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(ii) s {F G Md(Q) I F Ftr, F positive definite}, the set of positive
definite symmetric matrices, where xtr denotes the transposed matrix of

x G Md(Q) and the action of H on S is S x H —> 5, (F, /z) i—> hFhtr.

Then the set of G-fixed points is

^>0(G) := {F G S I gFgtr F for all g G G}

Note that (R>oXF>o(G) is the set of G-invariant Euclidean scalar products

on R^. G is called uniform, if there is essentially one G-invariant
Euclidean structure on Rd, that is if J^>o(G) {aF | 0 < a G Q}
for some F G Md{Q) •

(iii) S Md(Q), and the action of # is conjugation: 5 x H —> 5, (c,h) \->

h~lch. Then the set of G-fixed points is the commuting algebra of G

CWrf(Q)(G) := {c G Md(Q)I for all e G}
The following two remarks follow immediately from the normaliser

principle.

REMARK 1. Assume that G is uniform and let F G JF>0(G). Then

for each n G N, the matrix nFntr is also G-invariant and therefore
nFntr (det(nfj2^dF. Hence n induces a similarity of F.

REMARK 2. For n e N and L G Z(G), the lattice Ln G Z(G) is also
G-invariant.

3. Similarities Normalise

In this section we show that if G is the automorphism group of a (strongly
modular) lattice L then the similarities between L and L' G 7r(L) are elements
of N.

PROPOSITION 3. Let G Aut(F) < GL^(Z) be the full automorphism
group of a lattice L. Assume that L is an integral lattice. Let L' G n(L)
and n G GLd(Q) which induces a similarity from L' to L, i.e. L'n L and
nFntr aF, (a G N). Then a~ln2 G G and n G N.

Proof. The matrix a~ln2 is clearly orthogonal with respect to F. Therefore
to prove that a~xn2 G G we only have to show that La~ln2 L. Now
L' Ln~l, hence its dual lattice is

{L'f (u G Qd I vF(ln~l)tr G Z for all / G L}
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For I e L,v e Qd we have vF(ln l)tr — va lnFltr and hence (Z/)#
L#an~l.

Since L' G 7r(L) one has U L# D ß_1L. Using this one obtains

Lan~2 L'an~l L#an_1 n Ln_1 (L')# H L' L,

since (.Lf)#/L is the orthogonal complement of Z//L in L#/L with respect to
the induced quadratic form with values in Q/Z. So a~ln2 G G.

Finally we check that n G AL Let g G G, then is in G Aut(F)
since Ln~lgn - L'gn Z/n L and

n~lgnFntrgtrn~tr — n~lagFgtrn~tr F.

4. Obtaining Elements of N

Now we give examples as to how one may construct elements n of the

normaliser N. To obtain similarities we are interested in n G N of determinant
±pd/2 for some (squarefree) natural number p such that p~ln2 G G. The
first method is an application of the normaliser principle to the situation (iii)
described in Section 2:

PROPOSITION 4. Let U < G be a normal subgroup of G and assume that
the commuting algebra K Cmxq)(U) is isomorphic to a number field. If
c G K satisfies c2 p G Q*Id> then c lies in N.

Proof Since G normalises U, it acts by conjugation (and hence as

Galois automorphisms) on the abelian number field K. Now let c G K, with
c2 =: p G Q*Id and ^ G G. Then g stabilises the subfield Q[c] and hence

g~lcg — ±c, which is equivalent to c~1gc ±g G G. Therefore c G N,
since we assumed that —Id G G.

The following construction described in [PIN 95] Proposition (II.4) also

allows us to find elements of N.
For i 1,2 let Gt < GLdi (Q) be finite rational irreducible matrix groups

with commuting algebras At Ç M^.(Q). Also let Q be a maximal common
subalgebra of dimension z of A\ and A2. Let d := an(j vjew q.
as subgroups of G] <S> G2 < GL^(Q). If there exist elements at G NcLd(Q)(Gi)
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