'image de hdm K
est contenue dans Hd(K.p®d), donc pour pouvoir bénéficier de cet outil
il faut remplacer H3(K.pf2) par exemple par H2(K.pfp). Comme F est
fini, la suite spectrale de Hochschild-Serre nous fournit un homomorphisme
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H3(K,p®2) H1 (F. H2(Khs.p®2)) où Khs est le corps de fractions du

hensélisé strict Ahs. Mais cet homomorphisme n'est un isomorphisme que si
Khs est de p-dimension cohomologique 2 pour tout p divisant m, ce qui n'est

pas clair. Par contre si l'on remplace A par A°, le corps de fractions K°° du

hensélisé strict le sera bien, étant un corps de degré de transcendance 1 sur

un corps de dimension cohomologique 1 (cf. Serre [15], chap. 4.3, prop. 11).

La réduction suivante est donc :

LEMME 4.4. On peut remplacer A par A° dans Vénoncé du th. 2.

Démonstration. La suite de localisation (4.2) nous fournit par fonctorialité
le diagramme commutatif

H3(K°.ß%2) —^ © H*4X°,tâ2)

(45) 1 i i
H\K,nl2) ©^(X:/if2)

p

où X° SpecA° —{(tt. 7)}, et p° parcourt les points fermés de X° qui sont en

bijection avec ceux de X selon le lemme 3.2. Tenant compte de l'identification
(4.1), pour achever la réduction il suffit de montrer que l'homomorphisme
vertical au milieu induit un isomorphisme Im<i° Im d. Une chasse au

diagramme montre alors que pour cela il suffit de voir deux choses :

(1) Dans le diagramme (4.5), l'homomorphisme vertical à droite est injectif.

(2) Pour tous les p et p° correspondants, l'homomorphisme naturel

H\a<p,tâ2)-+H\\(X.,tâ2)

est un isomorphisme.

Pour prouver (1), on considère les isomorphismes

X X° xSpeC,4s SpecA lim (X° xSpecAo SpecR),

où la limite projective est prise suivant les Spec R, avec R un sous-anneau de A
de type fini sur A°. Pour un tel anneau, le morphisme naturel A° — R possède

une section par le théorème d'approximation d'Artin [1], donc le morphisme
HA(X°,pf2) —> H4(X° Xspeca° Spec R, p®2) a également une section et on

obtient le résultat par passage à la limite (tenant de nouveau compte de [11],

Chap, m, Lemma 1.16).
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Pour (2), considérons le diagramme commutatif suivant, obtenu en

superposant (4.1) et le diagramme analogue pour

H\K°,ß]f)

Notre tâche est de montrer que l'homomorphisme h du diagramme est un

isomorphisme ce qui équivaut à dire que / l'est. Mais par le th. 1, les groupes
H3(Kp, fi®2) et H*(K°0, /i;f:2) sont tous les deux isomorphes à Z/raZ; reste

donc à voir que ces isomorphismes sont compatibles avec /. Par construction,

l'isomorphisme du th. 1 est obtenu comme le composé de deux résidus pour
la suite spectrale de Hochschild-Serre, donc la compatibilité en question est

évidente par fonctorialité.

5. Conclusion

Comme promis, on va maintenant construire, suivant Kato, un complexe
en K-théorie de Milnor que l'on va ensuite comparer à travers le symbole
cohomologique avec le complexe hypothétique du th. 2.

Soit Bh un anneau comme dans le lemme 3.2, Kh son corps de fractions.
On suppose que le corps résiduel de Bh est parfait. (En fait, des hypothèses
plus faibles suffisent, cf. la Remarque ci-dessous.) Si q parcourt les idéaux
premiers de hauteur 1 de Bh, on définit le complexe

(M) K2(Kh) -A © K,(K(q))^ Z
q

comme suit: l'homomorphisme a est somme directe des résidus de Milnor
dfq (cf. chap. 2) attachés aux valuations discrètes de Kh induites par les
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divers q (on voit tout de suite qu'il n'y a qu'un nombre fini de résidus qui
n'annulent pas un élément donné de K2(Kh)), et ß ^2fqvq% °ù vq est la
valuation induite sur le corps résiduel k(q) de q par l'idéal maximal de Bh,

fq son degré résiduel. (En fait, vq d^v et la multiplication par fq est

précisément la norme ^(^C^q)) —> ^o(F).)

LEMME 5.1. (M) est un complexe.

Démonstration. Par le lemme 3.2, le groupe multiplicatif de Kh est

engendré par les unités de Bh, l'uniformisante n, la variable T et les éléments
de la forme P/Tn, où P est un polynôme de Weierstrass de degré n. Il suffit
donc de vérifier l'égalité ßa.((a,b)) — 0 quand a et b sont parmi ces

générateurs. Les cas où a ou b est une unité, ou bien a 7r, b T, sont
triviaux. Si P est de Weierstrass, ßa((n,P)) n — eqfq 0, (où eq est

l'indice de ramification de vq car F est supposé parfait. Vu la multiplicativité
et l'anticommutativité des symboles (a,b) (cf. Bass-Tate [3]), il nous reste à

traiter les cas où a P/Tn, b Q/Tk, ou bien a P/Tn, b — T. Sur de

tels (a, b) le résidu <9^(7r) est trivial, donc on peut se borner aux autres places
de Kh. Or elles peuvent être identifiées à des places du corps de fonctions
F(T) par le morphisme naturel Spec B\ —» SpecF[T]. Si v est une place de

F(T), triviale sur F, qui ne provient pas d'une place de on a, grâce à la

normalisation par 1 /Tn,

Maintenant si vn est la valuation de k, p une place de F(T), vp le

prolongement unique de vn sur le corps résiduel n(p) avec degré résiduel fp,
on a la formule v^ o N^pyk =fpvp, ce qui nous donne

où p parcourt les places de ¥(T) triviales sur F (y compris la place à l'infini,
car IVO) 0). Mais la loi de réciprocité de Bass-Tate ([3], chap. 1.5) nous

dit que ° 0, ce qui achève la démonstration.

Remarque. Le complexe du lemme peut être largement généralisé ; en fait, il peut
être construit pour n'importe quel anneau local noethérien excellent de dimension 2.

Pour voir ßa 0 dans ce cas, on montre d'abord par un argument de normes que
l'on peut remplacer l'anneau par son complété, puis par un autre argument de normes
et le théorème de Cohen on se réduit au cas de Ok[[T\], ce qui se traite comme dans
le lemme ci-dessus. On n'a pas besion d'hypothèse sur le corps résiduel; le fait que
l'anneau soit excellent assure la validité de la formule n ef.

d\,v((a,b)) |
1 si b T et v est la place à l'infini;
0 sinon.

ßa((a, b})V N<v)/k ° p(A
p
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Enfin, nous signalons que Kato [7] définit un complexe encore plus général, pour
n'importe quel schéma excellent, qui est un analogue du complexe de Gersten-Quillen
en -théorie de Milnor. Mais la vérification du fait que ce soit un complexe se réduit
immédiatement au cas mentionné ci-dessus.

Maintenant rien ne nous empêche de finir la démonstration du th. 2.

Soient A°, K° comme au chapitre précédent, A°° le hensélisé strict de A°

avec corps de fractions K°. A°° n'est autre que le hensélisé de 0%r[T]tyjy, et

comme on l'a déjà remarqué, K°° est de dimension cohomologique 2. Donc

la suite spectrale de Hochschild-Serre induit un isomorphisme H3(K°, jif2)
H1 (F, H2(K°°, (i®2)). De même, si p° est un idéal premier de hauteur 1 de A°,
la suite spectrale de Hochschild-Serre en cohomologie étale (cf. Milne [11],

p. 106) induit un isomorphisme H3(K°0, jif2) H1 (F, H2(K°° xKo K°Q, Afif2)),
car on a pour tout i A 0 des isomorphismes

(5.2) H'(K°°xkoK;o,At,f)=©
p°° |p°

(où les p°° sont les idéaux premiers de A°° au-dessus de p°) et les corps
sont de dimension cohomologique 2. Quant à la vérification de (5.2),

on peut supposer i 0, puis remplacer les anneaux en question par leurs
complétés, et alors on peut de nouveau invoquer [16], chap. I, par. 2.3, le
théorème sur les extensions de valuations.

Considérons le diagramme commutatif

Hl(F, K2(K°°)/m)—>© Z/'(F, ©
p° p00|p°

I I 1-
H](F, H\K°°^f2)) ^© H\F, © H,A F, Z/mZ)SZ/mZ

P° p°°|p°

U Is I-
H3(K°, fi®2)—> © H\K;o,iif2) —> //'(F,

P°

(où, bien sûr, K2(K°°)/m veut dire K2(K°°)etc.)Remarquons que
rhomomorphisme marqué dM est induit par le composé de deux résidus de
Milnor, comme dans le complexe (M) (noter, cependant, que tous les fp°° sont
égaux à 1), et d est induit par le composé de deux résidus de Hochschild-
Serre. Donc la commutativité du deuxième quadrant en haut est assurée par
le lemme 2.4; la commutativité du premier est triviale. La ligne en bas est
essentiellement la suite du th. 2, la seule différence étant que le composé des
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deux résidus qui induit l'isomorphisme du th. 1 tombe dans H\n(vp),Z/mZ),
il faut donc ajouter une corestriction pour l'extension finie de corps k(vp) | F

pour arriver à Hl(J?,Z/mZ). Mais l'isomorphisme de ce dernier groupe avec

ZjmZ n'est pas affecté par les corestrictions. Enfin les deux quadrants en bas

commutent par des propriétés formelles de la suite spectrale de Hochschild-
Serre. Une application du lemme 5.1 (avec A°° à la place de Bh) montre que
la première ligne est un complexe. D'autre part, le théorème de Merkouriev-
Sousline et le fait que F soit de dimension cohomologique 1 entraînent

la surjectivité du premier homomorphisme vertical en haut. Une chasse au

diagramme montre alors que la ligne en bas est aussi un complexe, ce qu'il
fallait démontrer.
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