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68 G. NEBE

of G in GL4(Q) to test strong modularity of L. In the next section we
derive some methods for explicitly constructing elements of Ngz,)(G).

Every finite subgroup of GL;(Q) is a subgroup of the automorphism group
of an integral lattice. In particular the maximal finite subgroups of GL;(Q)
are automorphism groups of distinguished lattices. A subgroup of GL;(Q) is
called rational irreducible if it does not preserve a proper subspace # {0} of
Q. The rational irreducible maximal finite, abbreviated to r.i.m.f,, subgroups of
GL4(Q) are classified for d < 32 (cf. [PIN 95], [NeP 95], [Neb 95], [Neb 96],
[Neb 96a]). Their invariant lattices provide many examples of strongly modular
lattices. The following theorem is proved by applying the methods derived in
Section 4.

THEOREM. In dimension d < 32, all even lattices L C R? that are
preserved by a ri.m.f. group and satisfy L*/L = (Z/IZ)*'? for some 1 € N
are strongly modular, except for the lattices of the r.i.m.f. group [+ Alts.2%]16
in GL15(Q) (cf. [NeP 95]).

2. PRELIMINARIES AND NOTATION

The main strategy in this paper is the application of the following
normaliser principle. '

Let G be a group acting on a set S, H a subgroup of the group of trans-
formations of S. Then the normaliser of G in H acts on the set of G-orbits.

In our situation G = Aut(L) is the automorphism group of an integral
lattice L in the Euclidean space RL = R?. By writing the action of G on
RL with respect to a Z-basis (by,...,bs) of L, G becomes a finite subgroup
of GLy(Z). Then G = Aut(F) = {g € GLy(Z) | gFg" = F} where F is the
Gram matrix F = ((b,,b)) iy of L.

For the rest of this art1cle let H=GL;(Q), G<H, be a ﬁmte subgroup
of H, and let N := Ng(G) be its normaliser. We also assume that G contains
the negative unit matrix, —I; € G.

We apply the normaliser principle to the following three situations.

G S={LCQ!|L=>S" 2Zb fora basis (b1,...,bs) of Q?}, the
set of Z-lattices of rank d in QY, and the action of H on § is right
multiplication: § x H — S, (L,h) +— Lh:={lh |l € L}. Then the set of
G -fixed points is

Z(G):={LeS|Lg=L for all g € G},

the set of G-invariant lattices.
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(i) § = {F € My(Q) | F = F", F positive definite}, the set of positive
definite symmetric matrices, where x” denotes the transposed matrix of
x € M;y(Q) and the action of H on S is S x H — S, (F,h) — hFh".
Then the set of G-fixed points is

Foo(G):={F €S| gFg” =F for all g € G}.

Note that (R<)Fso(G) is the set of G-invariant Euclidean scalar products
on R?. G is called uniform, if- there is essentially -one G—invariant’
Euclidean structure on R?, that is if F~o(G) = {aF | 0 < a € Q}
for some F € M;(Q).

(1) S = M4(Q), and the action of H is conjugation: S X H — S, (c,h) —
h~'ch. Then the set of G-fixed points is the commuting algebra of G

CMd(Q)(G) = {C e M;(Q) } cg = gc for all g € G} .

The following two remarks follow immediately from the normaliser
principle.

REMARK 1. Assume that G is uniform and let F € F<o(G). Then
for each n € N, the matrix nFn" is also G-invariant and therefore

nFn" = (det(n))z/ “F. Hence n induces a similarity of F.

REMARK 2.  For n € N and L € Z(G), the lattice Ln € Z(G) is also
G -invariant.

3. SIMILARITIES NORMALISE

In this section we show that if G is the automorphism group of a (strongly
modular) lattice L then the similarities between L and L' € 7(L) are elements
of N. '

PROPOSITION 3. Let G = Aut(F) < GL4(Z) be the full automorphism
group of a lattice L. Assume that L is an integral lattice. Let L' € (L)
and n € GLy(Q) which induces a similarity from L' to L, i.e. I'n = L and
nFn" =aF, (a€N). Then a='n> € G and n € N.

Proof. The matrix a~'n” is clearly orthogonal with respect to F. Therefore
to prove that a~'n* € G we only have to show that La~'n2 — L. Now
L' =Ln~', hence its dual lattice is

(LY ={ve Q' |vFin™"Y € Z forall lcL}.
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