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44 H. TAMVAKIS

COROLLARY 3. Let A be a partition of k and s the corresponding Schur
polynomial in A(n,g). Then §3(&) = 0 unless X is a hook X = (i,1,1,...,1),
in which case s (&) = (=D "Hi_1pr—1(0).

Proof. The proof is based on the Frobenius formula

1
Sx = Z XA (0)P(o)

kl
oES,

where (o) denotes the partition of k determined by the cycle structure of o
(cf. [M], §1.7). By the above remark, $x(&) = x»((12...k))Hk—1px—1(Q).
Using the combinatorial rule for computing XA found in [M], p. 117,
Example 5, we obtain

(—D*  if A\ = M is a hook

12... k) =
XA (( ) { 0, otherwise . L

The most natural instance of a sequence & with E flat is the classifying |
sequence over the Grassmannian G(r,n). As we shall see in §8, the calculation
of Bott-Chern forms for this sequence leads to a presentation of the Arakelov
Chow ring of the arithmetic Grassmannian over SpecZ.

6. CALCULATIONS WHEN £ IS PROJECTIVELY FLAT

We will now generalize the results of the last section to the case where |
E is projectively flat, i.e. the curvature matrix Kr of E is a multiple of the
identity matrix: Kr = wld,. This is true if £ = L®" for some hermitian line
bundle L, with w = c;(L) the first Chern form of L.

The Bott-Chern forms (for the induced metrics) are always$ closed in this
case as well, and will be expressed in terms of characteristic classes of the |
bundles involved. However this seems to be the most general case where this
phenomenon occurs.

The key observation is that for projectively flat bundles, the curvature
matrix Kg = wld, in any local trivialization. Thus we have

(1 —wKs + uwld, 0
0 (1 w)Kg + uwId,

K(u) =

where s = n — r denotes the rank of Q. Now Theorem 2 gives
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1
pr(&) = k/ iTr [(uwld, + (1 — wKs) " — K& du =
0

k—1

_ k=1\ o e [ i
—ka—,1Pk¢1(S) +k}:<]> ‘Tr(WKISf 1 ])/0 u’ 1(1—u)k =1 dy .
, j=r = ‘

N LR 1 (mn\T
Integrating by parts gives /o u" (1 —u)' du = m—l( , > , thus
1 =1l
(6) () = ~Hip1 )+ Y P18
j=1

We can rewrite this as an equation involving power sums of the qucitient
bundle: since pi(S) + pr(Q) — puL®") = 0 in A(X), we have pi(5) =
nw* — pr(Q). Thus (6) becomes

=1
| - — J -
(7) B® = Hicpie1 (@) — Y fj—pk_l.j(Q) .

j=l

THEOREM 4. Let X be a complex manifold, E a projectively flat hermitian
vector bundle over X. Let 0 — S — E — Q — 0 a short exact sequence of
vector bundles over X with metrics on S, Q induced from E. Then for any

invariant polynomial ¢ € I(n), ¢(SEP 0) = &(E) as differential forms on X.

Proof. Since the p, form an additive basis for /(n), it suffices to prove
the result when ¢ = py . The above calculation shows that py is a closed form.

This combined with Proposition 1 shows that py is closed for any partition
A. Thus

PASEP Q) — pA(E) =dd°py = 0. ]

REMARK. If E is a trivial vector bundle, this result follows by pulling
back the exact sequence & from the classifying sequence on the Grassmannian.

The forms are equal there because they are invariant with respect to the U(n)
action, so harmonic.

The Bott-Chern forms p, for a general partition A = (\;,..., \,) can be
computed by using Proposition 1. If |A\| = > \; = k then we have
n m
(8) P => @ [[pa®E =" W pr@).

I



46 H. TAMVAKIS

In principle equations (7) and (8) can be used to compute (Z(E) for any
characteristic class ¢.

We now find a more explicit formula for the Bott-Chern forms of
Chern classes. The computation is not as straightforward, as the argument
of Proposition 3 does not apply. Since by Theorem 2 the calculation depends
only on the curvature matrices Kz, Kg and Ky, we may assume

E: 0-85-LeC"—>0—0
1s our chosen sequence, and define a new sequence
&=L : 058l - C"= 0L —0.

The metrics on the bundles in &’ are induced from the trivial metric on
C". Using Propositions 2 and 3 now gives

k ;
WO =aE ol =), (Z _ j) @)D
i=1

k .
= (" B z> (— 1) i 1pi (O ® L)t

i=1

Gl (n—1i\ [i—1 R
:ZZ(—l)J(k_i)( . >Hi—1wk_l—]pj(Q)

i=1 j=0 J

k—1
= (~dw"p(0),
i=0

k
n—i\[i—1
a=3 () (5 )
i=j+1

To find a closed form for the sum d;, we can use the general identity

n—p ’ .
n—1i\[s+i n+s+1
®) Z ( p > < g )HS‘H = (D_i_ g+ 1>(Hn+s+1 — Hpgg+1 +Hp) .

i=q—s

where

This is identity (10) in [Sp]. In passing we note that writing equation (9)
without the harmonic number terms :

(900610

i=q—s




i
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gives a well known identity among binomial coefficients. Applying (9) to dj
and replacing k by k+ 1 and j by k—i we arrive at the formula

k
Cer1(€) = ;<—1)’<‘f <’Z> Hiw'pi—i(Q),

where H; = H, — H,—; + Hi—;. As remarked previously, this calculation is
valid for any projectively flat bundle E with ci(E) = nw.

Of course one can use the above method to compute the Bott-Chern form
ﬁk(g) as well; however this leads to a more complicated formula than (7).
Equating the two proves(!) the following interesting combinatorial identity
(compare [Sp], identity (30)):

(10) > (=it (l. § .>Hn_s+z- =§ (n>s).
i=0 ’

§—1

Here < > 1s a trinomial coefficient.
L]

The following summarizes the calculations of this section:

THEOREM 5. Let X be a complex manifold, E a projectively flat hermitian
vector bundle over X, with c¢{(E) =nw. Let £ :0—-8 —-E — 0 — 0 be a

short exact sequence of vector bundles over X with metrics on S, Q induced
from E. Then

ko
Piri® = (k+ DHp@) ~ k+ DY “pi D),
i=1

k
i (®) = > (— 1 (’:) Hiw'pe_i(0),
i=0
where H; = H,, — H,—; + Hp—;.

Note that the formulas in Theorem 5 reduce to the ones of the previous
section when w =0 !
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