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68 G. NEBE

of G in GLd(Q) to test strong modularity of L. In the next section we
derive some methods for explicitly constructing elements of NglaQ)^).

Every finite subgroup of GLd(Q) is a subgroup of the automorphism group
of an integral lattice. In particular the maximal finite subgroups of GLd(Q)
are automorphism groups of distinguished lattices. A subgroup of GLd(Q) is

called rational irreducible if it does not preserve a proper subspace f {0} of
Qd. The rational irreducible maximal finite, abbreviated to ri.m.f, subgroups of
GLd(Q) are classified for d < 32 (cf. [PIN 95], [NeP 95], [Neb 95], [Neb 96],

[Neb 96a]). Their invariant lattices provide many examples of strongly modular
lattices. The following theorem is proved by applying the methods derived in
Section 4.

THEOREM. In dimension d < 32, all even lattices L Ç Kd that are

preserved by a ri.m.f group and satisfy L#/L (Z//Z)^/2 for some l G N

are strongly modular, except for the lattices of the r.i.m.f. group [=t Altö •22]l6

in GL16(Q) (cf. [NeP 95]).

2. Preliminaries and Notation

The main strategy in this paper is the application of the following
normaliser principle.

Let G be a group acting on a set S, H a subgroup of the group of
transformations of S. Then the normaliser of G in H acts on the set of G-orbits.

In our situation G Aut(L) is the automorphism group of an integral
lattice L in the Euclidean space RL Rd. By writing the action of G on

RL with respect to a Z-basis (b\,..., bd) of L, G becomes a finite subgroup
of GLd(Z). Then G Aut(E) {g G GLd(Z) | gFgtr F} where F is the

Gram matrix F of L.

For the rest of this article let H GLd(Q), G < H, be a finite subgroup

of H, and let N := iV#(G) be its normaliser. We also assume that G contains

the negative unit matrix, —Id G G.

We apply the normaliser principle to the following three situations.

(i) S {L Ç Qd I L Eti for a basis * *•« bd) of Q^}, the

set of Z-lattices of rank d in Qd, and the action of H on S is right
multiplication: S x H —> S, (L,h) i—>• Lh := {//z | l G L}. Then the set of
G-fixed points is

Z(G) := {L G 5 I Lg L for all g G G}

the set of G-invariant lattices.
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(ii) s {F G Md(Q) I F Ftr, F positive definite}, the set of positive
definite symmetric matrices, where xtr denotes the transposed matrix of

x G Md(Q) and the action of H on S is S x H —> 5, (F, /z) i—> hFhtr.

Then the set of G-fixed points is

^>0(G) := {F G S I gFgtr F for all g G G}

Note that (R>oXF>o(G) is the set of G-invariant Euclidean scalar products

on R^. G is called uniform, if there is essentially one G-invariant
Euclidean structure on Rd, that is if J^>o(G) {aF | 0 < a G Q}
for some F G Md{Q) •

(iii) S Md(Q), and the action of # is conjugation: 5 x H —> 5, (c,h) \->

h~lch. Then the set of G-fixed points is the commuting algebra of G

CWrf(Q)(G) := {c G Md(Q)I for all e G}
The following two remarks follow immediately from the normaliser

principle.

REMARK 1. Assume that G is uniform and let F G JF>0(G). Then

for each n G N, the matrix nFntr is also G-invariant and therefore
nFntr (det(nfj2^dF. Hence n induces a similarity of F.

REMARK 2. For n e N and L G Z(G), the lattice Ln G Z(G) is also
G-invariant.

3. Similarities Normalise

In this section we show that if G is the automorphism group of a (strongly
modular) lattice L then the similarities between L and L' G 7r(L) are elements
of N.

PROPOSITION 3. Let G Aut(F) < GL^(Z) be the full automorphism
group of a lattice L. Assume that L is an integral lattice. Let L' G n(L)
and n G GLd(Q) which induces a similarity from L' to L, i.e. L'n L and
nFntr aF, (a G N). Then a~ln2 G G and n G N.

Proof. The matrix a~ln2 is clearly orthogonal with respect to F. Therefore
to prove that a~xn2 G G we only have to show that La~ln2 L. Now
L' Ln~l, hence its dual lattice is

{L'f (u G Qd I vF(ln~l)tr G Z for all / G L}


	2. PRELIMINAIRES AND NOTATION

