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8. ARAKELOV CHOW RINGS OF GRASSMANNIANS

In this section G = G(r,n) will denote the Grassmannian over SpecZ.
Over any field k, G parametrizes the r-dimensional linear subspaces of a
vector space over k. Let

(13) E:0-S—E—-0—0

denote the universal exact sequence of vector bundles over G. Here the
trivial bundle E(C) is given the trivial metric and the tautological subbundle
S(C) and quotient bundle Q(C) the induced metrics. The homogeneous space
G(C) ~ U(n)/(U(r)x U(n—r)) is a complex manifold. G(C) is endowed with
a natural U(n)-invariant metric coming from the Kéhler form ng = ¢1(Q(C)).

G is a smooth arithmetic scheme and G(C) with the metric coming from
nG is a hermitian symmetric space, so we have an Arakelov Chow ring CH(G).
Note that since the hermitian vector bundles in (13) are invariant under the
action of U(n), their Chern forms are harmonic, and thus the arithmetic
characteristic classes obtained are all elements of CH(G). Maillot [Ma] found
a presentation of CH(G), using the above observation and the short exact
sequence (11). We wish to offer another description of this ring, based on the
calculations in this paper.

First recall the geometric picture: for the ordinary Chow ring we have

Z[c(S),c(Q)]
(c($)e(Q) = 1)
(see for instance [F], Example 14.6.6). If xi,...,x, are the Chern roots of

S, y1,...,Ys are the Chern roots of O, H =S, x S,,_, is the product of two
symmetric groups, and ¢ is a formal variable, then (14) can be rewritten

(14) CH(G) =

Z[X],...,)C,-,yl)...,ys]H '
<H,:(1 +xt) [0+ yjt) = 1>

Maillot’s presentation of CH(G) is an analogue of (14); ours will be an
analogue of (15). We introduce 2n variables

(15) CH(G) =

ALy ey X Y1y e o5 Vs XDy o3 Xy Vg e ooy Vs
and consider the rings
. A~ o~ —~ H
A=Zkx,....%,5,...,5%1" and  B=Rxi,...,x,y1,..., "7

and the ring homomorphism w : A — B defined by w(x;) = x; and w@j) = yj.
A ring structure is defined on the abelian group A @ B by setting
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@) x3,5) = (3, w@y + X)) .

We will adopt the convention that & denotes (&, 0), [ denotes (0, 3), and any
product []x;y; denotes (0, ]]x;y;); the multiplication * is thus characterized
by the properties & *x 8 = af and B * 3, = 0. We now define two sets of
relations in (A @ B)[¢] :

Ri: [[a+xn]Ja+yn=1,
i J

) —~ ~ log(1 +yjt) .
Ry : H(l-’rx,t)*];[(l—*-yjl‘)*(l‘l‘t;l—ﬂ]—t— =],

and let A denote the quotient of the graded ring A @& B by these relations.
Using this notation we can state

THEOREM 6. There is a unique ring isomorphism ® : A — CH(G) such
that

o(JJa+xd)) =D adr, o(J[a+32)) => &0,
i i J J

O(JJa1 +xt)) => a(c®),  o(JJa+yth) =D a(c(@)r.
i J J

i

Proof. The isomorphism ® of A with CH(G) is obtained exactly as in
[Ma], Theorem 4.0.5. The key fact is that since G has a cellular decomposition
(in the sense of [F], Ex. 1.9.1), it follows that CHP*~!(G) = 0 for all p (using
the excision exact sequence for the groups CH**(G) ; cf. [G], §8). Summing
the sequence (11) over all p gives

(16) 0 — H(Ggr) > CH(G) — > CH(G) — 0.

We can now use our knowledge of the rings ‘H(Gr) and CH(G) together with
the five lemma, as in loc. cit. The multiplication * is a consequence of the
general identity a(x)y = a(xw(y)) in @(G). To complete the argument we
must show that the relation ¢(S)c(Q) = 1+ a(c(€)) translates to the relation
R, above.

Let p;(y) be the i-th power sum in the variables y; ..., y,, identified under
@ with the class a(p:(Q)) in CH(G) (we will use such identifications freely

in the sequel). We also define p,(t) = Y (~1)"'"Hp:(y)t™*". Proposition 3
i=0
implies that
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(17) (e (Q) =1+ G(Et(g)) =1-pa(0),

where the subscript ¢ denotes the corresponding Chern polynomial. Multiplying
both sides of (17) by 1+ p.(r) and using the properties of multiplication n
A gives the equivalent form

(18) CS) *xC(0) * (1 +pa(n) = 1.
We now note that the harmonic number generating function
— ! 17 1 7 ~ log(1—1)
ZHit T tar st i T T T

It follows that

Pal(= ’FZHWN‘“—fZZHw ~f21—0—gﬁ;m

j=1 i=0 j=1
and thus

S
log(1 + y;t)
pa(t):t§ 1‘|’th o
j=1

Substituting this in equation (18) gives relation R,. [

Theorem 6 shows that the relations in the Arakelov Chow ring of G
are the classical geometric ones perturbed by a new “arithmetic factor” of
1 + p.(t). While this factor is closely related to the power sums pi(0), the
most natural basis of symmetric functions for doing calculations in CH(G) 1s
the basis of Schur polynomials (corresponding to the Schubert classes; see for
example [F], §14.7). The arithmetic analogues of the special Schubert classes
involve the power sum perturbation above; multiplication formulas are thus
quite complicated (see [Ma]).

In geometry the Chern roots x; and y; all “live” on the complete flag
variety above G. There are certainly natural line bundles on the flag variety
whose first Chern classes correspond to the roots in Theorem 6. However on
flag varieties the situation is more complicated and our knowledge is not as
complete. We refer the reader to [T] for more details.
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