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EXAMPLE 4.  Similarly, K = Q(e (3) ,\/iq) may be used to obtain
strongly modular lattices A in Gg,(27¢™) from rank 7 unimodular hermitian

lattices over Og, setting now

1
x-y = 5 Trigo (hx,)/(2 = V2) .
Again, we always have minA > 4. E.g., Ok itself gives the tensor product

of D4 and the binary lattice with Gram matrix <% @ +11) /2> .

2.  ATKIN-LEHNER ACTION ON THETA FUNCTIONS

The subject treated in this section is not new, but appears to be difficult
to cite from the literature (in the form we need it). For convenience, I give a
rather detailed account, starting from a classical formula (due to Jacobi and
others). Let A be an even lattice. The theta function of a coset v = v+ A in
A* (and, in particular, ®, for v = 0) is that function defined on the upper

half-plane by
1
@ﬁ(Z) = E € (‘2“()6 ')C)Z) .

XED
Now let n = 2k (k integral), and recall that SL,(R) acts on functions f
on the upper half-plane by

_ ke [9z+D _[(ab
F e )@ = (cz+ d) f<cz+d>, S_<cd>'

Let S be in SLy(Z), with ¢ > 0. For u,v € A* define
Ps(u,v) = Ze((ax X+ 2x-v+dv- v)/2c)

where x runs through a system of representatives of those elements of A*/cA
which reduce to # in D = A*/A. Each summand clearly depends only on
the class x + cA, and the whole sum depends only on % and @. The latter
statement 1s trivial for u, while for v it is proved (using 1 = ad — bc) by

o os(u,v) = Z e(a(x +dv) - (x + dv)/2c) e(—b(Zx v+ dv - v)/2)
1) x

= ¢s(u+ dv,0) e(—bQu - v+ dv - v)/2) .

So we may write ¢s(u,v) = ¢s(u, 7). Then the formula we need is (see [Mi],
p. 189)
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2.2) O] S = (det A)"2(ic) ™Y p5(3, 7)Os .

veD
Let A be of level £. Then it is a well-known consequence of (2.2) that ©, is
a modular form for the subgroup I'g(¥) of SL,(Z) defined by ¢ =0 (mod ¢).
Now let m|¢, m' = {/m. After [AL] the m-th Atkin-Lehner involution
I'o()W,,, a coset of T'g(£) in its normalizer in SL,(R), is given by any matrix
of the form

Wm:S(‘/’ﬁ 0 ) S:(ab>ero(m’), d = 0(mod m) .

0 1/v/m cd
We specifically choose a = 1,¢ = m’, solve tm + ¢'m’ = 1, and put
b= —t,d=1tm. In any case,

Wy =1, WuWuw =W, (mod I'h(0)).

Now these involutions are connected, via Gaussian sums, to those in Section 1
by the following important relation which seems to have been proved first by
Kitaoka ([Ki] where, however, the constant factor is not worked out; cf. also
[BS], p. 77, for the statement of a generalization).

ATKIN-LEHNER IDENTITY :

det A, > 3

—k .
mt (A )OA .
det A F g (B JOn,

(2.3) On| Wi = (

How this identity will be used here is readily explained. Suppose that A (and
then also A, ) has determinant ¢“. We will be interested in the following
gradually stronger conditions

(1) Or=0,, forall m|{
(2) A is strongly modular.

So condition (1) says that ®, is an eigenform of all the Atkin-Lehner
involutions; Section 3 deals with such modular forms.

Proof of (2.3). Recall that here S is chosen such that a = 1, ¢ = m’ and
m|d. Write 7 € D in the form ¥ = w+y where W € D(m), y € D(m’). Then
¢s(0,7) = ¢5(0,y) by (2.1), and (2.2) gives

(det A)? (im)' O[S = Y ¢5(0, )05
veD

= > 450,9) Y Omys.

yeD(m’) weD(m)
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We first must know that &s(0,5) = 0 for y # 0. To see this, write x € A
in the form x = x; + m'x’ with x; from some system of representatives of
A/Nm' Ay and Vm'x' € Ay . Then

650,) e(—dy- y/2m) = 3 e(Cry-x +2x1 - )/2m) Y ey
X X' €Din’)

But the sum over D(m’) vanishes for ¥ # 0 (since D(m’) is regular with respect
to the discriminant form). It remains to determine ¢s(0,0). Put E = N[ A
Since (1/vVm')A/A is E(m'), the last formula for y = 0 gives

¢s(0,0) = #D(m") Z e (%q) . v)

vEE(m’)
1
l

&= #D(I?’l/) (#E(m/)) * G (D)

where

[ISTE

#D(Y(HEG))” = (A : Vil A) (VIZA 1! A
= (#D(m")) (m' )t
— (#D(m)) " (det A) om')t

1
2 tAm ! %
= m~ (de ) (det A)* (m')t O

[Sltcl

det A

Note that, by Propositions 1 and 2, (2.3) in the case detA = /* becomes

(2.4) GA}]{Wm - grn(Am’>_1@Am .

3. SOME USE OF MODULAR FORMS

Let W(¢) be the elementary abelian 2-group formed by the Atkin-Lehner
involutions w,, = I'y(£)W,, for all m||¢. Let k be even, and let 8;(¢) denote
the space of cusp forms of weight £ on I'((¢). Then W(¥) acts on this space.
For a character x of W(¥) we let 8¢(¢), denote the subspace on which W(¥)
acts by x. If A and M are lattices of dimension 2k and level £ belonging
to the same genus, then f = O, — O, 1s known to be in Sy(¢), and when
both lattices are strongly modular identity (2.4) implies that f is in §;(£),
for the character x(w,) = gm(A). So we are interested in such spaces now.

Fortunately, the dimension of 8;(¢), is known; I am indebted to N.-P. Sko-
ruppa for pointing out the reference. Let s(f) denote the number of prime



	2. ATKIN-LEHNER ACTION ON THETA FUNCTIONS

