Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	43 (1997)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	BOTT-CHERN FORMS AND ARITHMETIC INTERSECTIONS
Autor:	Tamvakis, Harry
Kapitel:	7. Arithmetic intersection theory
DOI:	https://doi.org/10.5169/seals-63270

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 19.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

H. TAMVAKIS

7. ARITHMETIC INTERSECTION THEORY

We recall here the generalization of Arakelov theory to higher dimensions due to Gillet and Soulé. Our main references are [GS1], [GS2] and the exposition in [SABK]. For A an abelian group, $A_{\mathbf{Q}}$ denotes $A \otimes_{\mathbf{Z}} \mathbf{Q}$. Let X be an *arithmetic scheme over* \mathbf{Z} , by which we mean a regular scheme, projective and flat over Spec \mathbf{Z} . For $p \ge 0$, let $X^{(p)}$ be the set of integral subschemes of X of codimension p and $Z^p(X)$ be the group of codimension p cycles on X. The p-th Chow group of $X : CH^p(X) := Z^p(X)/R^p(X)$, where $R^p(X)$ is the subgroup of $Z^p(X)$ generated by the cycles div f, $f \in k(x)^*$, $x \in X^{(p-1)}$. Let $CH(X) = \bigoplus_p CH^p(X)$. If X is smooth over Spec \mathbf{Z} , then the methods of [F] can be used to give CH(X) the structure of a commutative ring. In general one has a product structure on $CH(X)_{\mathbf{Q}}$ after tensoring with \mathbf{Q} .

Let $D^{p,p}(X(\mathbb{C}))$ denote the space of complex currents of type (p,p)on $X(\mathbb{C})$, and $F_{\infty} : X(\mathbb{C}) \to X(\mathbb{C})$ the involution induced by complex conjugation. Let $D^{p,p}(X_{\mathbb{R}})$ (resp. $A^{p,p}(X_{\mathbb{R}})$) be the subspace of $D^{p,p}(X(\mathbb{C}))$ (resp. $A^{p,p}(X(\mathbb{C}))$) generated by real currents (resp. forms) T such that $F_{\infty}^{*}T = (-1)^{p}T$; denote by $\widetilde{D}^{p,p}(X_{\mathbb{R}})$ and $\widetilde{A}^{p,p}(X_{\mathbb{R}})$ the respective images in $\widetilde{D}^{p,p}(X(\mathbb{C}))$ and $\widetilde{A}^{p,p}(X(\mathbb{C}))$.

An arithmetic cycle on X of codimension p is a pair (Z, g_Z) in the group $Z^p(X) \bigoplus \widetilde{D}^{p-1,p-1}(X_{\mathbf{R}})$, where g_Z is a Green current for $Z(\mathbf{C})$, i.e. a current such that $dd^c g_Z + \delta_{Z(\mathbf{C})}$ is represented by a smooth form. The group of arithmetic cycles is denoted by $\widehat{Z}^p(X)$. If $x \in X^{(p-1)}$ and $f \in k(x)^*$, we let $\widehat{\operatorname{div}} f$ denote the arithmetic cycle $(\operatorname{div} f, [-\log |f_{\mathbf{C}}|^2 \cdot \delta_{x(\mathbf{C})}])$.

The *p*-th arithmetic Chow group of $X : \widehat{CH}^p(X) := \widehat{Z}^p(X)/\widehat{R}^p(X)$, where $\widehat{R}^p(X)$ is the subgroup of $\widehat{Z}^p(X)$ generated by the cycles $\widehat{\operatorname{div}} f, f \in k(x)^*$, $x \in X^{(p-1)}$. Let $\widehat{CH}(X) = \bigoplus_p \widehat{CH}^p(X)$.

We have the following canonical morphisms of abelian groups:

$$\zeta : \widehat{CH}^{p}(X) \longrightarrow CH^{p}(X), \quad [(Z, g_{Z})] \longmapsto [Z],$$

$$\omega : \widehat{CH}^{p}(X) \longrightarrow \operatorname{Ker} d \cap \operatorname{Ker} d^{c} (\subset A^{p,p}(X_{\mathbf{R}})), \quad [(Z, g_{Z})] \longmapsto dd^{c}g_{Z} + \delta_{Z(\mathbf{C})},$$

$$a : \widetilde{A}^{p-1,p-1}(X_{\mathbf{R}}) \longrightarrow \widehat{CH}^{p}(X), \quad \eta \longmapsto [(0,\eta)].$$

One can define a pairing $\widehat{CH}^p(X) \otimes \widehat{CH}^q(X) \to \widehat{CH}^{p+q}(X)_{\mathbb{Q}}$ which turns $\widehat{CH}(X)_{\mathbb{Q}}$ into a commutative graded unitary \mathbb{Q} -algebra. The maps ζ , ω are \mathbb{Q} -algebra homomorphisms. If X is smooth over \mathbb{Z} one does not have to tensor with \mathbb{Q} . The definition of this pairing is difficult; the construction uses the *star product* of Green currents, which in turn relies upon Hironaka's

resolution of singularities to get to the case of divisors. The functor $\widehat{CH}^p(X)$ is contravariant in X, and covariant for proper maps which are smooth on the generic fiber.

Choose a Kähler form ω_0 on $X(\mathbb{C})$ such that $F_{\infty}^*\omega_0 = -\omega_0$ (this is equivalent to requiring that the corresponding Kähler metric is invariant under F_{∞}). It is natural to utilize the theory of harmonic forms on X in the study of Green currents on $X(\mathbb{C})$. Following [GS1], we call the pair $\overline{X} = (X, \omega_0)$ an *Arakelov variety*. By the Hodge decomposition theorem, we have $A^{p,p}(X_{\mathbb{R}}) =$ $\mathcal{H}^{p,p}(X_{\mathbb{R}}) \oplus \operatorname{Im} d \oplus \operatorname{Im} d^*$, where $\mathcal{H}^{p,p}(X_{\mathbb{R}}) = \operatorname{Ker} \Delta \subset A^{p,p}(X)$ denotes the space of harmonic (with respect to ω_0) (p,p) forms α on $X(\mathbb{C})$ such that $F_{\infty}^*\alpha = (-1)^p\alpha$. The subgroup $CH^p(\overline{X}) := \omega^{-1}(\mathcal{H}^{p,p}(X_{\mathbb{R}}))$ of $\widehat{CH}^p(X)$ is called the *p*-th Arakelov Chow group of X. Let $CH(\overline{X}) = \bigoplus_{p \ge 0} CH^p(\overline{X})$. $CH^p(\overline{X})$ is a direct summand of $\widehat{CH}^p(X)$, and there is an exact sequence

(11)
$$CH^{p,p-1}(X) \xrightarrow{\rho} \mathcal{H}^{p-1,p-1}(X_{\mathbf{R}}) \xrightarrow{a} CH^{p}(\overline{X}) \xrightarrow{\zeta} CH^{p}(X) \longrightarrow 0.$$

In the above sequence the group $CH^{p,p-1}(X)$ is defined as the $E_2^{p,1-p}$ term of a certain spectral sequence used by Quillen to calculate the higher algebraic *K*-theory of *X*, and the map ρ coincides with the Beilinson regulator map (cf. [G] and [GS1], 3.5).

If $\mathcal{H}(X_{\mathbf{R}}) = \bigoplus_{p} \mathcal{H}^{p,p}(X_{\mathbf{R}})$ is a subring of $\bigoplus_{p} A^{p,p}(X_{\mathbf{R}})$, for example if $X(\mathbf{C})$ is a curve, an abelian variety or a hermitian symmetric space (e.g. a Grassmannian), then $CH(\overline{X})_{\mathbf{Q}}$ is a subring of $\widehat{CH}(X)_{\mathbf{Q}}$. This is not the case in general; for example it fails to be true for the complete flag varieties.

Arakelov [A] introduced the group $CH^1(\overline{X})$, where $\overline{X} = (X, g_0)$ is an arithmetic surface with the metric g_0 on the Riemann surface $X(\mathbf{C})$ given by $\frac{i}{2g} \sum \omega_j \wedge \overline{\omega}_j$. Here g is the genus of $X(\mathbf{C})$ and $\{\omega_j\}$ for $1 \leq j \leq g$ is an orthonormal basis of the space of holomorphic one forms on $X(\mathbf{C})$.

A hermitian vector bundle $\overline{E} = (E, h)$ on an arithmetic scheme X is an algebraic vector bundle E on X such that the induced holomorphic vector bundle $E(\mathbf{C})$ on $X(\mathbf{C})$ has a hermitian metric h, which is invariant under complex conjugation, i.e. $F_{\infty}^{*}(h) = h$.

To any hermitian vector bundle one can attach characteristic classes $\widehat{\phi}(\overline{E}) \in \widehat{CH}(X)_{\mathbb{Q}}$, for any $\phi \in I(n, \mathbb{Q})$, where $n = \operatorname{rk} E$. For example, we have arithmetic Chern classes $\widehat{c}_k(\overline{E}) \in \widehat{CH}^k(X)$. Some basic properties of these classes are:

- (1) $\hat{c}_0(\bar{E}) = 1$ and $\hat{c}_p(\bar{E}) = 0$ for $k > \operatorname{rk} E$.
- (2) The form $\omega(\widehat{c}_k(\overline{E})) = c_k(\overline{E}) \in A^{k,k}(X_{\mathbf{R}})$ is the *k*-th Chern form of the hermitian bundle $\overline{E(\mathbf{C})}$.

- (3) $\zeta(\widehat{c}_k(\overline{E})) = c_k(E) \in CH^k(X).$
- (4) $f^*\widehat{c}_k(\overline{E}) = \widehat{c}_k(f^*\overline{E})$, for every morphism $f: X \to Y$ of regular schemes, projective and flat over \mathbb{Z} .
- (5) If \overline{L} is a hermitian line bundle, $\widehat{c}_1(\overline{L})$ is the class of $(\operatorname{div}(s), -\log ||s||^2)$ for any rational section s of L.

Analogous properties are satisfied by $\hat{\phi}$ for any $\phi \in I(n, \mathbf{Q})$ (see [GS2], Th. 4.1). The most relevant property of these characteristic classes is their behaviour in short exact sequences: if

$$\overline{\mathcal{E}}: \ 0 \to \overline{S} \to \overline{E} \to \overline{Q} \to 0$$

is such a sequence of hermitian vector bundles over X, then

(12)
$$\widehat{\phi}(\overline{S} \oplus \overline{Q}) - \widehat{\phi}(\overline{E}) = a(\widetilde{\phi}(\overline{E})).$$

Relation (12) is the main tool for calculating intersection products of classes in $\widehat{CH}(X)$ that come from characteristic classes of vector bundles. Combining it with the results of §4 and §5 gives immediate consequences for such intersections. For example, we have

COROLLARY 4. Let $\overline{\mathcal{E}}: 0 \to \overline{S} \to \overline{E} \to \overline{Q} \to 0$ be a short exact sequence of hermitian vector bundles over an arithmetic scheme X. Assume that the metrics on $S(\mathbf{C})$, $Q(\mathbf{C})$ are induced from that on $E(\mathbf{C})$.

- (a) If $\overline{E(\mathbf{C})}$ is flat, then
 - (1) $\widehat{p_{\lambda}}(\overline{S} \oplus \overline{Q}) = \widehat{p_{\lambda}}(\overline{E}), \text{ if } \lambda \text{ has length} > 1, \text{ and}$

(2)
$$\widehat{p}_k(\overline{S}) + \widehat{p}_k(\overline{Q}) - \widehat{p}_k(\overline{E}) = k\mathcal{H}_{k-1}a(p_{k-1}(\overline{Q})), \quad \forall k \ge 1,$$

in the arithmetic Chow group $\widehat{CH}(X)_{\mathbf{Q}}$. (b) If $\overline{E} = \overline{L}^{\oplus n}$ for some hermitian line bundle \overline{L} and $\omega = c_1(\overline{L(\mathbf{C})})$, then

$$\widehat{c}(\overline{S})\,\widehat{c}(\overline{Q}) - \widehat{c}(\overline{E}) = \sum_{i,j} (-1)^j \binom{n}{i} (\mathcal{H}_n - \mathcal{H}_{n-i} + \mathcal{H}_j) a \left(\omega^i p_j(\overline{Q})\right),$$

in the arithmetic Chow group $\widehat{CH}(X)$.