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70 G. NEBE

For I e L,v e Qd we have vF(ln l)tr — va lnFltr and hence (Z/)#
L#an~l.

Since L' G 7r(L) one has U L# D ß_1L. Using this one obtains

Lan~2 L'an~l L#an_1 n Ln_1 (L')# H L' L,

since (.Lf)#/L is the orthogonal complement of Z//L in L#/L with respect to
the induced quadratic form with values in Q/Z. So a~ln2 G G.

Finally we check that n G AL Let g G G, then is in G Aut(F)
since Ln~lgn - L'gn Z/n L and

n~lgnFntrgtrn~tr — n~lagFgtrn~tr F.

4. Obtaining Elements of N

Now we give examples as to how one may construct elements n of the

normaliser N. To obtain similarities we are interested in n G N of determinant
±pd/2 for some (squarefree) natural number p such that p~ln2 G G. The
first method is an application of the normaliser principle to the situation (iii)
described in Section 2:

PROPOSITION 4. Let U < G be a normal subgroup of G and assume that
the commuting algebra K Cmxq)(U) is isomorphic to a number field. If
c G K satisfies c2 p G Q*Id> then c lies in N.

Proof Since G normalises U, it acts by conjugation (and hence as

Galois automorphisms) on the abelian number field K. Now let c G K, with
c2 =: p G Q*Id and ^ G G. Then g stabilises the subfield Q[c] and hence

g~lcg — ±c, which is equivalent to c~1gc ±g G G. Therefore c G N,
since we assumed that —Id G G.

The following construction described in [PIN 95] Proposition (II.4) also

allows us to find elements of N.
For i 1,2 let Gt < GLdi (Q) be finite rational irreducible matrix groups

with commuting algebras At Ç M^.(Q). Also let Q be a maximal common
subalgebra of dimension z of A\ and A2. Let d := an(j vjew q.
as subgroups of G] <S> G2 < GL^(Q). If there exist elements at G NcLd(Q)(Gi)
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centralising Gj and aj (1 < i f j < 2) and a squarefree natural number p f2 0

such that p~la2 G G;, the group

G := (Gi 0 G2,p ^1^2) 5

<2

generated by the elements of Gi 0 G2 and p~la\a2, is a finite subgroup of
Q

GLd(Q) containing Gi 0 G2 as a subgroup of index 2.
<2

For d < 31 and p > 1 we only need the case where a2 is an element of
2(p) 2(p)

the enveloping algebra of G2. Then G is denoted by Gi 0 G2 (or Gi K) G2
<2 ß

according to whether a\ is (or is not) a rational linear combination of elements

of Gi

Using this notation one immediately has the following proposition.

PROPOSITION 5. For f 1,2 the matrix al is an element of determinant
±pd/2 in the normaliser N of G.

A common feature of the situations in Propositions 4 and 5 is that we
extend the natural representation of G to a projective representation which is

realisable as a linear representation over a quadratic extension of Q.

PROPOSITION 6. Let G < E be a supergroup containing G of index 2.

Assume that Cm(1(Q)(G) Q and that the natural character of G extends to E
with character field Ql ^/p], where p G Z is not a square. Then there exists

n G N of determinant ±pd/2 with p~ln2 G G.

Proof By Clifford theory one may extend the natural representation A
of G to a representation 6{ ® ö2 E (Qty^l ® Md(Q))*, where 6\ and
62are projective representations Si(G) {1} and (<52)|G A. Let e G

Then

{8\{e) <g) 82(e))1 61(e)2 <g> è2(e)2 1 ® A(e2),

since e2 E G. Therefore b\(e)2 G Q. Replacing by a suitable
rational multiple (and multiplying 62(e) by the inverse) one may assume
that 6{(e)2 p~f Then n := 62(e) is an element of the normaliser N with
the desired properties.
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Aut(L) det(L) min(L) | Anin |
lattice
sparse

4 F4<g>F4 [2V+8.08+(2)]i6 28 4 4320 +
6

2(3)
[(57,2(9) 0 51,2(9)). 2],ö

oo,3
38 4 720 +

9 [(5/74(3) O c3) à SL2(3)]i6
V^3

28 • 38 6 960 +

14 [2. Altio] 16 58 6 2400 +

16 [SL2(5)êD2,+4 .Alt5]i6
OC • 2

28 • 58 8 1200 +

19
2(3)

[5L2(5) K> 5L2(9)]i6
oc >3

38 • 58 10 1440 +

21
2(3) 2

[5L2(5) K) (5L2(3) C3)]i6 28 • 38 • 58 12 480 +

25

26

2(3) ~
[2. Alt7 K)53]i6

2(3) ~
[5L2(7) K> 53]i6

V=7

38 '-j
8

38 78

12

10

1680

336

+

p ±2

3 [2. Coj]24 l24 4 196560 +

6

16

[6. C/4(3). 2 El 5L?(3)]24
x/^3

2(2)
[6.L3(4). 2®D%\ia

212

212 • 312

4

8

3024

3024 + 7560

p ± 3

+
17 [(5L2(3) o C4). 2 E) î/3(3)]24 212 • 312 8 4536 + 6048 +

18 a24 l24 2 600 p ^ 5

22 [2. J2 5L2(5)]24 512 8 37800 +

35
2(2)

[L2(7)(k)F4]24 712 8 1008 + 3024 P + 2

40 [5L2(13)D5L2(3)]24 1312 12 2 • 2184 A 8736 P + 2

42 [6. Alt7 : 2] 24 212 4 3024 +

43

44

2(2)

[3.Mio ^5L2(3)]24
v^3

2 2(2)

[Alt5 K)(C3E)D8)]24
+5

2(2)
[3. Mio È)Z)8]24

212 • 512

212 • 312 • 512

8

16

1080

360 + 2 • 720

P + 3

p ¥=2

45 212 312 • 512 16 1080+ 1080 +

64 [5L2(11) ED 5L2(3)]24
v^n

212 • 1112 12 1320 p ^ 2
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