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ATKIN-LEHNER EIGENFORMS
AND STRONGLY MODULAR LATTICES

by H.-G. QUEBBEMANN

SUMMARY. There are two arithmetical objects associated with any triple (k, ¥, x)
consisting of an even positive integer k, a squarefree positive integer #, and a character
x of the group of Atkin-Lehner involutions on T'o(£) which maps the Fricke involution

to (=12, Namely, there is a space of common Atkin-Lehner eigenforms of weight
k, and there is a genus of positive definite lattices in dimension 2k. In general,
Siegel’s weighted mean of the theta series from the latter genus lies in the former
space. For an individual lattice, however, the same holds under the condition of
strong modularity introduced in this paper. Many interesting lattices known in higher-
dimensional euclidean space are strongly modular, and their theta series are explained
by the theory of modular forms.

INTRODUCTION

This paper is mainly concerned with lattices on euclidean n-space that are
even and similar to their duals. Let the similarity norm be ¢ and n = 2k.
Then the theta function of such a lattice is a modular form of weight k£ on
I'o(/) and an eigenform of the Fricke operator. (This was used in [Qu] for
primes £.) When the level ¢ is composite, however, one must also take care
of invariance with respect to the other Atkin-Lehner involutions. This will be
our subject here.

The algebraic structure of the relevant Atkin-Lehner eigenforms turns out
to be most simple when the sum of the positive divisors of ¢ divides 24.
As a consequence, the notion of extremal lattices introduced by Mallows,
Odlyzko and Sloane for ¢ = 1 ([CS], Ch.7) applies in a uniform way to
¢=1,2,3,5,6,7,11,14,15,23. This explains, in particular, the theta series of
quite a few remarkable lattices occurring in recent work by Nebe and Plesken

(IN1], [NP]). In fact, their material has been a main stimulus to the present
study.
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1. STANDARD INVOLUTIONS ON LATTICES

Throughout the paper A denotes an even lattice on euclidean n-space and
A* 1its dual lattice on the same space. So x-x € 2Z holds for all x € A,
and A C A*. The group D = A*/A carries the Q/Z-valued regular quadratic
form (v) = %’U -v+7Z, where " =v+ A for v € A*. We choose an integer
¢ > 0 such that also v/A* is even — then A is said to be of level £. It
follows that /A* C A, and ¢ takes its values in %Z/Z. Note that det A = #D
divides ¢" = (det A) (det vZA*). We are especially interested in the situation
when both factors are equal, i.e. detA = ¢* for n = 2k.

Let ¢ = mm’ with coprime integers m, m’ > 0 (notation: m/|{), and
let D(m) be the m-torsion subgroup of D. Clearly, D = D(m) & D(m'),
an orthogonal decomposition with respect to the discriminant form. It is a
standard procedure to associate with A and m that lattice between A and
A* (suitably rescaled) whose image in D is D(m). We summarize its main
properties.

PROPOSITION 1. Let A be of level £ = mm’ as above. Then also
— 1
m

is an even lattice of level £, satisfying

(i) VIA: = Ay and
(”) (Am)m = A; (Am)m’ - AE .

If det A = ¢ holds for k = 5, then also detA, = £,

Proof. First A,, is even because /mA, C A and Vm'A, C VIA*.
Property (1) follows from D(m)* = D(m') and implies that A,, is of level £.
Also (ii) easily follows from (i). Finally #D = ¢* implies #D(m) = m*, and
so detA, = Fm"=%, [

Suppose that detA = ¢¥/% . If, moreover, A is isometric to A,, for all |
m||¢, then A is called strongly modular. So the classes of such lattices are the
common fixed points under the group of involutions defined by Proposition 1
on the set of all classes of level /.

We take a quick look at dimension n = 2, assuming ¢ to be squarefree,
therefore ¢ = 3 (mod 4), and using composition theory (cf. [Ca], Ch.14). An
isometry class of lattices of level £ then corresponds to a set {C,C~'} where
C is an ideal class of the ring of integers in Q(+/—#). Our group of involutions
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is given by the ideal classes of exponent 2 acting by multiplication. It turns
out that strong modularity cannot occur unless £ is a prime or a product of
two primes which are quadratic residues of each other. In the first case there
are no nontrivial involutions, while in the second case there is precisely one
fixed point {C,C~!'}, given by the elements of order 4 in the ideal class
group (whose 2-primary part in this case is cyclic of order at least 4).

Before going on, we recall some facts on Gaussian sums; for the proofs
see [Sc], Ch. 5. These invariants of quadratic forms are also most natural in
connection with modular forms (see next section). We put e(z) = e>™=.

PROPOSITION 2. Let A,m and D(m) be as in Proposition 1. Then

: Z e(%’u-’u>

veD(m)

gm(A) = (#D(m)>

is an eighth root of unity depending only on the isometry class of the rational
quadratic space A ® Q (and on m). Furthermore,
n

In(N)gm (A) = ge(A) = e <§) .

When m is a prime p and k = dimg, D(p),

+i* if p =3 (mod 4)

+1 otherwise.

gp(A) = {

The ambiguity of signs above corresponds to the two possibilities for the
isometry class of a k-dimensional regular quadratic space over F,. When £ is
even, g,(A) =1 holds if and only if D(p) is hyperbolic. In general, the genus
of A may be defined as the isometry class of D. In particular, for squarefree /

it is determined by det A and all gp(A), where p (prime) divides ¢. The rest
of this section deals with the special case

¢ =pq. p# q primes, n = 2k. k even. detA = ¢~

Here all A having g(A) = €, g,(A) = 6 form one genus, denoted
by G.(p°¢®), and there are two such genera subject to the conditions

£.0 € {—1,41}, €6 = i*. As a whole, each genus is invariant under the
standard involutions.
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EXAMPLE 1. Let p =3 (mod 4) and L be any 2-dimensional even lattice
of determinant p. Then it is easy to see that the orthogonal sum L@ /gL is a

strongly modular lattice in G4(p®qg—%) for the Legendre symbol & = (%’) . S0

we have such lattices in G4(273T), G4(2777), G4(31757),... . For arbitrary
primes p and ¢ we obtain, by the same construction, a strongly modular
lattice in Gg(pTg¢™) from a 4-dimensional one of level p (which always exists,

cf. [Qu]).

EXAMPLE 2. Here we use some information on (proper) class numbers
from [Vi], p. 153. First also G4(2737), G4(275%) and G4(2%57) contain
strongly modular lattices because they have class number 1. On the other hand,
let A be the sublattice of the D4 root lattice formed by all x = (xy,...,x4)
such that x; + 2x; + 3x3 = O(mod 7). It is easy to see that A belongs to
G4(2777) and that min A = 4. (As usual, min A denotes the minimum “norm”
x-x for x e A, x #0.) Since (0,0,0,2) sits in 2A*NA, we have min A, = 2,
and so A, is not isometric to A. Since G4(2~77) has class number 2, no
strongly modular lattice exists in this genus. Similarly, also G4(3757) contains
no such lattice. In this case the two classes are represented by L& L, where

L is the binary lattice with Gram matrix (f é) or (? 31)

EXAMPLE 3. Again, let p = 3 (mod 4), ¢ odd, and K = Q(«, 3), where
o? = —p and [ = (=1 D/2g. Let O be the ring of integers of K ; its
different is generated by A = «f. Given a totally positive hermitian space
(V,h) of dimension r over K, we also consider it as an inner product space
of dimension n = 4r over Q for

x-y=Trgsq (h(x, y)) .

Then, if A is an Og-lattice on V with hermitian dual lattice A", its
euclidean dual is A* = A~ !'A”. Therefore, a unimodular hermitian lattice,
when considered euclidean, belongs to the r-fold sum of the 4-dimensional
genus occurring in Example 1 and is strongly modular (before rescaling, A,
and A, are given by a”'A and 7'A, respectively). Furthermore, inspection
of the traces of totally-positive elements in real quadratic fields shows that we
always have min A > 4, moreover, min A > 6 if there is no x € A satisfying
h(x,x) = 1 (in particular, if r > 2 and (A, h) is indecomposable), and even -
min A > 8 if this condition holds for g # 5.
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EXAMPLE 4.  Similarly, K = Q(e (3) ,\/iq) may be used to obtain
strongly modular lattices A in Gg,(27¢™) from rank 7 unimodular hermitian

lattices over Og, setting now

1
x-y = 5 Trigo (hx,)/(2 = V2) .
Again, we always have minA > 4. E.g., Ok itself gives the tensor product

of D4 and the binary lattice with Gram matrix <% @ +11) /2> .

2.  ATKIN-LEHNER ACTION ON THETA FUNCTIONS

The subject treated in this section is not new, but appears to be difficult
to cite from the literature (in the form we need it). For convenience, I give a
rather detailed account, starting from a classical formula (due to Jacobi and
others). Let A be an even lattice. The theta function of a coset v = v+ A in
A* (and, in particular, ®, for v = 0) is that function defined on the upper

half-plane by
1
@ﬁ(Z) = E € (‘2“()6 ')C)Z) .

XED
Now let n = 2k (k integral), and recall that SL,(R) acts on functions f
on the upper half-plane by

_ ke [9z+D _[(ab
F e )@ = (cz+ d) f<cz+d>, S_<cd>'

Let S be in SLy(Z), with ¢ > 0. For u,v € A* define
Ps(u,v) = Ze((ax X+ 2x-v+dv- v)/2c)

where x runs through a system of representatives of those elements of A*/cA
which reduce to # in D = A*/A. Each summand clearly depends only on
the class x + cA, and the whole sum depends only on % and @. The latter
statement 1s trivial for u, while for v it is proved (using 1 = ad — bc) by

o os(u,v) = Z e(a(x +dv) - (x + dv)/2c) e(—b(Zx v+ dv - v)/2)
1) x

= ¢s(u+ dv,0) e(—bQu - v+ dv - v)/2) .

So we may write ¢s(u,v) = ¢s(u, 7). Then the formula we need is (see [Mi],
p. 189)
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2.2) O] S = (det A)"2(ic) ™Y p5(3, 7)Os .

veD
Let A be of level £. Then it is a well-known consequence of (2.2) that ©, is
a modular form for the subgroup I'g(¥) of SL,(Z) defined by ¢ =0 (mod ¢).
Now let m|¢, m' = {/m. After [AL] the m-th Atkin-Lehner involution
I'o()W,,, a coset of T'g(£) in its normalizer in SL,(R), is given by any matrix
of the form

Wm:S(‘/’ﬁ 0 ) S:(ab>ero(m’), d = 0(mod m) .

0 1/v/m cd
We specifically choose a = 1,¢ = m’, solve tm + ¢'m’ = 1, and put
b= —t,d=1tm. In any case,

Wy =1, WuWuw =W, (mod I'h(0)).

Now these involutions are connected, via Gaussian sums, to those in Section 1
by the following important relation which seems to have been proved first by
Kitaoka ([Ki] where, however, the constant factor is not worked out; cf. also
[BS], p. 77, for the statement of a generalization).

ATKIN-LEHNER IDENTITY :

det A, > 3

—k .
mt (A )OA .
det A F g (B JOn,

(2.3) On| Wi = (

How this identity will be used here is readily explained. Suppose that A (and
then also A, ) has determinant ¢“. We will be interested in the following
gradually stronger conditions

(1) Or=0,, forall m|{
(2) A is strongly modular.

So condition (1) says that ®, is an eigenform of all the Atkin-Lehner
involutions; Section 3 deals with such modular forms.

Proof of (2.3). Recall that here S is chosen such that a = 1, ¢ = m’ and
m|d. Write 7 € D in the form ¥ = w+y where W € D(m), y € D(m’). Then
¢s(0,7) = ¢5(0,y) by (2.1), and (2.2) gives

(det A)? (im)' O[S = Y ¢5(0, )05
veD

= > 450,9) Y Omys.

yeD(m’) weD(m)
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We first must know that &s(0,5) = 0 for y # 0. To see this, write x € A
in the form x = x; + m'x’ with x; from some system of representatives of
A/Nm' Ay and Vm'x' € Ay . Then

650,) e(—dy- y/2m) = 3 e(Cry-x +2x1 - )/2m) Y ey
X X' €Din’)

But the sum over D(m’) vanishes for ¥ # 0 (since D(m’) is regular with respect
to the discriminant form). It remains to determine ¢s(0,0). Put E = N[ A
Since (1/vVm')A/A is E(m'), the last formula for y = 0 gives

¢s(0,0) = #D(m") Z e (%q) . v)

vEE(m’)
1
l

&= #D(I?’l/) (#E(m/)) * G (D)

where

[ISTE

#D(Y(HEG))” = (A : Vil A) (VIZA 1! A
= (#D(m")) (m' )t
— (#D(m)) " (det A) om')t

1
2 tAm ! %
= m~ (de ) (det A)* (m')t O

[Sltcl

det A

Note that, by Propositions 1 and 2, (2.3) in the case detA = /* becomes

(2.4) GA}]{Wm - grn(Am’>_1@Am .

3. SOME USE OF MODULAR FORMS

Let W(¢) be the elementary abelian 2-group formed by the Atkin-Lehner
involutions w,, = I'y(£)W,, for all m||¢. Let k be even, and let 8;(¢) denote
the space of cusp forms of weight £ on I'((¢). Then W(¥) acts on this space.
For a character x of W(¥) we let 8¢(¢), denote the subspace on which W(¥)
acts by x. If A and M are lattices of dimension 2k and level £ belonging
to the same genus, then f = O, — O, 1s known to be in Sy(¢), and when
both lattices are strongly modular identity (2.4) implies that f is in §;(£),
for the character x(w,) = gm(A). So we are interested in such spaces now.

Fortunately, the dimension of 8;(¢), is known; I am indebted to N.-P. Sko-
ruppa for pointing out the reference. Let s(f) denote the number of prime
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factors of ¢, and for m||¢ let #(¢,m) denote the trace of w, on Sy (f). We
first have, by the orthogonality relations for characters,

dim 8,(0)y =270 " x(wn )€, m).
m||€

Now the formula for (¢, m) can be found in [SZ], p. 133 (for reasons of space
it will not be restated here in general). In particular, if ¢ > 3 is squarefree,
(=¥ 2244, #) turns out to be the Hurwitz class number H(4¢) (cf. [Col,
Appendix B1 for a useful table), and the other #.(¢,m) for m > 1 have about
the same order. The only trace that grows with k is 7.(¢,1), and so the ratio
of the dimensions of 8&;(¢), and &;(¢) for large k is close to 250 Here
are the formulae evaluated for the simplest composite cases (valid for k = 2
only if x is nontrivial):

1
dim 8(6), = 7 (k=3 + (x(w2) + x(ws) + x(ws)) (~1)*?)
1 :
dim 8(14), = 5 (k=2 + (x(wy) + x(wia)) (= 1)*/?)
1
dim 8,(15)y = = (k =2+ (x(ws) + x(wis)) (= D"?).

Note that £ = 6, 14,15 are just those composite numbers for which o((¢) (the
sum of the positive divisors) divides 24. Let 7)(z) denote the Dedekind eta
function. Then for ¢;(£)|24 the product

Ae(2) = [ [ n(m2)**/ @
m|é

is known to be a cusp form on I'g(¢), with weight k, = 120¢(¢)/01(£), oo(f) =
25 and nontrivial character if k, is odd. Fixing now ¢ = 6,14 or
15 (ky = 4,2,2, resp.), we choose some 4-dimensional strongly modular lattice
N of level ¢ (see Section 1, Examples 1 and 2) and define X (i) = gn(N)*/?
for m|¢.

PROPOSITION 3. For ¢ = 6,14, 15, using the notations above, a basis of
Sx()y is given by the functions

OLA], where i >0, j >0, 2i+kyj=k.
Proof. Recall from Section 1 that for £ = 6 there are two possibilities

for the genus of N, and so for the character x when k/2 is odd. But in °
both cases the dimension formula gives the same value (k — 2)/4. When
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/— 14 and ¢ = 15 we have seen that strong modularity uniquely determines
the genus of N. So the result is an immediate consequence of the formulae
above, our knowledge of x from Section 1, and the fact that the expansion
of Aje at g = e(z) begins with ¢’ . We know that A, belongs to our space for
k = k;, because dim 8, (/) =1. [

Now the notion of analytic extremality can be used for the levels above in
the same way as in [CS], Ch. 7, or [Qu] when s(¢) =0 or 1 and o,(£)|24.
Namely, @1};,/ & e 81(£), contains a unique function whose g-expansion has
1,0,...,0 as its first 1+ [k/k¢] coefficients, and a lattice A from the genus
of N¥/? is called extremal if ©, is this function. First examples for £ = 6

and 15 occurred in Section 1.

EXAMPLE 5. Let £ = 14. A strongly modular lattice A in G4(277%).
e = (—1), is extremal if min A = 2r + 2 holds. We describe one for r = 1
and r = 3 (but suppress the trivial exercise to write down O, in terms of Oy
and A4). The initial lattice N from Example 1 may be considered hermitian
as L@ oL where L = O, K = Q(v/=7), and p = (1 ++/=7), a prime
factor of 2 in Og. For r =1 we let A be the lattice of all pairs (x.)) in
L& L such that x = y(mod oL). For r =3 we do the same after replacing
L = Ok by the Barnes-Craig lattice L = A(62) (which is unimodular of rank 3
over Og and has minimum norm 4). Obviously, A; and A, before rescaling
are given by (1/v/=7)A and (1/0)A, respectively, and min A = 2r+2 holds.

FURTHER EXAMPLES. For ¢ = 6 and 15 there always exists at least one
extremal lattice in dimension n = 2k, 4k, and 6k, (minimum norm 4, 6, 8§,
resp.), and for £ = 15 there is even one in dimension 16 = 8k, (minimum
norm 10). The examples for n > 8 have appeared in [NP] and [N1]. The
group-theoretical method used by G. Nebe to prove the strong modularity of
these lattices is described in [N2]. She also has interesting strongly modular
lattices for squarefree levels not satisfying o(£)|24, some being extremal in
the general sense that the theta function attains the maximal order to which a
modular form in the appropriate Atkin-Lehner eigenspace takes on the value
1 at oc. This property may sometimes be verified computationally; it seems
difficult to determine the maximum in general.

The nonexistence of strongly modular lattices in certain genera like
G4(277%) or G4(3%77) may also be explained by the vanishing of the
corresponding space 8,(f), and a noneven first coefficient occurring in the
“genus theta series”. We now discuss the latter object.
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Let M(¢) denote the space of all modular forms of even weight k£ on
I'o(£), and for a character x of W(¥) let My(¢), be the subspace on which
W) acts by x. Assume that £ is squarefree. Then the cusps of I'g(¢) are
permuted transitively by W(¥), and so the codimension of 8;(¢), in M(¢),
can be at most 1. (In fact, it is 1 except for the case k =2, x = 1; cf. [Mi],
p. 61.) Assuming further that y(w;) = (—1)*/?, we have a unique genus of
even lattices A of dimension n = 2k, level ¢, determinant #¢ and invariants
Im(A) = x(wy), m|€. Let this genus be denoted by G, (¢, x), and define

Ontn = Hpy O (HAur(h)) ™ O,

where pi, 0, = Z(#Aut(AD—l denotes the Minkowski-Siegel “mass”, the
summations being over all classes of lattices in G,(¢, x). We easily see that
G,(¢,x) remains invariant under the standard involutions, and in general A
and A,, for m||¢ have the same automorphisms. Therefore, the Atkin-Lehner
identity (2.4) implies that ©,,, lies in M(¥), . The following observation
was made by A. Krieg for the case when £ is a prime ([Kr]).

PROPOSITION 4. For even k, squarefree £ and a character x of W({)
satisfying x(wg) = (—D¥? we have

M)y = COo g D Si(£)y

Furthermore, Siegel’s formula in this case is

Onex(@ = (3 xwamt?) " 3 xtwmt E(mz)

m|£ m|€

where Ej denotes the normalized Eisenstein series of weight k for SIL,(Z).

Proof. 'The first statement has been proved already by the preceding
remarks. The second statement follows from the first one, as in the prime
level case (cf. [Kr]). For the convenience of the reader the principal argument
will be reproduced here. First one observes that, by a general property of
genus theta functions ([An]), the decomposition above is an orthogonal one
with respect to the Petersson scalar product. Since both sides of the formula
to be proved have constant term 1, it then suffices to know that also the
right-hand side lies in the orthogonal complement of 8;(¢), . When k > 4,
the latter function is the image of Ej(z) under the canonical W(¥)-projection
from My(£) onto My(f),, and one is reduced to orthogonality between the
classical Eisenstein series and cusp forms; the case k =2 where Ei(z) itself -
diverges must be considered separately (cf. [Mi], Ch.7). [
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