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(i) § = {F € My(Q) | F = F", F positive definite}, the set of positive
definite symmetric matrices, where x” denotes the transposed matrix of
x € M;y(Q) and the action of H on S is S x H — S, (F,h) — hFh".
Then the set of G-fixed points is

Foo(G):={F €S| gFg” =F for all g € G}.

Note that (R<)Fso(G) is the set of G-invariant Euclidean scalar products
on R?. G is called uniform, if- there is essentially -one G—invariant’
Euclidean structure on R?, that is if F~o(G) = {aF | 0 < a € Q}
for some F € M;(Q).

(1) S = M4(Q), and the action of H is conjugation: S X H — S, (c,h) —
h~'ch. Then the set of G-fixed points is the commuting algebra of G

CMd(Q)(G) = {C e M;(Q) } cg = gc for all g € G} .

The following two remarks follow immediately from the normaliser
principle.

REMARK 1. Assume that G is uniform and let F € F<o(G). Then
for each n € N, the matrix nFn" is also G-invariant and therefore

nFn" = (det(n))z/ “F. Hence n induces a similarity of F.

REMARK 2.  For n € N and L € Z(G), the lattice Ln € Z(G) is also
G -invariant.

3. SIMILARITIES NORMALISE

In this section we show that if G is the automorphism group of a (strongly
modular) lattice L then the similarities between L and L' € 7(L) are elements
of N. '

PROPOSITION 3. Let G = Aut(F) < GL4(Z) be the full automorphism
group of a lattice L. Assume that L is an integral lattice. Let L' € (L)
and n € GLy(Q) which induces a similarity from L' to L, i.e. I'n = L and
nFn" =aF, (a€N). Then a='n> € G and n € N.

Proof. The matrix a~'n” is clearly orthogonal with respect to F. Therefore
to prove that a~'n* € G we only have to show that La~'n2 — L. Now
L' =Ln~', hence its dual lattice is

(LY ={ve Q' |vFin™"Y € Z forall lcL}.
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For [ € L,v € Q¢ we have vF(In™")" = va~'nFI” and hence (L)* =
Lfan—1.

Since L' € m(L) one has L' = L* Na~'L. Using this one obtains
Lan™> =Lan™ ' =LPan~ ' nin ' =Y nL' =L,

since (L)*/L is the orthogonal complement of L'/L in L*/L with respect to
the induced quadratic form with values in Q/Z. So a~'n? € G.

Finally we check that n € N. Let g € G, then n"'gn is in G = Aut(F)
since Ln~'gn =L'gn =L'n =L and

n—lgnFntrgtrn—tr — n—lagthrn—tr = F. D

4. OBTAINING ELEMENTS OF N

Now we give examples as to how one may construct elements n of the
normaliser N. To obtain similarities we are interested in n € N of determinant
+p?/2 for some (squarefree) natural number p such that p~'n? € G. The
first method is an application of the normaliser principle to the situation (iii)
described in Section 2:

PROPOSITION 4. Let U < G be a normal subgroup of G and assume that
the commuting algebra K = Cy,qy(U) is isomorphic to a number field. If
c € K satisfies ¢* =p € Q*l;, then c lies in N.

Proof. Since G normalises U, it acts by conjugation (and hence as
Galois automorphisms) on the abelian number field K. Now let ¢ € K, with
¢ = p € Q*l; and g € G. Then ¢ stabilises the subfield Q[c] and hence
g 'cg = 4c, which is equivalent to ¢ 'gc = +g € G. Therefore ¢ € N,
since we assumed that —[; € G. [

The following construction described in [PIN 95] Proposition (II.4) also
allows us to find elements of N.

For i =1,2 let G; < GL4(Q) be finite rational irreducible matrix groups
with commuting algebras A; C M;(Q). Also let QO be a maximal common
subalgebra of dimension z of A; and A,. Let d := d'TdZ and view the G;
as subgroups of Gj %Gg < GL4(Q). If there exist elements a; € Ner,)(Gi)
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