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70 G. NEBE

For [ € L,v € Q¢ we have vF(In™")" = va~'nFI” and hence (L)* =
Lfan—1.

Since L' € m(L) one has L' = L* Na~'L. Using this one obtains
Lan™> =Lan™ ' =LPan~ ' nin ' =Y nL' =L,

since (L)*/L is the orthogonal complement of L'/L in L*/L with respect to
the induced quadratic form with values in Q/Z. So a~'n? € G.

Finally we check that n € N. Let g € G, then n"'gn is in G = Aut(F)
since Ln~'gn =L'gn =L'n =L and

n—lgnFntrgtrn—tr — n—lagthrn—tr = F. D

4. OBTAINING ELEMENTS OF N

Now we give examples as to how one may construct elements n of the
normaliser N. To obtain similarities we are interested in n € N of determinant
+p?/2 for some (squarefree) natural number p such that p~'n? € G. The
first method is an application of the normaliser principle to the situation (iii)
described in Section 2:

PROPOSITION 4. Let U < G be a normal subgroup of G and assume that
the commuting algebra K = Cy,qy(U) is isomorphic to a number field. If
c € K satisfies ¢* =p € Q*l;, then c lies in N.

Proof. Since G normalises U, it acts by conjugation (and hence as
Galois automorphisms) on the abelian number field K. Now let ¢ € K, with
¢ = p € Q*l; and g € G. Then ¢ stabilises the subfield Q[c] and hence
g 'cg = 4c, which is equivalent to ¢ 'gc = +g € G. Therefore ¢ € N,
since we assumed that —[; € G. [

The following construction described in [PIN 95] Proposition (II.4) also
allows us to find elements of N.

For i =1,2 let G; < GL4(Q) be finite rational irreducible matrix groups
with commuting algebras A; C M;(Q). Also let QO be a maximal common
subalgebra of dimension z of A; and A,. Let d := d'TdZ and view the G;
as subgroups of Gj %Gg < GL4(Q). If there exist elements a; € Ner,)(Gi)
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centralising G; and a; (1 <i# j<2) and a squarefree natural number p # 0
such that p~la? € G;, the group

G .= (G %)G%p'lmaz) 5

generated by the elements of G; ® G, and p~layay, is a finite subgroup of
0

GL4(Q) containing G; ® G, as a subgroup of index 2.
o

For d <31 and p > 1 we only need the case where a, is an element of
2() 2(p)

the enveloping algebra of G,. Then G is denoted by G %)Gp_ (or G %)Gg)

according to whether a, is (or is not) a rational linear combination of elements

of G1 .
Using this notation one immediately has the following proposition.

PROPOSITION 5. For i = 1,2 the matrix a; is an element of determinant
+p?/? in the normaliser N of G.

A common feature of the situations in Propositions 4 and 5 is that we
extend the natural representation of G to a projective representation which is
realisable as a linear representation over a quadratic extension of Q.

PROPOSITION 6. Let G Q E be a supergroup containing G of index 2.
Assume that Cy,(G) = Q and that the natural character of G extends to E
with character field Q[./pl, where p € Z is not a square. Then there exists
n €N of determinant +p%/* with p~'n? € G.

Proof. By Clifford theory one may extend the natural representation A
of G to a representation 6; ® 6, : E — (Q[\/ﬁ] ®Md(Q))*, where 6; and
6, are projective representations 6;(G) = {1} and (02)jc =A. Let e € E\G.
Then

(61(0) ® 62(€))” = 61(e)* @ ba(e)® = 1 @ A(?),

2

since e* € G. Therefore 6;(e)> € Q. Replacing d;(e) by a suitable

rational multiple (and multiplying &,(e) by the inverse) one may assume

that 6;(e)> = p~'. Then n := 6,(e) is an element of the normaliser N with
the desired properties.  []
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. lattice
Aut(L) det(L) min(L) | Linin| sparse
4| Fs @ Fa=[21°. 0 @)1 2¢ 4 4320 +
2(3)
61| [(SL2(9) ®35L2(9)). 2116 38 4 720 +
’ 2
9| [(Spa(3) 0 C3) ® SL:(3)]16 28 .38 6 960 +
=3
14| [2. Altiolis 58 6 2400 +
2(2) ’
16 | [SLa(5) 02! . Alts]ie 28, 58 8 1200 +
o<c,2
2(3)
19 | [SL(5) © SL(9ie 38. 58 10 1440 +
.3
2(3) 2
21| [SLa(5) 5O (SL»(3) O C3)lie | 2838 .58 12 480 +
>=<,3
23) s g
25| [2. Alty © S3lis 3%.7 12 1680 +
V=1
23} 8 ~8
26 | [SLo(7) B S3lie 38 .7 10 336 p#2
V=1
31 [2.Coi]a 1% 4 196560 +
2
6| [6.Us(3).2 \;@_ SLy(3)]4 212 4 3024 p#£3
-3
22) 12 12 .
16| [6.L3(4).2® Dslos gl gl 8 3024 + 7560 +
2(3)
17| [(SLy(3) 0 Cs).2 60 Us(3)]a | 21231 8 4536 + 6048 +
V=1
18| A 2 2 600 p#5
2
22| [2.7, O SLy(5)]o4 512 8 37800 +
2(2)
35 | [Lo(7) O Fala 7' 8 1008 4+ 3024 | p#2
2(2)
40 | [SL2(13) D SLa(3)]24 1312 12 |2-2184+8736| p#2
42| [6.Alty : 2] 28 4 3024 +
2(2)
43 | [3. Mo O SLy(3)]4 gl= , gt 8 1080 p#3
v—3
2 2(2) 12 A12 <12
44 | [Alts 5 (C3 5 Dg)lo 212.312.5 16 3604+2-720 | p#2
V5
22) 12 12 12
45| [3. Mo Dglos 212.312.5 16 1080 + 1080 +
2(2)
64 | [SLy(11) © SLy(3)]aa 212111 12 1320 p#2

V1T
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